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A theoretical explanation of the existence of lipid rafts in cell membranes remains a topic of lively

debate. Large, micrometer sized rafts are readily observed in artificial membranes and can be

explained using thermodynamic models for phase separation and coarsening. In live cells such

domains are not observed and various models are proposed to describe why the systems do not

coarsen. We review these attempts critically and show within a phase field approach that

membrane bound proteins have the potential to explain the different behaviour observed in vitro

and in vivo. Large scale simulations are performed to compute scaling laws and size distribution

functions under the influence of membrane bound proteins and to observe a significant slow

down of the domain coarsening at longer times and a breakdown of the self-similarity of the

size-distribution function.

1 Introduction

1.1 Motivation

Cell membranes play a crucial role, not only by defining the

boundary of a cell, but also by taking an active part in cell

functioning. Cell membranes consist of a lipid bilayer composed

of various types of lipids, polysaccharides and proteins, all

strongly interacting with each other. These interactions induce

a lateral heterogeneity, which is believed to be crucial for the

functionality of the membrane.1 The introduced concept of

lipid rafts is today understood as heterogeneity as a result of

interactions of lipids with proteins and the cytoskeleton, as

well as effects due to curvature. Lipid rafts have been implicated

in a number of important cellular processes including signal

transduction, membrane trafficking and protein sorting, see

ref. 2 for a review. Cell membranes can be understood as a

two-phase system consisting of the lipid raft phase, enriched in

cholesterol, proteins and saturated lipids, which is dispersed in a

matrix phase. In model membranes, the two phases are typically

associated with a lipid-ordered and a lipid-disordered phase, for

which phase separation can be observed. The behaviour of

these two systems observed in vitro and in vivo is different.

While for cell membranes a heterogeneity on a submicrometer

scale persists, model membranes show phase separation and

coarsening.3 Why do raft domains develop on a submicrometer

scale instead of coarsening until reaching a macroscopic length

scale as it happens in model membranes? We summarize possible

explanation for this discrepancy between the experimental results

in vitro and in vivo, especially large-scale phase separation vs.

dynamically stable microdomains and give an explanation using

large scale phase-field simulations.

1.2 Theoretical models for microdomain formation

The simplest explanation is to understand lipid rafts as

transient compositional fluctuations driven by thermal noise.4

This requires that the temperature of the in vivo system is

above the critical temperature at which phase separation

occurs. The domain size is then related to the static correlation

length in the system, which was reported in ref. 4 to be 20 nm

at 37 1C, which is in good agreement with typical domain sizes

for rafts. However, the lifetime within this approach is much

smaller than experimental estimates for raft lifetimes. Further

experimental verification is thus needed to verify the speculation

of equilibrium fluctuations as the origin of the stabilization of

microdomains.

Another possible origin for the formation of microdomains

is the presence of membrane proteins.5 The proteins are

thereby immobile and have a favorable energetic interaction with

the domain boundary. Thus phase separation and coarsening

may occur in pure immiscible lipid systems, but it does not occur

in vivo due to the presence of membrane proteins. In this scenario

the domain size is determined by a balance between line tension

and the interaction strength between the protein and the domain

boundary as well as the number of proteins. Effectively this has

the same effect as a line-active component reducing the line

tension. An estimate given in ref. 6 proposes the protein density

to be rather high to sustain stable raft domains. Our investigation
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will be similar to this hypothesis. A further consequence of the

stabilization of small domains was pointed out in ref. 7. Due to

logarithmically slow domain growth, the implication is that

the domains themselves would be very long-lived and such

domains may perhaps be too stable for biological purposes.

A similar reasoning is given in ref. 8 by postulating hybrid

lipids as line-active components which reduce the line tension.

Hybrid lipids are thereby lipids with a fully saturated hydro-

carbon chain and a partially unsaturated chain. This decreases

the coarsening process and for strong interaction strengths it

might also lead to trapping of small domains, such that micro-

domains can become thermodynamically stable. An experimental

verification for this scenario is not yet known.

We can also view the two lipid monolayers that constitute a

membrane as two coupled binary fluids, each with its own

dynamical properties. If phase coarsening in both layers

proceeds with different speed, e.g. as a result of different

friction with the environment, and the fluids in both layers

are energetically coupled, then the phase separation dynamics

will differ from that of an independent fluid layer. Indeed, this

leads to a temporary arrest of the phase separation in one layer

and a violation of the dynamic scaling hypothesis9 in such

situations. The arrest reflects the pinning of large domains by

the small ones in the apposed fluid. Also this explanation is

rather speculative and requires further experimental verification.

Pinning can also result from interactions with the membrane

skeleton. In ref. 10 it is shown that phase separation in two-

component lipid membranes can be strongly affected by such

interactions. Domains dynamically change their shape, but

stay pinned to the filaments of the skeleton and eventually

prevent large-scale phase separation. The domain size is

largely determined by the characteristic compartment size of

the filament network. The model predicts that coarsening is

strongly slowed down at intermediate stages and crosses over

to an extremely slow logarithmic coarsening. Thus depending

on the pinning density and the characteristic compartment size

one can expect that the domain growth stops, when domains

reach the characteristic size. Such behaviour was observed in

ref. 10–12. We will also consider this scenario and concentrate

on pinning, either as a result of membrane bound proteins or

due to interactions with the cytoskeleton. Due to the presence

of randomly ordered pinning sites, the introduced interaction

is similar to that of the random-field Ising model.13

Further possible scenarios to explain the raft hypothesis,

which include protein–lipid interactions, membrane curvature

effects and lipid recycling, are summarized in ref. 6. It should

also be noted that the coarsening process is influenced by the

bulk fluid surrounding the membrane. This has been considered

using different numerical approaches e.g. in ref. 14–16.

1.3 Membrane proteins and raft domains within a phase-field

description

A current review on mesoscale domain organization in plasma

membranes,17 which is based on single-molecule imaging in

living cell membranes, indicates that probably all of the

described phenomena are coupled to each other in a hierarchical

way. The membrane was shown to consist of compartments of

40–300 nm in diameter due to the partitioning of the plasma

membrane by the skeleton and membrane proteins which

anchor to the skeleton, raft domains of size 2–20 nm which

basically stay within the compartment, as well as complexes of

membrane associated proteins which are 3–10 nm in size.

These three hierarchically organized mesostructures are

proposed to explain the fundamental functional organization

of the membrane. To describe this behaviour in a theoretical

model we will concentrate on the interplay of pinning sites

resulting from membrane proteins and the membrane skeleton

and the dynamics of raft domains following the theoretical

investigations of ref. 5,10,11 and 18. While all these models are

based onMonte Carlo simulations we will consider a mesoscopic

continuum model based on a phase-field approximation, which

has the advantage of computational efficiency and allows to be

solved on realistic membrane shapes to incorporate curvature

effects. Furthermore it can be easily coupled to the external

field in the extracellular matrix and the cytoplasm to study

their influence on the dynamics of raft domains.

Phase-field models have already been used to study phase

separation in lipid membranes. Phase-field simulations on

spherical domains19 clearly indicate the same scaling behaviour

as on planar domains and allow to reproduce the observed

separation and coarsening phenomena in giant vesicles,3 see

Fig. 1. The observed coarsening phenomenon is purely driven

by line tension. An influence of the curvature of the geometry

on the scaling behaviour is therefore not observed. This is in

contrast to other pattern formation studies on surfaces, where

the geometry imposes restrictions on the shape of the pattern,

see e.g. ref. 20–23.

In ref. 24 and 25 the effect of curvature is investigated and

an interplay of the line tension and bending, and its influence

on domain growth, budding and fission, is studied, which

allows to reproduce the observed bulging of domains in ref. 26.

The effect of flow is investigated in ref. 9 and 15 for planar

domains and a breakdown of dynamic scaling due to secondary

nucleation and pinning is demonstrated, respectively. Recently

this is also considered in ref. 27 on curved domains. Various

mathematical investigations provide the theoretical basis for

the phase-field approach to model phase separation in lipid

membranes.28,29 We here extend this theory to consider pinning

sites, see also ref. 7,30 and 31. As we are concerned only on the

coarsening behaviour under the influence of pinnings we restrict

Fig. 1 Domain ripening and spinodal decomposition of a binary lipid

system on a spherical domain. Time evolution for a phase distribution

of 40 : 60 (top row) and 50 : 50 (bottom row) at various times.

A randomly perturbed distribution is used as initial condition. The

simulations are performed using parametric finite elements on an

unstructured triangular mesh approximating a sphere.
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ourselves to planar domains and neglect all other effects. The

underlying model uses the free energy

FPF½f� ¼
Z

1

2
eG2jrfj2 þ 1

4e
BðfÞ þ VðxÞPðfÞ dO

with phase-field variable f, interface parameter e, surface tension
parameter G, double well potential B(f) = f2(1 � f)2 and

localisation potential VðxÞ ¼
PN

i exp � ðx�xiÞ
2

s2

� �
with the

pinning positions xi and the width of the pinning sites s. At

the pinning centers the energy of phase f = 1 is reduced

compared to phase f = 0. This is modeled by P(f) =

tanh(a(0.5 � f)). Thus, locally an asymmetric double

well potential is introduced. The asymmetric potential is still

minimized by f = 0 and f = 1 if the parameter a is big

enough, see Fig. 2. We use (e, G, s, a) = (3.33, 0.003, 0.055, 4).

This leads to an interface width w = O2Ge = 0.085.

We consider a conserved evolution which leads to a mod-

ified Cahn–Hilliard model

@f
@t
¼ �D dFPF½f�

df
¼ �DmPF

with chemical potential

mPF ¼ �eG2Dfþ 1

4e
B0ðfÞ þ VðxÞP0ðfÞ

with 0 indicating partial derivation with respect to f.
The model can also be formulated on curved domains by

replacing all operators by their surface counterparts.

2 Numerical methods

All computations were done using the finite element toolbox

AMDiS.32 AMDiS allows for numerical solution of a large

class of stationary and non-stationary systems of partial

differential equations. It supports, among others, adaptivity

in space and time, higher order and mixed finite elements as

well as a framework for dimensionless problem specification.

AMDiS fully supports the usage of high performance computer

(HPC) systems and has been proven to scale efficiently on a

large number of cores.33

The numerical experiments presented here make all use of

adaptive grids. The initial configuration is interpolated on a

fine grid. As coarsening of the solution proceeds in time the

mesh coarsens as well. Our coarsening and refinement algorithm

ensures that at least 15 mesh nodes lie inside the diffuse interface

of width o. Away from the interface the mesh can become as

coarse as possible. The modified Cahn–Hilliard equation is solved

as a system of two second order equations, which are discretized

in space using linear finite elements for each component f and

mPF and in time using a Rosenbrock method of third order

(ROWDA3), see ref. 34–36 for details.

The FETI-DP33,37 domain decomposition method is used to

parallelize the problem. The computations were done on the

HPC system JUROPA at the Jülich Supercomputing Center

(JSC, Germany). As the mesh becomes coarser in time, we

use an adaptive number of cores for the computations. All

computations are started with 64 cores and the number of used

cores is decreased during simulation to ensure that each subdomain

contains at least 100000 mesh nodes, which ensure efficiency.

3 Results

3.1 Domain coarsening

We first consider the situation without pinnings.We are concerned

with interfacial dynamics of the domain boundaries. When the

domains are formed, the free energy of the system is concentrated

on the interfaces as an effect of line tension. Since the system tries

to minimize the energy, the amount of interfacial area decreases in

time. This is realized by coarsening of the domain distribution.

The characteristic length scale of the system, which describes

the typical size of the domains, increases. In the interfacial

dynamics of a two-component system two interesting features

are numerically and experimentally observed: the morphology

behaves statistically self-similar in time, and the growth rate of

the characteristic length scale obeys a temporal power law.

These investigations are confirmed by analytical results of the

sharp interface limit of the considered phase-field approach.

The LSW approach38,39 treats an ensemble of coarsening

domains and makes quantitative predictions on the long-time

behaviour of coarsening systems. The morphology of the

dispersed phase is thereby characterized in terms of a domain

radius distribution f(r,t), where f is defined as the number of

domains per unit volume at time t in a size class r to r + dr.
The time rate of change of f is therefore given by @t+ @r(f

:
r) = 0.

Under the assumption of an approximately constant chemical

potential %u far away from the clusters one obtains
:
r = %u/r � 1/r2

and %u =
R
fdr/

R
rfdr. Asymptotic analysis predicts a universal

long-time behaviour of the cluster radii distribution @tf. The

average radius %r= 1/ %u grows like %r(t) = (4t/9)1/3 independently

of the initial configuration. The derivation of the LSW theory

assumes a non-existing long-range interaction of domains.

This is only true in the unrealistic limit of the zero volume

fraction x of the coarsening phase. Extensions of the LSW theory

to nonzero coverage x are given i.e. in ref. 40 and 41 and the

references therein. In ref. 42 it is analytically shown that

the long-time behaviour in this case is not universal, but

sensitively depends on the behaviour of the initial distribution.

The modified growth rate in all these approaches is given by

%r(t)= (K(x)t)1/3 where the coarsening rateK(x) is a monotonically

increasing function of coverage x. The extension of the three

dimensional LSW theory to two dimensions is due to the

Fig. 2 Locally modified double well potential to model pinning sites.

The modification keeps the minima at the original positions.
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divergence of the logarithmic Green’s function, which is less

straightforward. Derivations rely on a cutoff at some ad hoc

distance from the islands or on an introduced screening

function.43 A rigorous derivation in the two-dimensional

setting is given in ref. 44. If d and r are defined such that

x := p(r/d)2 is the area fraction, for x { 1 one obtains highest

order
:
rE 1/ln(1/x1/2) %u/r � 1/r2 with %u=

R
f/rdr/

R
fdr. Thus the

kinetic equation for f reads ln(1/x1/2)@tf + @r(f
:
r) =0. Note

that %u can become singular. Again a scaling law of the

form %r(t) = (K(x)t)1/3 can be derived, with K(x) diverging as

1/ln(x�1/2) as x - 0.

We first use these analytical results to validate our model.

We prefer to work with a phase-field version of the underlying

model, the Cahn–Hilliard equation.45 This has the advantage

that the Cahn–Hilliard equation can be directly derived as a

mean-field model for Kawasaki dynamics in the Ising model

and therefore allows a comparison with previous studies. In

the limit of vanishing interfacial thickness o one obtains the

sharp interface model the LSW-theory is based on. One can

thus expect similar scaling behaviour also for the Cahn–

Hilliard equation. In ref. 46 the large time regime of the

Cahn–Hilliard equation is analysed. Rigorous upper bounds

for the coarsening rate in the Cahn–Hilliard equation are

derived which demonstrate that the characteristic length r

cannot coarsen faster than t1/3. Lower bounds for the coarsening

rate have not been derived rigorously and can also not be

expected within a deterministic framework, as there might exist

configurations with zero curvature, for which coarsening will not

occur. Computational studies which concentrate on the transient

behaviour of the coarsening have e.g. been done in ref. 47. We

first confirm these results. Fig. 3 shows numerical simulations

demonstrating the theoretically expected t�1/3 scaling for the

interface length. The derivation for large times results from the

influence of the boundary.

As a second result Fig. 4 shows the island size distribution

function obtained in our simulations in comparison with the LSW

theory. The scaled island size distribution is time-independent

within the coarsening regime. In agreement with the theoretical

results for non-zero coverage and the simulation results in ref. 48

a broadening of the island size distribution function with

increasing coverage is observed.

The observed scaling is in agreement with the belonging of

phase separation in giant vesicles to the universality class of a

two-dimensional Ising model49 for which %r(t) E t1/3. In ref. 18

it is shown that in the presence of pinned obstacles the

universality class changes and membranes with immobile

proteins belong to the universality class of a two-dimensional

random-field Ising model, which is significantly different as it

does not allow for macroscopic phase separation and thus gives

an elegant explanation for the occurrence of heterogeneous

equilibrium domains. The universality class of a two-dimensional

random-field Ising model was shown to be applicable for

randomly distributed pinning of membrane proteins with a

preferred affinity to one of the lipid phases. One prediction of

the random-field Ising model is a significant slow down of the

growth law %r(t) E t1/3 at intermediate stages and a cross over

to an extremely slow logarithmic growth %r(t)log t which leads to

an equilibrium state in an experimental time, with the domain

size determined by the pinning density and pinning strength.

This could be reproduced in ref. 10. It is also in agreement with a

significant slow-down of the coarsening in the presence of

quenched impurities in binary mixtures, see e.g. ref. 50. However,

the modeling approach to study domain growth with quenched

disorder differs, as a random-bond Ising model is used.

A phase field analogon to the studies in ref. 10 and 18 is

described above. Theoretical results for the modified Cahn–

Hilliard equation or its sharp interface limit are not known.

Fig. 3 Instead of the characteristic length r we here measure the

interface length of the domain boundary. An equal distribution of

both phases is used which is randomly perturbed to form an initial

condition. Zero-flux boundary conditions are used. There are three

different stages: spinodal decomposition, followed by coarsening and

finally reaching a stationary configuration. Other distributions of the

two phases (40 : 60 and 30 : 70) lead to similar scaling results, but

show an even more pronounced intermediate regime with a smaller

coarsening exponent before the system settles into the t�1/3 scaling.

Fig. 4 We consider a distribution of 40 : 60 and 30 : 70 for the two

phases. A homogeneous field is randomly perturbed to form an initial

condition. Zero-flux boundary conditions are used. We compare the

computed island size distribution function with that of the LSW

theory. The size distribution is rescaled in each time-step with respect

to the average size of an island at this time step. Shown is the average

over all time steps within the considered time interval. Islands in

contact with the domain boundary are not considered.
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We will investigate the behaviour numerically using large scale

simulations. In the field of domain growth with quenched

disorder, phase field simulations have been performed, see e.g.

ref. 51. However, as for Monte Carlo methods the modeling

approach differs, by perturbing the free energy globally instead

of a localized pinning as in our case.

3.2 Results with pinnings

Also with pinnings the dynamics of the phase separation

process is characterized by three states. (i) An initial state

showing the spinodal decomposition after quenching, (ii) a

coarsening state, which might involve a cross-over between

different states characterized by different scaling exponents,

and (iii) reaching an equilibrium state. We analyse them for an

increasing number of pinning sites. Thereby the pinning sites

are such that they prefer one lipid phase, they are randomly

distributed and have the same size. With this configuration we

fulfill the requirement of ref. 18 for the universality class of

a two-dimensional random-field Ising model. We observe a

slow down of the domain growth which increases with the

number of pinning sites. Fig. 5 shows the corresponding

scaling behaviour.

The scaling law differs from the evolution without pinnings.

We observe a decrease in the coarsening process, which

becomes slower and slower with increasing number of pinning

sites. Even more pronounced is the difference in the final

configuration, which shows smaller structures for increasing

number of pinning sites. Also a turn-over point from the observed

scaling to a drastically slowed down coarsening phase before the

final configuration is reached, it differs for different pinning

numbers and is reached earlier for higher numbers of pinning

sites. The final configurations are shown in Fig. 6.

We obtain similar scaling results also for other phase

distributions. As a final result we consider the island size

distribution under the influence of pinnings. As predicted

within the random field Ising model self-similarity should no

longer be present, which indeed is the case in our simulations

also. We show this in Fig. 7 by plotting the size distribution for

various time steps. They significantly differ from the results

without pinnings. In all cases a broadening with increasing

time is observed. The large peak in the island size distribution

resamples islands which form around a pinning site. The

position of the peak is fixed and corresponds to the size of

the pinning sites. The self-similarity cannot be achieved. We

therefore do not rescale the size distribution. Instead we plot

the obtained distribution for different times and compare them

to each other and the corresponding distribution without

pinning.

The results in each row shown in Fig. 7 are obtained from

one simulation run, which explains the large deviations

between the selected times in the case without pinnings. An

average over various simulations with different initial conditions

would smooth these differences. However, also for a single

simulation a significant movement towards larger island sizes

with increasing time can be clearly observed. This demonstrates

the coarsening behaviour of the system and the development

Fig. 5 The interface length of the domain boundary is considered as

a function of pinning sites. An equal distribution of both phases is

used which is randomly perturbed to form an initial condition. Zero-

flux boundary conditions are used. The number of pinning sites varies

between (a) 100, (b) 200, (c) 300 and (d) 400. They are randomly

distributed. There are three different stages: spinodal decomposition,

followed by coarsening and finally reaching a stationary configuration.

The spinodal decomposition stage is almost identical for all config-

urations. The theoretical scaling exponent without pinning sites is

shown for comparison. The inset shows the obtained scaling exponent

as a function of pinning sites. The error bars result from the considered

interval to compute the exponent. The interface length of the final

configuration increases with the number of pinning sites.

Fig. 6 Final configuration from Fig. 5 for (a) 100, (b) 200, (c) 300 and

(d) 400 pinning sites, from left to right.

Fig. 7 Island size distribution, which is shown in comparison with

the island size distribution function obtained without pinning sites.

We do not rescale the island sizes as no self-similarity can be expected.

(top row) Distribution without pinnings, (middle row) distribution

with 100 pinnings and (bottom row) distribution with 400 pinnings for

increasing time from left to right.
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towards macroscopically sized islands. With pinnings this is no

longer the case. The island size distribution broadens in time

and with increasing number of pinnings. In the presence

of pinnings the distribution fills the whole range of island

sizes, which demonstrates a breakdown of coarsening and the

persistence of heterogeneity on small scales which can be

interpreted as raft domains.

4 Conclusions

In ref. 10 and 18 it was shown that quenched obstacles within a

membrane drastically change the coarsening behaviour. By

relating domain formation in such systems to universality

classes it was shown in ref. 18 that membranes without

quenched obstacles belong to the universality class of a two

dimensional Ising model, while the presence of obstacles

changes the situation to the universality class of a two dimensional

random-field Ising model. Macroscopic phase separation no

longer occurs and the remaining phase consists of micro-

domains. This is in agreement with the heterogeneity in cell

membranes on a micrometer length scale and provides an

elegant explanation of the lipid raft hypothesis. Inspired from

these findings we perform mean-field simulations for similar

configurations. Corresponding to the two-dimensional Ising

model a Cahn–Hilliard equation is considered for which large

scale simulations reproduced the known coarsening properties

of self-similarity and scaling. Modifying the Cahn–Hilliard

model by introducing additional pinning sites resamples the

main properties of the two-dimensional random-field Ising

model. The pinning sites are introduced using an additional

potential which locally prefers one of the two phases. Large

scale simulations with randomly distributed pinning sites

show a significant difference in the phase separation process

when compared with the situation without pinnings. The

coarsening process is significantly slowed down with an

exponent depending on the density of pinning sites. Still

domains dynamically change their shape, but they stay pinned

to the pinning sites and eventually large-scale phase separation

is prevented. The final domain size is largely determined by the

density of the pinning sites. Our simulations predict that

coarsening is strongly slowed down at intermediate stages

and crosses over to an extremely slow logarithmic coarsening.

Domain growth stops, when domains reach a characteristic

size determined by the pinnings. Such behaviour is in agreement

with the findings in ref. 10–12 and is also similar to results

obtained in other systems, such as phase-separating polymer

gels and binary alloys with impurities.51 In addition to the

scaling behaviour we computed an island size distribution

which is no longer self-similar and shows a strong broadening

in time, with a distribution over the whole range of island sizes.

This further confirms the breakdown of self-similarity and

coarsening towards macroscopic domains.

The introduced pinning sites, which resample membrane

bound proteins, clearly demonstrate a difference in the phase

separation behaviour and allow us to explain the difference of

experimental results in vitro and in vivo, especially large-scale

phase separation and dynamically stable microdomains. Being

able to observe this within a mean field model allows us

to further incorporate additional effects, such as membrane

curvature, line tension and flow and the efficient solution of

the system on scales of relevance for further experimental

studies. Furthermore it would be possible to consider the effect

of proteins, with a preference for different lipid domains,

proteins with different sizes as well as proteins which are able

to move along the membrane.
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