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a  b  s  t  r  a  c  t

We  consider  within  a finite  element  approach  the  usage  of  different  adaptively  refined  meshes  for dif-
ferent  variables  in  systems  of nonlinear,  time-depended  PDEs.  To resolve  different  solution  behaviors  of
these variables,  the  meshes  can  be  independently  adapted.  The  resulting  linear  systems  are  usually  much
smaller, when  compared  to the  usage  of  a single  mesh,  and  the  overall  computational  runtime  can  be
more than  halved  in such  cases.  Our  multi-mesh  method  works  for Lagrange  finite  elements  of  arbitrary
degree and  is  independent  of  the spatial  dimension.  The  approach  is  well  defined,  and  can  be  imple-
EM
ulti-mesh

DE

mented  in  existing  adaptive  finite  element  codes  with  minimal  effort.  We  show  computational  examples
in  2D  and  3D  ranging  from  dendritic  growth  to  solid–solid  phase-transitions.  A  further  application  comes
from fluid  dynamics  where  we  demonstrate  the  applicability  of  the approach  for solving  the  incompress-
ible  Navier–Stokes  equations  with  Lagrange  finite  elements  of  the  same  order  for  velocity  and  pressure.
The  approach  thus  provides  an  easy  way  to implement  alternative  to stabilized  finite  element  schemes,
if  Lagrange  finite  elements  of the  same  order  are  required.
. Introduction

Nowadays, adaptive mesh refinement methods are a standard
echnique in finite element codes. They are used to resolve a mesh
ue to the local behavior of the solution. When solving systems of
DEs, e.g., in multiphysics problems, the mesh has to be adapted to
he behavior of all components of the solution. If these behaviors
re different, the use of a single mesh, even if it is adaptively refined,
ay  lead to an inefficient numerical method. In this work we pro-

ose a multi-mesh finite element method that makes it possible
o resolve the local nature of different components independently
f each other. This method works for Lagrange elements of arbi-
rary degree in any dimension. Furthermore, the method works
on top” of standard adaptive finite element methods. Hence, only
mall changes are necessary to implement the approach in exist-
ng finite element codes. We  have implemented the multi-mesh

ethod in the finite element software AMDiS (adaptive multidi-
ensional simulations),1 see [26], for Lagrange finite elements up

o fourth degree for 1D, 2D and 3D.

The usage of multiple, independently refined meshes to dis-

retize different components in systems of PDEs is not new. To our
est knowledge, Schmidt [18] was the first who has considered

∗ Corresponding author.
E-mail addresses: axel.voigt@tu-dresden.de (A. Voigt),

homas.witkowski@tu-dresden.de (T. Witkowski).
1 AMDiS is a free C++library to solve various types of PDEs using the finite element
ethod. For more information see http://www.amdis-fem.org.

877-7503/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
ttp://dx.doi.org/10.1016/j.jocs.2012.06.004
©  2012  Elsevier  B.V.  All  rights  reserved.

a multi-mesh method in the context of adaptive finite elements.
Li et al. have introduced a very similar technique and used it to
simulate dendritic growth [14,5,9]. Solin et al. [19,20] have intro-
duced an hp-FEM multi-mesh method, that is implemented in the
finite element software Hermes. Although the multi-mesh tech-
nique is introduced, in none of these publications the method is
formally derived. Furthermore implementation issues are not dis-
cussed and detailed runtime results, which compare the overall
runtime between the single-mesh and the multi-mesh method are
missing. In contrast, in this work we will formally show how mul-
tiple meshes are used in the context of assembling matrices and
vectors in the assembly step of the finite element methods and will
discuss issues related to error estimates for each component. Fur-
thermore, we  will compare the runtimes of both methods and show
that the multi-mesh method is superior to the single-mesh method,
when one component in the system of PDEs can locally be resolved
on a coarser mesh. We  should further mention other approaches
which are commonly used to deal with different meshes for dif-
ferent components of coupled systems. Especially in the case of
multi-physics applications a need exists to couple independent
simulations code. A standard tool which can be used to couple
various finite element codes is MpCCI (mesh-based parallel code
coupling interface) [10]. In this approach an interpolation between
the different solutions from one mesh to the other is performed
which for different resolutions of the involved meshes will lead to

a loss in information and is thus not the method of choice for the
problems to be discussed in this work.

The paper is structured as follows. In the next section we give a
brief overview on adaptive meshes, and introduce the terminology

dx.doi.org/10.1016/j.jocs.2012.06.004
http://www.sciencedirect.com/science/journal/18777503
http://www.elsevier.com/locate/jocs
mailto:axel.voigt@tu-dresden.de
mailto:thomas.witkowski@tu-dresden.de
http://www.amdis-fem.org
dx.doi.org/10.1016/j.jocs.2012.06.004
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ig. 1. (a) A two-dimensional macro mesh. (b) Some refinements of it. (c) Binary
ree of macro element 0.

sed throughout this paper. Section 3 introduces the so-called vir-
ual mesh assembling,  which is the basis of our multi-mesh method.
t is shown, how the coupling meshes are build in a virtual way and
ow the corresponding coupling operators are assembled on them.

n Section 4, we present several numerical experiments in 2D and
D that show the advantages of the multi-mesh method. The last
ection summarizes our results.

. Adaptive meshes

The usage of an adaptive mesh, together with error estimators
nd a refinement strategy, is becoming a standard in finite element
pproach for systems of PDEs. For a general overview on this topic
ee for example [23], and references therein.

.1. Data structure for adaptive meshes

In this section, we describe how adaptive meshes and the associ-
ted algorithms can be implemented. The data structures that are
sed to store and manipulate adaptive meshes, are the basis for

 fast and efficient multi-mesh method, as it is presented in the
ext section. Even if we concentrate on a specific data structure

or mesh representation, other data structures can be used for the
ulti-mesh concept as well with some simple modifications.
The multi-mesh method as presented here works for both, tri-

ngular and quadrilateral elements in 2D and for tetrahedrals and
exahedra in 3D. Furthermore, the method is independent of the
efinement strategy, e.g., bisectioning or red-green refinement (4-
plit). In what follows, we assume, without loss of generality, the
eshes to consist of triangles or tetrahedrals, and bisectioning as

 refinement strategy. In this case, a mesh can efficiently be stored
sing a set of binary trees, see Fig. 1. Each binary tree represents
he refinement of one element in the coarsest mesh, the so-called

acro element. All topological and geometrical information are
nly stored for the coarse grid representation. The information for
efined elements has to be computed from this data. The additional
ffort to compute the element data multiple times is usually less
han 1% of the computational time of the function that process on
he mesh and is thus negligible.

.2. Error estimation and adaptive strategies

The multi-mesh method as presented here does not rely on a
pecific error estimator. In general, arbitrary error estimator and
arker strategies can be used. Because our method refines the

eshes independently of each other, the error estimator must also

e applied for each component of the PDE. A logical consequence of
ur approach is the possibility to use also different error estimators
or the different components. For all numerical results presented
ere, we make use of the standard a posterior residual based error
stimator as, for example, described by Verfürth [25].
tational Science 3 (2012) 420–428 421

3.  Virtual mesh assembling

The basis of our multi-mesh method is the so-called virtual mesh
assembling. Systems of PDEs usually involve coupling terms. If each
component of the system is assembled on a different mesh, special
care has to be devoted to these coupling terms. In the next section,
we shortly describe this situation. Section 3.2 then introduces the
dual mesh traverse. This algorithm creates a virtual union of two
meshes without creating it explicitly. To the last, we show how to
compute integrals, that appear within the assemble procedure, on
these virtual meshes.

3.1. Coupling terms in systems of PDEs

To illustrate the techniques, we consider the homogeneous
biharmonic equation as a simple example for a system of PDEs.
This equation reads:

�2u = 0 in  ̋ and u = ∂u
∂n

= 0 on ∂˝,  (1)

with u ∈ C4(˝)  ∩ C1(˝). Using operator splitting, the biharmonic
equation can be rewritten as a system of two  second order station-
ary PDEs:

−�u + v = 0

�v = 0
(2)

The standard mixed variational formulation of this system is: find
(u, v) ∈ H1

0(˝) × H1(˝)  such that∫
˝

∇u∇� dx +
∫
˝

v� dx = 0 ∀� ∈ H1(˝)∫
˝

∇v∇  dx = 0 ∀  ∈ H1
0(˝)

(3)

To discretize these equations, we assume that T0
h and T1

h are differ-
ent partitions of the domain  ̋ into simplices. Then, V0

h
= {vh ∈ H1 :

vh|T ∈ Pn ∀T ∈ T0
h} and V1

h
= {vh ∈ H1

0 : vh|T ∈ Pn ∀T ∈ T1
h} are finite

element spaces of globally continuous, piecewise polynomial func-
tions of an arbitrary but fixed degree. We  thus obtain: find (uh, vh) ∈
V0
h

× V1
h

such that∫
˝

∇uh∇� dx +
∫
˝

vh� dx = 0 ∀� ∈ V0
h (˝)∫

˝

∇vh∇  dx = 0 ∀  ∈ V1
h (˝).

(4)

Let us define {�i|1 ≤ i ≤ n} and { i|1 ≤ i ≤ m}  to be the nodal basis
of V0

h
and V1

h
, respectively. Hence, uh and vh can be written by the

linear combinations uh =
∑n

i=1ui�i and vh =
∑m

i=1vi i, with ui and
vi the unknown real coefficients. Using these relations and breaking
up the domain in the partitions of ˝,  Eq. (4) rewrites to

n∑
j=1

uj

⎛
⎝∑

T∈T0
h

∫
T

∇�j · ∇�i

⎞
⎠+

m∑
j=1

vj

⎛
⎝∑

T∈T0
h
∪T1
h

∫
T

 j�i

⎞
⎠ = 0, i = 1, . . . , n

m∑
j=1

vj

⎛
⎝∑

T∈T1
h

∫
T

∇ j · ∇ i

⎞
⎠ = 0, i = 1, . . . , m.

(5)

To compute the coupling term
∫

T j�i, we have to define the
union of two  different partitions T0

h
∪ T1

h
. For this, we  make a restric-
tion on the partitions: any element T0 ∈ T0
h is either a subelement of

an element T1 ∈ T1
h , or vice versa. This restriction is not very strict.

It is always fulfilled for the standard refinement algorithms, e.g.,
bisectioning or red-green refinement, if the initial meshes for all
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omponents share the same macro mesh. Then, T0
h ∪ T1

h is the union
f the locally finest simplices.

The most common way to compute the integrals in (5) is to
efine local basis functions. We  define �i,j to be the jth local basis
unction on an element Ti ∈ T0

h.  i,j is defined in the same way  for
lements in the partition T1

h .
Because the global basis functions �i and  j are defined on dif-

erent triangulations of the same domain, it is not straightforward
o calculate the coupling term

∫
˝ j�i in an efficient manner. For

valuating this integral, two different cases may  occur: either the
ntegral has to be evaluated on an element from the partition T0

h or
n an element from T1

h . For what follows, we fix the first case. In
erms of local basis functions we have to evaluate

Ti∈T0
h

 k,l�i,j (6)

or some j and l, and there exists an element Tk ∈ T1
h , with Ti ⊂ Tk.

ur aim is to develop a multi-mesh method that works on the top of
xisting finite element software. These have implemented special-
zed methods to evaluate integrals of local basis functions very fast,
.g., precalculated integral tables or fast quadrature rules. All these
ethods cannot directly be applied to the coupling terms, because
k,l in (6) is not a local basis function of the element Ti. The general

dea to overcome this problem is to define the basis functions  k,l
y a linear combination of local basis functions of Ti. Thus,

Ti∈T0
h

 k,l�i,j =
∫
Ti∈T0

h

∑
m

(ck,m�i,m)�i,j, (7)

ith some real coefficients ck,m. For the other case, i.e., the integral
n the coupling term is evaluated on an element Ti ∈ T1

h , we have

Ti∈T1
h

 k,l�i,j =
∫
Ti∈T1

h

 k,l
∑
m

(ci,m k,m). (8)

Summarized, to evaluate the coupling terms, two different tech-
iques have to be defined and implemented. Firstly, the method

equires to build a union of two meshes. This leads to an algorithm
hich we name dual mesh traverse. It will be discussed in the next

ection. Once the union is obtained, we need to calculate the coeffi-
ients ci,j and to incorporate them in the finite element assemblage
rocedure such that the overall change of the standard method is
s small as possible.

.2. Creation of the virtual mesh

MT ′ =

⎛
⎜⎜⎜⎜⎜⎝

∫
T ′
 0�0 . . .

∫
T ′
 0�

...
...∫

T ′
 n�0 . . .

∫
T ′
 n�

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∑
i

c0i

∫
T ′
�i�0 . . .

∑
i

...∑
i

cni

∫
T ′
�i�0 . . .

∑
i

The simplest way to obtain the union of two meshes is to employ
he data structure they are stored in. Hence, in our case we  could
xplicitly build the union by joining the binary trees of both meshes
tational Science 3 (2012) 420–428

into a set of new binary trees. Especially when we consider meshes
that change in time, this procedure is not only too time-consuming
but also requires additional memory to store the joined mesh. To
avoid this, we  do not directly work on the mesh data but instead use
the mesh traverse algorithm, that creates the requested element
data on demand. According to this method, we  define the dual mesh
traverse that traverses two meshes in parallel and thus create the
union of both meshes in a virtual way.

For the dual mesh traverse the only requirement is that both
meshes must share the same macro mesh, but they can be refined
independently of each other. Due to this requirement and because
of the bisectioning refinement algorithm the following holds: if the
intersection of two elements of two  different meshes is non empty,
then either both elements are equal or one element is a real subele-
ment of the other. To receive the leaf level of the virtual mesh, the
dual mesh traverse simultaneously traverses two binary trees, each
corresponding to the same macro element in both macro meshes.
The algorithm then calls a user defined function, e.g., the element
assembling function or an element error estimator, that works on
pairs of elements, with both, the larger and the smaller element of
the current traverse. The larger of both elements is fixed as long
as all smaller subelements in the other mesh are traversed. Fig. 2
shows a simple example for a macro mesh consisting of four macro
elements. In the first mesh macro element 0, and in the second
mesh macro element 1 are refined once.

3.3. Assembling of element matrices

To speedup the calculation, the form as given by (7) and (8) is not
appropriate. To implement these transformations, some changes
of the inner assemblage procedure are required. First, we have to
distinguish two cases: the smaller of both elements defines either
the space of test functions, or it defines the space of trial functions.
For the first case, we  consider the coupling term

∫
˝ i�j in (5),  with

some local basis functions  i and �j, that has to be assembled on
a virtual mesh. Then, for some elements T and T′, with T′ ⊂ T, the
element matrix MT ′ is given by⎛
⎜⎜⎜⎜⎜⎜⎝

∫
T ′

∑
i

(c0i�i)�0 . . .

∫
T ′

∑
i

(c0i�i)�n

...
...∫

T ′

∑
i

(cni�i)�0 . . .

∫
T ′

∑
i

(cni�i)�n

⎞
⎟⎟⎟⎟⎟⎟⎠

∫
T ′
�i�n

...∫
T ′
�i�n

⎞
⎟⎟⎟⎟⎟⎟⎠

= C ·

⎛
⎜⎜⎜⎜⎜⎝

∫
T ′
�0�0 . . .

∫
T ′
�0�n

...
...∫

T ′
�n�0 . . .

∫
T ′
�n�n

⎞
⎟⎟⎟⎟⎟⎠ ,

(9)

where �i are the local basis function defined on T′,  i are the local
basis function defined on T, and C is the transformation matrix for
the local basis function from T to T′. This shows, that to assem-
ble the element matrix of a virtual element, there is no need for
larges changes within the assemble procedure. The finite element
code needs only to assemble the element matrix of the smaller ele-
ment T′ and multiply the result with the transformation matrix.
Hence, if the transformation matrices can be computed easily, the
overhead for virtual element assembling can be neglected. A differ-

ent approach for a multi-mesh hp-FEM is presented by Solin et al.
[19,20]. Their method is based on transformating quadrate points
which is harder to implement in existing single mesh finite element
codes.
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The second case, where the smaller element defines the space of
rial functions, is very similar. The same calculation as above shows
hat the following holds:

T ′ =

⎛
⎜⎜⎜⎜⎜⎝

∫
T ′
�0�0 . . .

∫
T′
�0�n

...
...∫

T ′
�n�0 . . .

∫
T ′
�n�n

⎞
⎟⎟⎟⎟⎟⎠ · CT (10)

The above calculations can be immediately generalized for gen-
ral zero order terms of the form

∫
˝ ic�j with c ∈ L∞(˝), as the

ransformation matrices C are independent of c. In a similar way
e can also reformulate the element matrices for general first and

econd order terms. For a general second order term of the form

˝∇  i · A ∇ �j, with A :  ̋ �→ R
d×d, the element matrix MT ′ can

e rewritten in the same way as we have done it in (9) for a zero
rder terms:

MT′ =

⎛
⎜⎜⎜⎜⎜⎝

∫
T′

∇ 0 · A∇�0 . . .

∫
T′

∇ 0 · A∇�n
...

...∫
T′

∇ n · A∇�0 . . .

∫
T′

∇ n · A∇�n

⎞
⎟⎟⎟⎟⎟⎠ = C∇ ·

⎛
⎜⎜⎜⎜⎜⎝

∫
T′

∇�0

...∫
T′

∇�n

here the coefficients of the matrix C∇ are defined such that

 i =
n∑
j=0

cij∇�i. (12)

f the smaller element defines the space of trial functions, we can
stablish the same relation as in (10). For general first order terms
f the form

∫
˝ ib · ∇ �j, with b ∈ [L∞(˝)]d, it is simple to check

hat for the case the smaller element defines the test space, the
lement matrix MT ′ can be calculated on the smaller element and
ultiplied with C from the left. If the smaller element defines the

pace of trial function, the element matrix calculated on the smaller
lement must be multiplied with CT∇ from the right.

.4. Calculation of transformation matrices

We  have shown that if the transformation matrix is calculated
or a given tuple of small and large element, the additional cost for
irtual mesh assembling is very small. In this section, we show how
o compute these transformation matrices efficiently. We  formally
efine a virtual element pair by the tuple

T, {˛0, . . . , ˛n}) = (T, ˛) with ˛i ∈ {L, R}, (13)
here T is the larger element of the pair and  ̨ is an ordered set
hat is interpreted as the refinement path for element T. Thus, L
enotes the “left” and R denotes the “right” children of the element.
urthermore, we define a function TRA that uniquely maps a virtual
tational Science 3 (2012) 420–428 423

�0 . . .

∫
T′

∇�0 · A∇�n
...

�0 . . .

∫
T′

∇�n · A∇�n

⎞
⎟⎟⎟⎟⎟⎠ (11)

element pair to the smaller element. It is defined recursively by:

TRA(T, ∅) = T

TRA(T, {˛0, ˛1, . . . , ˛n}) =
{
TRA(TL, {˛1, . . . , ˛n}) if ˛0 = L

TRA(TR, {˛1, . . . , ˛n}) if ˛0 = R,

where TL is the left child of the element T, and TR the right child
of the element, respectively. In the same way  we  can now define
transformation matrices as functions on refinement path:

C(∅) = I

C({˛0, ˛1, . . . , ˛n}) =
{

CL · C({˛1, . . . , ˛n}) if ˛0 = L

CR · C({˛1, . . . , ˛n}) if ˛0 = R,

where CL and CR are the transformation matrices for the left child
and the right child, respectively, of the reference element.

3.5. Implementation issues

Although the calculation of transformation matrices is quite fast,
it can considerably increase the time for assembling the linear sys-
tem. This is especially the case, if one mesh is much coarsen in
some regions than the other mesh. To circumvent this problem, we
have implemented a cache, that stores the transformation matri-
ces. In the mesh traverse routine, an 64 bit integer data type stores
the refinement path bit-wise, as it is defined by (13). If the bit on
the ith position is set, the finer element is a right-refinement of
its parent element, otherwise it is a left-refinement of it. Of coarse
this limits the level gap between the coarser and the finer level to

be less than or equal to 64. But we  have not found any practical
simulations, where this value is more than 30. Using this data type
makes it then easy to define associative array that uniquely maps a
refinement path to a transformation matrices. If a transformation
matrix was  computed for a given refinement path for the first time,
it will be stored in this array. To access previously computed matri-
ces using the integer key is then very cheap. In general this data
structure should be restricted to a fixed number of matrices to not
to spend too much of memory. In all of our simulations, the number
of matrices that should be stored in the cache never exceed 100,000.
Also in the 3D case with linear elements the overall memory usage
is then around 2 MB,  and can thus be neglected. Therefore, we have
not yet considered to implement an upper limit for the cache. More
information about the number and memory usage of the transfor-
mation matrices is given in the next section when presenting the
numerical results.

All of the algorithms described here can be easily adjusted if
other data structure than binary trees are used to represent the
mesh. This may  be the case if, e.g., a red-green refinement strategy
is used, or if the mesh consists of quadrilaterals or cubes. In both
case, quadtrees or octrees are employed to represent the adaptive
mesh structure. For these data structures, transformation matrices
can be calculated in the same way as we have done it in this section

for binary trees. Of course, the refinement path, as defined in Sec-
tion 3.4, cannot be stored in this way. Here, either at least two bits
for quadtrees or at least three bits for octrees are required to store
the information about the children on the next refinement level.
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. Numerical results

In this section, we present several examples, where the multi-
esh approach is superior in contrast to the standard single-mesh

nite element method. Examples to be considered are phase-field
quations to study solid–liquid and solid–solid phase transitions.
or a recent review we refer to [16]. These equations involve at least
ne variable, the phase-field variable, which is almost constant in
ost parts of the domain and thus can be discretized within these

arts using a coarse mesh. At the interface region a high resolution
s required to resolve the smooth transition between the different
hases. A second variable in such systems is typically a diffusion
eld which in most cases varies smoothly across the whole domain
nd thus will require a finer mesh outside of the interface and a
oarser mesh within the interface. Such problems are therefore
ell suited for a multi-mesh approach, as has already been demon-

trated in Li et al. [14,5] and Schmidt [18], but without detailed
untime comparisons. We  will consider dendritic growth in solidi-
cation and coarsening phenomena in binary alloys to demonstrate
he applicability.

Other examples for which large computational savings due to
he use of the multi-mesh approach are expected are diffuse inter-
ace and diffuse domain approximations for PDEs to be solved
n surfaces are within complicated domains. The approaches
ntroduced in [17,15], respectively, use a phase-field function to
mplicitly describe the domain the PDE has to be solved on. For
he same reason as in phase-transition problems the distinct solu-
ion behavior of the different variables will lead to large savings if
he multi-mesh approach is applied. The approach has already been
sed for applications such as chaotic mixing in microfluidics [1],  tip
plitting of droplets with soluble surfactants [21], and chemotaxis
f stem cells in 3D scaffolds [13].

As a further example we demonstrate that the multi-mesh
pproach can also be used to easily fulfill the inf-sup condition for
addle-point problems if both components are discretized using
inear Lagrange elements. We  demonstrate this numerically for
he incompressible Navier–Stokes equation with piecewise lin-
ar elements for velocity and pressure, but a finer mesh used
or the velocity. Such an approach might be superior to mixed
nite elements of higher order or stabilized schemes in terms
f computational efficiency and implementational efforts. For a
eview on efficient finite element methods for the incompressible
avier–Stokes equation we  refer to [22]. We  demonstrate the appli-
ability of the multi-mesh approach on the classical driven cavity
roblem.

.1. Dendritic growth

We  first consider dendritic growth using a phase-field model,
hich today is the method of choice to simulate microstructure

volution during solidification. For reviews we refer to [3].  A widely
sed model for quantitative simulations of dendritic structures
as introduced by Karma and Rappel [11,12], which reads in non-
imensional from

A2(n)∂t� = (� − �u(1 − �2))(1 − �2) + ∇(A2(n)∇�) +
d∑
i=1

∂xi

(
|∇�

∂tu = D∇2u + 1
2
∂t�,
here d = 2, 3 is the dimension, D is the thermal diffusivity con-
tant, � = D/a2, with a2 = 0.6267 is a coupling term between the
hase-field variable � and the thermal field u and A is an anisotropy
tational Science 3 (2012) 420–428

)
∂A(n)
∂xi�

)
(14)

function. For both, simulation in 2D and 3D, we  use the following
anisotropy function:

A(n) = (1 − 3�)

(
1 + 4�

1 − 3�

∑d
i=1�

4
xi

|∇�|4

)
, (15)

where � controls the strength of the anisotropy and n = (∇ �)/(| ∇ �|)
denotes the normal to the solid–liquid interface. In this setting the
phase-field variable is −1 in liquid and 1 in solid, and the melting
temperature is set to be zero. As boundary condition we  set u = −�
to specify an undercooling. For the phase-field variable we  use zero-
flux boundary conditions.

The time integration is done using a semi-implicit Euler method,
which yields a sequence of nonlinear stationary PDEs:

A2(nn)
�

�n+1 + f + g − ∇(A2(nn)∇�n+1) − L[A(nn)] = A2(nn)
�

�n

un+1

�
− D∇2un+1 − 1

2
�n+1

�
= un
�

− 1
2
�n
�
.

(16)

with f = �3
n+1 − �n+1, g = �(1 − �2

n+1)2un+1 and

L[A(nn)] =
d∑
i=1

∂xi

(
|∇�n+1|2A(nn)

∂A(nn)
∂xi�n

)
.

We  now linearize the involved nonlinear terms f and g:

f ≈ (3�2
n − 1)�n+1 − 2�3

n

g ≈ �(1 − �2
n)2un+1

(17)

and obtain a linear system for �n+1 and un+1 to be solved in each
time step.

To compare the multi-mesh method with a standard adaptive
finite element approach, we have computed a dendrite using lin-
ear finite elements. The following parameters are used: � = 0.65,
D = 1.0, � = 0.05.

We  use a constant timestep � = 1.0 up to time 4000. To speedup
the computation we  have employed the symmetry of the solution
and limited the computation to the upper right quadrant with a
domain size of 800 into each direction. The adaptive mesh refine-
ment relies on the residuum based a posteriori error estimate.
By setting C0 to 0 and C1 to 1, we restrict the estimator to the
jump residuum only. We have set the tolerance to be tol� = 0.5 and
tolu = 0.25. For adaptivity, the equidistribution strategy with param-
eters 	R = 0.8 and 	C = 0.2 was used. Thus, the interface thickness is
resolved by around 20 grid points.

The result of both computations coincides at the final timestep.
As a quantitative comparison we  use the tip velocity of the dendrite.
As reported by Karma and Rappel [12], for this parameter set analyt-
ical calculations lead to a steady-state tip velocity Vtip = 0.0469. In
both of our calculations, the tip velocity varies around 1% to this
value. Using the single-mesh method, within the final timestep
the mesh consists of 429,148 vertices for each component. Thus,
the overall system of linear equations has 858,296 unknowns.
When our multi-mesh method is used, the same solution can be
obtained with a mesh for the phase-field with 401,544 vertices and
46,791 vertices for the temperature field. Here, the system of linear
equations consists only of 448,335 unknowns. The gap between
the number of vertices required to resolve the phase field and the
temperature field increases over time, see Fig. 3 that shows the
development of the mesh size over time for both methods. Fig. 4
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Fig. 3. Evolution of mesh vertices in time for the phase field and the temperature
field  using single-mesh and multi-mesh method.

Table 1
Comparison of runtime when using single-mesh and multi-mesh method for a 2D
dendritic growth simulation.

Single-mesh Multi-mesh Speedup

Assembler 11,369 s 10,741 s 5.5%
Solver: UMFPACK 12,799 s 7603 s 40.5%
Solver: BiCGStab(
) 27,436 s 8178 s 70.1%
Estimator 6444 s 3259 s 50.5%
Overall with UMFPACK 30,612 s 21,603 s 29.4%
Overall with BiCGStab(
) 45,249 s 22,178 s 50.9%

Table 2
Matrix related data for the system of linear equations at the final timepoint (t = 4000)
in  a 2D dendritic growth simulation.

Single-mesh Multi-mesh

Number of unknowns 858,140 448,335 (401,544 + 46,791)
Matrix non zero values 11,811,959 6,057,416
Matrix size 138.4 MB  71.0 MB
Transformation matrix size 0 MB  0.35 MB
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BiCGStab(
)  iterations 72 51
Condition number estimate 4.56 · 107 8.87 · 106

ualitatively compares the meshes of the phase-field variable and
he temperature field which shows the expected finer resolution of
he phase-field mesh within the interface and its coarser resolution
ithin the solid and liquid region.

The computational time for both methods is compared in
able 1. The assemblage procedure in the multi-mesh method
s around 6% faster, although computing the element matrices is
lower due to the extra matrix–matrix multiplication. This is easily

xplained by the fact that we have much less element matrices
o compute and the overall matrix data structure is around 50%
maller with respect to the number of non-zero entries, see also
he more detailed data in Table 2. This is also reflected in the

ig. 4. (a) 2D dendrite computed at t = 4000 using the multi-mesh method with the para
emperature field and right shows the mesh of the phase field. (b) Zoom into the upper ti
Fig. 5. Evolution of the number of transformation matrices and the refinement path
length for the 2D dendritic growth computation.

solution time for the linear system. We  have run all computation
twice, with using either UMFPACK, a multifrontal sparse direct
solver [4],  or the BiCGStab(
) with the parameter 
 = 2 and diagonal
preconditioning, that is part of the Math Template Library (MTL4),
see [8].  When using the first one within the multi-mesh method,
the solution time can be reduced by 40% and also the memory
usage, which is often the most critical limitation in the usage of
direct solvers, is reduced in this magnitude. An even more drastic
reduction of the computation time can be achieved when using
an iterative solver. Here, the number of iterations is around 30%
less with the multi-mesh method and each iteration is faster due
to the smaller matrix. This is explained in more detail in Table 2,
that shows all relevant matrix data for the very last timestep of
the simulation. Not only the overall matrix size is smaller, but also
the condition number of the matrices decreases for this PDE when
using the multi-mesh method. Hence, the iterative solver needs
less iteration to solve the system of linear equations. The memory
overhead for the multi-mesh method is quite small. At the very last
timestep, only 3215 transformation matrices are stored, requiring
0.35 MB  of memory. Fig. 5 shows the evolution of the number of
stored transformation matrices in time. Furthermore, it shows the
average and maximum length of the refinement paths which are
used as keys to find the precomputed transformation matrices.

The time for error estimation is halved, as expected, since it
scales linearly with the number of elements in the mesh. Altogether,
the time reduction is significant in all parts of the finite element
method for this example. In addition the approach also leads to a
drastic reduction in the memory usage.

The results are even more significant in 3D. We  compared a
single-mesh computation with the multi-mesh method using the

following model parameters: � = 0.55, D = 1, � = 0.05. We  have run
the simulation with a constant timestep � = 1.0 up to time 2500. The
evolution of degrees of freedom over time is quite similar to the 2D

meters � = 0.65, D = 1.0, �= 0.05 and a timestep � = 1.0. Left shows the mesh of the
p showing the different resolution of both meshes.
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uation for t = 0.02, t = 1.0, t = 5.0 and t = 12.50.
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the systems when using the single-mesh approach. Here we  see
again both effects as already described in the numerical example
before: each iteration of the solver is faster due to smaller matrices
and vectors, and the system of equations are better conditioned in

Table 3
Comparison of runtime when using single-mesh and multi-mesh method for a 3D
coarsening simulation using 4th order Lagrange finite elements.

Single-mesh Multi-mesh Speedup
Fig. 6. Solution of the Cahn–Hilliard eq

xample. When using the multi-mesh method, the time for solving
he linear system, again using the BiCGStab(
) solver with diago-
al preconditioning, can be reduced by around 60%. The time for
rror estimation is around half the time needed by the single-mesh
ethod. Because the time for assembling the linear system is more

ignificant in 3D, the overall time reduction with the multi-mesh
ethod is around 24.4%.

.2. Coarsening

As a second example we consider coarsening of a binary struc-
ure using a Cahn–Hilliard equation. We  here concentrate only on
he phenomenological behavior of the solution and thus consider
he simplest isotropic model, which reads

∂t� = ��

� = −� ��  + 1
�
G′(�)

(18)

or a phase-field function � and a chemical potential �. The parame-
er � again defines a length scale over which the interface is smeared
ut, and G(�) = 18�2(1 − �)2 defines a double-well potential. To dis-
retize in time we again use a semi-implicit Euler scheme

1
�
�n+1 − ��n+1 = 1

�
�n

�n+1 + � ��n+1 − 1
�
G′(�n+1) = 0

(19)

n which we linearize G′(�n+1) ≈ G′′(�n)�n+1 + G′(�n) − G′′(�n)�n.
To compare our multi-mesh method with a standard adaptive

nite element approach, we have computed the spinodal decom-
osition and coarsening process using Lagrange finite elements of
ourth order. We  use � = 5 ·10−4. The adaptive mesh refinement
elies on the residuum based a posteriori error estimate. As we have
one it in the dendritic growth simulation, also here only the jump
esiduum is considered, i.e., the constants C0 and C1 are set to 0
nd 1, respectively. For both methods, the error tolerance are set to
ol� = 2.5 · 10−4 and tol� = 5 ·10−2. For adaptivity, the equidistribu-
ion strategy with parameters 	R = 0.8 and 	C = 0.2 was  used. Using
hese parameters, the interface thickness is resolved by around 10
rid points.

The simulation was started from noise. The first mesh was  glob-
lly refined with 196,608 elements. The constant timestep was
hosen to be � = 10−3. We  have disabled the adaptivity for the
rst 10 timesteps, until a very first coarsening in the domain was
chieved. Then the simulation was executed up to t = 13.0, where
oth phases are nearly separated. Fig. 6 shows the phase field,

.e., the 0.5 contour of the first solution variable, for four different
imesteps. The number of elements and degrees of freedom is lin-
ar to the area of the interface that must be resolved on the domain.
ndeed, the chemical potential can be resolved on a mush coarser

rid, since it is independent of the resolution of the phase field.
n the final state, the chemical potential is constant on the whole
omain, and the macro mesh (which consists of 6 elements in this
imulation) is enough to resolve it. The evolution of the number of
Fig. 7. Evolution of number of elements for both variables of the Cahn–Hilliard
equation.

elements for both variable over time is plotted in Fig. 7. As expected,
the number of elements for the phase field monotonously decreases
as its area shrinks due to the coarsening process. The number of ele-
ments for the chemical potential rapidly decreases at the very first
beginning, as the initial mesh is over refined to resolve this vari-
able. For most of the simulation, the number of elements of the
chemical potential is three orders of magnitude smaller the num-
ber of elements for the phase field variable. This gap is also reflected
in the computation time for the single-mesh and the multi-mesh
method, which are compared in Table 3. The assembling proce-
dure of the multi-mesh method is now 4.7% slower in comparison
to the single-mesh method. The main reason therefore is that the
transformation matrices are here large due to the 4th order finite
element in 3D. They are of size 35 × 35, and thus slow down the
assembling procedure more than in the 2D example before, where
the transformation matrices are of size 3 × 3 for linear finite ele-
ments. This small surcharge is paid off when comparing solver and
error estimator run times. For solving the linear system of equations
we again make use of BiCGStab(
) solver with parameter 
 = 2 and
diagonal preconditioning. To solve the systems arising in the multi-
mesh methods it takes less than 25% of time required for solving
Assembler 19,718 s 20,649 s −4.7%
Solver: BiCGStab(
) 26,178 s 6312 s 75.8%
Estimator 18,016 s 6967 s 61.3%
Overall 63,912 s 33,928 s 46.9%
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Table  4
Comparison of eddy position for Re = 1000 in the driven cavity model.

Eddy 1 Eddy 2 Eddy 3 Eddy 4

Single-mesh 0.5310, 0.5658 0.8633, 0.1116 0.0838, 0.0775 0.9937, 0.0062
Multi-mesh 0.5305, 0.5671 0.8669, 0.1125 0.0813, 0.0750 0.9953, 0.0062
Wall 0.5308, 0.5660 0.8643, 0.1115 0.0832, 0.0775 0.9941, 0.0066
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Ghia  et al. 0.5313, 0.5625 0.859

he case of the multi-mesh method leading to a smaller number of
verall iterations. The overall solution time reduces from around
064 min  when using the single-mesh method to 565 min  when
sing the multi-mesh approach.

.3. Fluid dynamics

For the last example, we demonstrate that the multi-mesh
ethod can also be used to solve problems in fluid dynamics using

tandard linear finite elements. The inf-sub stability is thereby
stablished by using two different meshes. As an example we con-
truct a problem in 2D. The mesh for the velocity components is
efined twice more than the mesh for pressure. In the 3D case,
he velocity mesh has to be refined three times to get the corre-
ponding refinement structure. This discretization was introduced
y Bercovier and Pironneau [2],  and was analyzed and proven to
e stable by Verfürth [24]. Although this is not the most efficient
echnique to ensure the inf-sub stability condition, it is a very sim-
le way if the usage of multiple meshes is supported in the used
nite element software. We  consider the standard instationary
avier–Stokes equation given by

∂tu − �∇2u + u · ∇u + ∇p = f

∇ · u = 0,
(20)

here u is the velocity, p the pressure and � > 0 is the kinematic
iscosity. The time is discretized by the standard backward Euler
ethod. The nonlinear term in (20) is linearized by un · ∇ un+1.
The model problem is the “driven cavity” flow, as described and

nalyzed in [27,7].  In a unit square, the boundary conditions for the
elocity are set to be zero on the left, right and lower part of the
omain. On the top, the velocity into x direction is set to be one and

nto y direction to be zero. In the upper corners, both velocities are
et to be zero, which models the so-called non-leaky boundary con-
itions. The computation was done for several Reynold numbers
arying between 50 and 1000. First, we have used the single-mesh
ethod with a standard Taylor–Hood element, i.e., second order

agrange finite element for the velocity components and linear
agrange finite element for the pressure. Then, we  have compared
hese results with the multi-mesh method, where for both compo-
ents linear finite elements were used and the mesh for velocity is
efined twice more than the pressure. All computations were done
ith a fixed timestep � = 0.01 and aborted, when the relative change

n velocity and pressure is less than 10−6. For verification purposes,
able 4 compares all the positions of all eddies in our results with
eference values from the work of Ghia et al. [7] and Wall [27].

In both, the single-mesh method and the multi-mesh method, all
nite element spaces have the same number of unknowns. This is
he reason, why the usage of the latter one is not faster in contrast to
he single-mesh method. The time for assembling the linear system
rowth is from 4.13 s to 5.79 s, which is mainly caused by the multi-
lication of the element matrices with the transformation matrices.
nstead, the average solution time with a BiCGStab(
) solver and
LU preconditioning decreases from 10.18 s to 8.88 s. Although the
inear systems have the same number of unknowns, the linear sys-
ems resulting from the single-mesh method are denser due to the
94 0.0859, 0.0781 0.9922, 0.0078

usage of second order finite elements. The number of non-zero
entries decreases around 20% when linear elements are used on
both meshes.

5. Conclusion

To further improve efficiency of adaptive finite element simula-
tions we consider the usage of different adaptively refined meshes
for different variables in systems of nonlinear, time-depended
PDEs. The different variables can have very distinct solution behav-
ior. To resolve this the meshes can be independently adapted for
each variable. The multi-mesh method, as defined in this paper,
can make use of Lagrange finite elements of arbitrary degree and is
independent of the spatial dimension. The approach is well defined,
and can be implemented in existing adaptive finite element codes
with minimal effort. The additional computational effort for assem-
bling matrices on virtual meshes is very small and can be negligible
in most computations. Only small transformation matrices must be
multiplied with the matrices assembled on mesh elements. As dis-
cussed in Section 3.5,  the transformation matrices can be stored in
an appropriate data structure to avoid unnecessary recalculations.
We have demonstrated for various examples that the resulting
linear systems are usually much smaller, when compared to the
usage of a single mesh, and the overall computational runtime
can be more than halved in various cases. Phase transition prob-
lems within a diffuse interface approach are well suited for such
an approach. The same holds for saddle-point problems in which
the inf-sup condition can be fulfilled for finite elements of the same
order.

This work is the very first rigorous derivation of a multi-mesh
method. In contrast to existing work [18–20],  we  have shown that
using virtual meshes results in the same matrices when combin-
ing the two  meshes physically to a union of both. Our approach
is very simple to implement in existing finite element codes, as
it does not relay on any special data structure. Furthermore, it is
not restricted to linear finite elements, but generalizes to Lagrange
finite elements of arbitrary degree. Though presented here for tri-
angles/tetrahedrons and bisectioning, it can easily be modified to
other elements and other refinement strategies.

Further examples, that may  benefit from the multi-mesh
method, include general diffuse interface concepts to solve PDEs
in complex domain. Here a phase-field function is used to describe
the domain implicitly [15], which only requires a fine resolution
along the boundaries. The approach might also be used in time
stepping schemes to prevent loss of information during coarsen-
ing. In a classical approach the solution from the old time step is
simply interpolated to the new mesh at the new time step. If the
new mesh is coarser information is lost, which can be prevented by
using the multi-mesh approach for the solution at different time
steps. This aspects has been considered in Dubcova et al. [6].  And

also in optimal control problems the approach is very promising, as
in many situations the dual solution is much smoother than the pri-
mal  solution and thus can be discretized on a much coarser mesh. To
demonstrate this for parabolic control problems work is in progress.
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