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Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface-
phase-field-crystal model
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Colloid particles that are partially wetted by two immiscible fluids can become confined to fluid-fluid interfaces.
At sufficiently high volume fractions, the colloids may jam and the interface may crystallize. The fluids together
with the interfacial colloids form an emulsion with interesting material properties and offer an important route to
new soft materials. A promising approach to simulate these emulsions was presented in Aland et al. [Phys. Fluids
23, 062103 (2011)], where a Navier-Stokes-Cahn-Hilliard model for the macroscopic two-phase fluid system
was combined with a surface phase-field-crystal model for the microscopic colloidal particles along the interface.
Unfortunately this model leads to spurious velocities which require very fine spatial and temporal resolutions
to accurately and stably simulate. In this paper we develop an improved Navier-Stokes-Cahn-Hilliard-surface
phase-field-crystal model based on the principles of mass conservation and thermodynamic consistency. To
validate our approach, we derive a sharp interface model and show agreement with the improved diffuse interface
model. Using simple flow configurations, we show that the new model has much better properties and does
not lead to spurious velocities. Finally, we demonstrate the solid-like behavior of the crystallized interface by
simulating the fall of a solid ball through a colloid-laden multiphase fluid.
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I. INTRODUCTION

Bicontinuous gels are widely used in many fields of daily
life such as the food, cosmetic, and pharmaceutical industries.
They are used to deliver drug compounds, fragrances, or
flavors. Stability of the bicontinuous gel is essential for such
purposes. A bicontinuous gel consists of interpenetrating, con-
tinuous domains of two immiscible fluids. Due to interfacial
tension at the fluid-fluid interfaces such structures are not
stable and are subject to coarsening. In order to maintain a
bicontinuous state and prevent the structure from coarsening,
amphiphilic molecules such as surfactants and polymers can
be used to reduce the interfacial tension significantly thereby
slowing the coarsening process. However, bicontinuous gels
can also be stabilized using colloidal particles, in analogy
with stabilized (Pickering) emulsions [1–5]. In so-called
“bijels” (bicontinuous interfacially jammed emulsions gels)
the structure is stabilized by a jammed layer of colloidal
particles at the interface. Such gels were initially proposed
on the basis of computer simulations [6] and later were
experimentally confirmed [7]. For a review on both theoretical
and experimental approaches we refer the reader to [8]. The
basic ideas behind the formation of bijels are (1) generation of
a bicontinuous structure by spinodal decomposition or intense
mixing, (2) adsorption of colloidal particles at interfaces,
and (3) jamming of interface colloids either by a reduction
in surface area of interfaces or by sufficiently high volume
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fractions of interfacial colloids. If the layer of colloidal
particles at the interface truly solidifies a three-dimensional
solid gel with finite elastic modulus and yield stress is formed.
Such an amorphous structure with fluid bicontinuity and yield
stress forms a novel class of materials. However, the stability
of these materials is still under debate. It is not known
whether the system is stable for long times and what are
the mechanisms that ensure stability. For example, it remains
an open question whether attraction between the colloids is
essential for stability, or if repulsive particle interactions can
lead to stable configurations as well.

Using computer simulations to understand the dynamic
properties of bijels is a promising approach. However, there
are various shortcomings of traditional approaches due to the
very different spatiotemporal scales involved. On the one hand,
fluid dynamics have to be considered in mesoscopic time and
spatial scales resolving the bicontinuous domain structures.
On the other hand, the motion of colloidal particles and
particle-particle interactions have to be considered. Further,
the particle size is in the nano- or micrometer range. Lattice
Boltzmann methods have been applied for the description of
the fluid. These methods can be combined with molecular
dynamic algorithms to simulate particles in a flow; see e.g.,
Refs. [6,9–13]. However, this approach can only partly account
for the different temporal scales. The Lattice Boltzmann
approach is well suited to account for the small time scales
of the particle-particle interactions, but it reaches its limits
when long-term evolutions are considered, e.g., the essential
questions of long-time stability of bijels.

Alternatively, the Navier-Stokes equations can be used
to describe the fluids on the large time scales of interest
for investigations on stability. However, an incorporation of
colloidal particles into such an approach leads to limitations
on the size of the system. A first attempt in this direction is
given in Ref. [14]. The approach involves a diffuse-interface
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description of the fluid phases, in addition to a collection of
solid particles. However, this approach requires the resolution
of the short particle-particle interaction time scales.

In Ref. [15] a different approach is considered, which
models the colloidal particles using a classical dynamic
density functional theory (DDFT) approach. This enables the
simulation of particle-particle interactions on diffusive time
scales by averaging out the vibrational modes. Combined with
a two-phase Navier-Stokes equation this gives a promising way
to simulate bijels over a long time frame, while resolving the
particle interactions appropriately by accounting for particle-
particle correlations on the meso- and macroscales. The
approach combines a classical Navier-Stokes-Cahn-Hilliard
equation to model the two-phase flow system, with a surface
phase field crystal model for the colloidal particle interactions.
The phase field crystal model, first introduced to describe
elasticity in crystalline materials [16], is a local approximation
of a classical dynamic density functional theory [17]. The
approach is used for crystallization of surfaces in Ref. [18].
A derivation of the model from classical dynamic density
functional theory in this context can be found in Ref. [19].

The Navier-Stokes-Cahn-Hilliard surface-phase-field-
crystal (NSCHSPFC) model developed in Ref. [15]
introduced a new elastic force resulting from the colloidal
particle interactions. This force acts in addition to the
interfacial tension on the fluid-fluid interface. The approach
thus differs from the modeling in Ref. [13], in which the
colloidal particles affect only the interfacial tension. The
NSCHSPFC model is thermodynamically consistent and
enables studies to be performed of the effect of attractive
or repulsive particle interactions on the stability of fluid
domains. Combined with classical models for surfactants,
which influence only the interfacial tension (see, e.g.,
Ref. [20]), the NSCHSPFC approach can also be used
to model more recent experimental investigations on the
influence of surfactants on particle-stabilized gels [21].

However, numerical investigations of the NSCHSPFC
model presented in Ref. [15] show severe limitations of the
approach due to the development of spurious velocities close
to the interface. This requires small time steps and a high
spatial resolution to accurately and stably simulate, which
makes three-dimensional simulations very expensive. The aim
of the paper is to improve the NSCHSPFC model to suppress
these spurious velocities by deriving a new form of the elastic
force. After a brief review of the model introduced in Ref. [15]
we consider various ways to derive the new elastic force.
The first attempt considers an averaging of the elastic force
over a vanishingly small control volume at the interface. The
second attempt derives a set of equations within a diffuse
interface approach by using an appropriate approximation
of a surface delta function. The elastic force thus obtained
coincides with the elastic force found by averaging over the
control volume. To confirm the results further a sharp interface
model is also derived, and it is demonstrated that the diffuse
interface equations approximate the sharp interface system.
Numerical investigations of the diffuse interface model show
that spurious velocities are suppressed. The new approach
enables three-dimensional simulations to be performed, which
are used to demonstrate that the colloidal particle interactions
can stabilize bicontinuous gels. We also demonstrate an

advantage of the diffuse interface approach, namely, the ease in
which additional physical processes may be incorporated, and
we simulate a rigid body falling within a particle-stabilized gel.

The outline of the paper is as follows. In Sec. II the
NSCHSPFC model from Ref. [15] is briefly reviewed. In
Sec. III a regularized elastic force is derived by averaging the
elastic force from Ref. [15] over a vanishingly small control
volume. In Sec. IV a new, variational NSCHSPFC model
is derived using a new approximation of the surface delta
function. In Sec. V a new sharp interface model is derived, and
the new variational model is shown to be a diffuse interface
approximation of the sharp interface system. In Sec. VI the
methods used to solve the NSCHSPFC system are briefly
discussed. In Sec. VII numerical results are presented, and
conclusions are drawn in Sec. VIII.

II. THE NSCHSPFC MODEL: A BRIEF REVIEW

In this section, we briefly review the NSCHSPFC model
which was derived in Ref. [15] using an energy variation
approach. We denote all variables in nondimensional form.
Time and space are nondimensionalized by t ′ = t/τσ and
x ′ = x/L where τσ =

√
ρfluidL3/σ is the characteristic time

associated with surface tension relaxation, with σ being the
surface tension and ρfluid the density of the fluid, which is
assumed to be constant for simplicity. The parameter L is a
measure of the characteristic size of the fluid domain (e.g.,
drop radius). Hereafter, we drop the prime notation.

The foundation of the NSCHSPFC model is a representa-
tion of the two immiscible fluids by a phase field variable ψ

such that ψ = 0 and 1 denote the two fluid phases and ψ = 0.5
denotes the interface location: �(t) = {x ∈ � : ψ(x,t) = 0.5},
with � ⊂ IR2,3. For example, one may take

ψ(x,t) = 1

2

{
1 − tanh

[
d(x,t)√

2ε

]}
, (1)

where ε determines the interface thickness and d(x,t) denotes
the signed distance function from the fluid-fluid interface to
x at time t . For this choice of ψ , a calculation shows that the
function

B(ψ) = ψ2(1 − ψ)2, (2)

when scaled by 6
√

2/ε, approximates the surface delta
function δ�:

6
√

2

ε
B(ψ) ≈ δ�. (3)

Rather than defining ψ by Eq. (1), it can be determined by
solving an advective Cahn-Hilliard equation whose solution
near � approximates Eq. (1) for small ε.

Furthermore, we define ρc to be the nondimensional colloid
number density. Here we take ρc = ρ + ρ̃, where ρ̃ is a
constant nondimensional equilibrium colloid density and ρ

is the deviation from equilibrium. Then, the elastic energy of
the colloidal system on the surface can be approximated by
the so-called Surface Phase Field Crystal (SPFC) energy [15]:

Espfc = El−1

ε

∫
�

B(ψ)f (ρ,∇ρ,ν) dx, (4)
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with the SPFC energy density f (ρ,∇ρ,ν) given by

f (ρ,∇∇∇ρ,ν) = 1

4
ρ4 + 1 + r

2
ρ2 − δ2|∇∇∇ρ|2 + δ4

2
ν2, (5)

ν = 1

B(ψ)
∇∇∇ · [B(ψ)∇∇∇ρ]. (6)

El is an elasticity number which measures the relative
strength of the elastic energy (to the surface energy), r is a
nondimensional parameter that arises from the structure factor
for the colloidal system, and δ = Lc/L is the ratio of the
characteristic length scales of the colloid and fluid systems.

We now suppose that the total energy of the system consists
of the SPFC energy, the surface energy Eσ , and the kinetic
energy Ekin:

E = Espfc + Eσ + Ekin, (7)

where in nondimensional form the surface energy is approxi-
mated by the Cahn-Hilliard energy

Eσ = 1

ε

∫
�

B(ψ) + ε2

2
|∇∇∇ψ |2 dx (8)

and the kinetic energy is

Ekin = 1

2

∫
�

|u|2 dx, (9)

with velocity u, where we have assumed that the fluid
components are density-matched and the velocity is nondi-
mensionalized by U = L/τσ (see Ref. [15]). Using an energy
variation argument the following governing equations for the
two-phase system with colloidal particles can be derived [15].
We write the equations as a system of second order partial
differential equations. The advective Cahn-Hilliard equation
governs the motion of the two-phase interface:

∂tψ + u · ∇∇∇ψ = Pe−1
ψ ε∇∇∇ · [B(ψ)∇∇∇μ], (10)

μ = ε−1B ′(ψ) − ε�ψ. (11)

The SPFC equation on the diffuse interface defined by ψ

governs the evolution of the surface colloids [15]:

∂t [B(ψ)(ρ + ρ̃)] + ∇∇∇ · [B(ψ)u(ρ + ρ̃)]

= Pe−1
ρ ∇∇∇ · [B(ψ)∇∇∇ω], (12)

B(ψ)ω = B(ψ)ρ(ρ2 + 1 + r) + 2δ2B(ψ)ν

+ δ4∇∇∇ · [B(ψ)∇∇∇ν], (13)

B(ψ)ν = ∇∇∇ · [B(ψ)∇∇∇ρ], (14)

where ρ̃ is defined below. Finally, the Navier-Stokes equations,
with surface tension and elastic forces, governs the motion of
the fluids:

∂tu + (u · ∇∇∇)u = −∇∇∇p̄ + 1

Re
�u + μ∇∇∇ψ

+ El−1

ε
B(ψ)ω∇∇∇ρ + Fel, (15)

∇∇∇ · u = 0, (16)

with a rescaled pressure p̄ and the elastic force

Fel = El−1

ε
∇∇∇B(ψ)(f − δ4∇∇∇ν · ∇∇∇ρ − δ4ν2). (17)

Here Peψ and Peρ are Peclet numbers and Re is the Reynolds
number. Finally the NSCHSPFC system is equipped with the
initial conditions

u(t = 0,x) = u0(x), ψ(t = 0,x) = ψ0(x),

ρ(t = 0,x) = ρ0(x), in �

and either natural boundary conditions

∂ψ

∂n
= ∂ρ

∂n
= ∂μ

∂n
= ∂ν

∂n
= ∂ω

∂n
= 0, u = u∞ on ∂�,

where n denotes the outward normal vector or periodic
boundary conditions.

Note that the above sixth order, nonlinear, and nonlocal
equations are a simplification of the governing equations
presented in Ref. [15], which included extra terms describing
attachment and detachment of colloids from the bulk to the
surface. Also note that the evolution equations for the colloid
number density (12)–(14) corresponds to the form from the
original paper with the substitution ρ → ρ + ρ̃, where ρ̃ is

a nondimensional physical constant given by ρ̃ =
√

g/(βq4
0 )

with system specific parameters β, g, and q0 (see Ref. [22]).
This leads to the physically correct conservation of ρ + ρ̃ on
the interface.

III. A REGULARIZED ELASTIC FORCE

It was demonstrated in Ref. [15] that the NSCHSPFC model
presented in the previous section is capable of describing, at
least phenomenologically, two-phase systems where colloids
are present at the interface. The crucial part is the force Fel,
which we refer to as elastic force, since it comes from the
colloid interactions introduced by the SPFC energy. It has
been shown that this force induces strong local straining flows
around the interface, which require small time steps and a fine
grid to be resolved [15].

We will now present a way to regularize Fel which can
eliminate the spurious flows. The idea is to average Fel over a
control volume located at the interface and then take the limit as
the control volume becomes infinitesimally small. To do this,
we will restrict ourselves to two dimensions and consider a
single point x0 on the interface (see Fig. 1). We define a control
volume with tangential thickness �s and normal thickness �z,
which we assume large enough to capture all of the nonzero
part of Fel in a vicinity of x0, e.g., ε 
 �z. If we now calculate
the integral of Fel over V and let �s tend to zero, we will get
the effective force acting on the interface at x0.

A coordinate point x in V can be expressed using the arc
length s and the normal distance z by

x(s,z) =
(

1

κ
+ z

)
(cos(α + κs), sin(α + κs)), (18)

where κ is the curvature of the interface at the point
x(s,0). The Jacobian matrix of this coordinate transformation
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FIG. 1. The control volume V defined around an arbitrary
interface point x0.

reads

J =
(

cos(α + κs) −(1 + κz) sin(α + κs)

sin(α + κs) (1 + κz) cos(α + κs)

)
. (19)

Now, we consider the integral of Fel over the volume V :
∫

V

Fel dx =
∫ �s

−�s

∫ �z

−�z

Fel|J | dz ds (20)

=
∫ �s

−�s

∫ �z

−�z

Fel(1 + κz) dz ds (21)

= El−1

ε

∫ �s

−�s

∫ �z

−�z

∇∇∇B(ψ)

(
1

4
ρ4 + 1 + r

2
ρ2

−δ2|∇∇∇ρ|2 − δ4

2
ν2 − δ4∇∇∇ν · ∇∇∇ρ

)
(1+κz) dz ds.

(22)

Since ρ and ν are constant in the normal direction to first order,
it holds

ρ(x(s,z)) ≈ ρ(x(s,0)), ν(x(s,z)) ≈ ν(x(s,0)) (23)

and consequently

∇∇∇ρ(x(s,z)) ≈ ∇∇∇ρ(x(s,0))
1

1 + κz
,

(24)

∇∇∇ν(x(s,z)) ≈ ∇∇∇ν)x(s,0))
1

1 + κz
.

Using this in Eq. (22) we get

∫
V

Fel dx ≈ El−1

ε

∫ �s

−�s

(
1

4
ρ4 + 1 + r

2
ρ2 − δ4

2
ν2

)
(x(s,0))

·
∫ �z

−�z

∇∇∇B(ψ)(1 + κz) dz ds

− El−1

ε

∫ �s

−�s

(δ2|∇∇∇ρ|2 + δ4∇∇∇ν · ∇∇∇ρ)(x(s,0))

·
∫ �z

−�z

∇∇∇B(ψ)
1

1 + κz
dz ds. (25)

Using that B = ψ2(1 − ψ)2 and Eq. (1), the integrals over z

can be approximated analytically. As ε → 0 we obtain

∫ �z

−�z

∇∇∇B(ψ)(1 + κz) dz → − 1

6
√

2
εnκ, (26)

∫ �z

−�z

∇∇∇B(ψ)
1

1 + κz
dz → + 1

6
√

2
εnκ. (27)

Hence, we get

∫
V

Fel dx ≈ −El−1

6
√

2

∫ �s

−�s

κng(x(s,0)) ds, (28)

where

g := 1

4
ρ4 + 1 + r

2
ρ2 − δ4

2
ν2 + δ2|∇∇∇ρ|2 + δ4∇∇∇ν · ∇∇∇ρ. (29)

Hence, we have

∫
V

Fel dx =
∫

V

−El−1

6
√

2
δ�κng ds, (30)

with a Dirac interface delta function δ� . Now, letting the
control volume V become infinitesimal small by taking �s →
0 leads to the point force

Fnew := −El−1

6
√

2
δ�κng (31)

at x0. Since the above calculations hold for arbitrary x0, this
point force is valid in every interface point. Note that Fnew

can be seen as the sharp interface version of Fel, which we
confirm in Sec. V. Now, we can use the Cahn Hilliard chemical
potential to approximate the curvature and hence get a diffuse
interface version of Fnew. To be more precise, for ε → 0 we
have

μ∇∇∇ψ → − 1

3
√

2
κδ�n, (32)

which leads to the approximation

Fnew ≈ El−1

2
gμ∇∇∇ψ. (33)

Now, the new governing equations are (10)–(16) with Fel in
Eq. (15) replaced by Fnew:

∂tu + (u · ∇∇∇)u = −∇∇∇p̄ + 1

Re
�u + μ∇∇∇ψ

+ El−1

ε
B(ψ)ω∇∇∇ρ + Fnew. (34)

Note that the new system converges to the old system as
ε → 0, since Fel → Fnew. We confirm in Sec. VII A, that the
new elastic force eliminates spurious velocities and leads to
improved properties of the system.
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IV. A VARIATIONAL DIFFUSE INTERFACE MODEL

In this section we will present a variational approach to
derive a diffuse interface system containing the new elastic
force. To do so, we introduce a new approximation to the
surface delta function,

e = ε2

4
|∇∇∇ψ |2 + 1

2
B(ψ), (35)

which has the same scaling to the surface delta function as B.
This form of an approximation to the surface delta function
has already been used in Refs. [23,24]. Now, we use e instead
of B to restrict the PFC energy to the interface:

Ẽspfc = El−1

ε

∫
�

ef̃ dx, with (36)

f̃ = 1

4
ρ4 + 1 + r

2
ρ2 − δ2|∇∇∇ρ|2 + δ4

2
ν̃2, (37)

ν̃ = 1

e
∇∇∇ · (e∇∇∇ρ). (38)

Note that we will use the tilde notation to distinguish variables
that differ from the original model. The total energy to be
considered is now

Ẽ = Ẽspfc + Eσ + Ekin. (39)

A. Energy variation

We now derive the equations for the two-phase system with
colloidal particles starting with an energy variation argument.
To do so, we suppose the fluid motion is governed by the
Navier-Stokes equations, which are given by

u̇ = −u · ∇u − ∇∇∇p + 1

Re
�u + F̃,∇ · u = 0, (40)

where p is the pressure and the force F̃ is as yet unspecified.
Note that if Re is small, the Stokes equations could be used
instead of the Navier-Stokes equations, and the analysis below
remains valid. It is often useful to represent forces in the
Navier-Stokes equation as the divergence of a stress tensor.
Hence, our goal will be to derive a singular stress tensor,
whose divergence will be F̃. Furthermore, the functions ψ and
ρ are assumed to satisfy the conservation equations

ψ̇ = −u · ∇∇∇ψ − ∇∇∇ · J̃ψ, (41)

∂

∂t
[e(ρ + ρ̃)] = −∇∇∇ · [eu(ρ + ρ̃)] − ∇∇∇ · J̃ρ, (42)

where the fluxes J̃ρ and J̃ψ have also not yet been specified.
Note that Eq. (42) is the basic diffuse interface form of
the surface mass conservation equation [20,25,26]. Using the
incompressibility of the fluid and Eqs. (41) and (42) can be
rewritten as

e(ρ̇ + u · ∇∇∇ρ) = −(ρ + ρ̃) (ė + u · ∇∇∇e) − ∇∇∇ · J̃ρ. (43)

We next take the time derivative of the energy Ẽ and insert
the previously defined evolution equations for ρ, ψ , and u.
Requiring that ˙̃E � 0, where the overdot denotes the time
derivative, enables us to pose constitutive relations for the

singular stress tensor and fluxes. First, we compute

Ėkin =
∫

�

uu̇ dx. (44)

Inserting Eq. (40) into Eq. (44) and integrating by parts gives

Ėkin =
∫

�

− 1

Re
∇∇∇u : ∇∇∇u + u · F̃ dx, (45)

where ∇∇∇u : ∇∇∇u = ( ∂ui

∂xj
) ∂ui

∂xj
. Next, we consider the surface

energy Eσ and get

Ėσ =
∫

�

1

ε
B ′(ψ)ψ̇ + ε∇∇∇ψ · ∇∇∇ψ̇ dx. (46)

Inserting (41) yields

Ėσ =
∫

�

−1

ε
B ′(ψ)∇∇∇ψ · u − ε∇∇∇ψ · ∇∇∇∇∇∇ψ · u − ε∇∇∇ψ · ∇∇∇u

·∇∇∇ψ − 1

ε
B ′(ψ)∇∇∇ · J̃ψ − ε∇∇∇ψ · ∇∇∇∇∇∇ · J̃ψ dx (47)

=
∫

�

−u · ∇∇∇
[

1

ε
B(ψ) + ε

2
|∇∇∇ψ |2

]
− ε∇∇∇ψ ⊗ ∇∇∇ψ : ∇∇∇u

− 1

ε
B ′(ψ)∇∇∇ · J̃ψ − ε∇∇∇ψ · ∇∇∇∇∇∇ · J̃ψ dx. (48)

Integrating by parts and dropping all boundary terms gives

Ėσ =
∫

�

u · ∇∇∇ · (ε∇∇∇ψ ⊗ ∇∇∇ψ)

−
[

1

ε
B ′(ψ) + ε∇∇∇ψ · ∇∇∇

]
∇∇∇ · J̃ψ dx. (49)

Next, we can compute

˙̃Espfc = El−1

ε

∫
�

ėf̃ + e ˙̃f dx (50)

= El−1

ε

∫
�

f̃ (ė + u · ∇∇∇e) + e( ˙̃f + u · ∇∇∇f̃ )

− u · ∇∇∇(ef̃ ) dx (51)

= El−1

ε

∫
�

f̃ (ė + u · ∇∇∇e) + e( ˙̃f + u · ∇∇∇f̃ ) dx. (52)

Now, we will evaluate
∫
�

e( ˙̃f + u · ∇∇∇f̃ ) dx. To make the
calculations clearer, we split f̃ into its zero order part f̃0 =
1
4ρ4 + 1+r

2 ρ2, its first order part f̃1 = −δ2|∇∇∇ρ|2, and its second

order part f̃2 = δ4

2 ν̃2. Accordingly, we obtain∫
�

e( ˙̃f0 + u · ∇∇∇f̃0) dx

=
∫

�

e(ρ̇ + u · ∇∇∇ρ)(ρ3 + (1 + r)ρ) dx, (53)
∫

�

e( ˙̃f1 + u · ∇∇∇f̃1) dx

=
∫

�

−2eδ2∇∇∇ρ∇∇∇ρ̇ − 2eδ2∇∇∇∇∇∇ρ : (∇∇∇ρ ⊗ u) dx (54)

=
∫

�

2eδ2ν̃(ρ̇ + u · ∇∇∇ρ) + 2eδ2∇∇∇u : (∇∇∇ρ ⊗ ∇∇∇ρ) dx (55)

=
∫

�

2eδ2ν̃(ρ̇ + u · ∇∇∇ρ) − u · ∇∇∇ · (2eδ2∇∇∇ρ ⊗ ∇∇∇ρ) dx,

(56)
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and

∫
�

e( ˙̃f2 + u · ∇∇∇f̃2) dx = δ4
∫

�

−ν̃2(ė + u · ∇∇∇e) + ν̃∇∇∇ · (ė∇∇∇ρ) + ν̃u · ∇∇∇ · (∇∇∇ρ ⊗ ∇∇∇e) + ν̃∇∇∇ · (e∇∇∇ρ̇) + ν̃u · ∇∇∇ · (e∇∇∇∇∇∇ρ) dx

(57)

= δ4
∫

�

−ν̃2(ė + u · ∇∇∇e) − (∇∇∇ν̃ · ∇∇∇ρ)ė − e∇∇∇ν̃ · ∇∇∇ρ̇ + ν̃u · ∇∇∇ · [∇∇∇(e∇∇∇ρ)T ] dx (58)

= δ4
∫

�

−ν̃2(ė + u · ∇∇∇e) − (∇∇∇ν̃ · ∇∇∇ρ)ė + ∇∇∇ · (e∇∇∇ν̃)ρ̇ + ν̃u · ∇∇∇ · [∇∇∇(e∇∇∇ρ)]T dx. (59)

Now, we can use that

ν̃u · ∇∇∇ · (∇∇∇(e∇∇∇ρ))T = u · ∇∇∇ · [ν̃∇∇∇(e∇∇∇ρ)]T − u · ∇∇∇(e∇∇∇ρ) · ∇∇∇ν̃ (60)

= u · ∇∇∇ · [ν̃∇∇∇(e∇∇∇ρ)]T − u · ∇∇∇e∇∇∇ν̃ · ∇∇∇ρ − eu · ∇∇∇∇∇∇ρ · ∇∇∇ν̃ (61)

= u · ∇∇∇ · [ν̃∇∇∇(e∇∇∇ρ)]T − u · ∇∇∇e∇∇∇ν̃ · ∇∇∇ρ − u · ∇∇∇ · (e∇∇∇ν̃ ⊗ ∇∇∇ρ) + ∇∇∇ · (e∇∇∇ν̃)u · ∇∇∇ρ (62)

= u · ∇∇∇ · [∇∇∇(ν̃e∇∇∇ρ)]T − u · ∇∇∇ · (e∇∇∇ρ ⊗ ∇∇∇ν̃) − u · ∇∇∇e∇∇∇ν̃ · ∇∇∇ρ − u · ∇∇∇ · (e∇∇∇ν̃ ⊗ ∇∇∇ρ) + ∇∇∇ · (e∇∇∇ν̃)u · ∇∇∇ρ

(63)

= u · ∇∇∇(∇∇∇ · (ν̃e∇∇∇ρ)) − u · ∇∇∇ · (e∇∇∇ρ ⊗ ∇∇∇ν̃) − u · ∇∇∇e∇∇∇ν̃ · ∇∇∇ρ − u · ∇∇∇ · (e∇∇∇ν̃ ⊗ ∇∇∇ρ) + ∇∇∇ · (e∇∇∇ν̃)u · ∇∇∇ρ.

(64)

Inserting Eq. (64) into Eq. (59) yields

∫
�

e( ˙̃f2 + u · ∇∇∇f̃2) dx = δ4
∫

�

−(ν̃2 + ∇∇∇ν̃ · ∇∇∇ρ)(ė + u · ∇∇∇e)

+∇∇∇ · (e∇∇∇ν̃)(ρ̇ + u · ∇∇∇ρ) − u · ∇∇∇
· (e∇∇∇ν̃ ⊗ ∇∇∇ρ + e∇∇∇ρ ⊗ ∇∇∇ν̃) dx.

(65)

Now, let us put Eqs. (53), (56), and (65) together to get

∫
�

e( ˙̃f + u · ∇∇∇f̃ ) dx

=
∫

�

−δ4(ν̃2 + ∇∇∇ν̃ · ∇∇∇ρ)(ė + u · ∇∇∇e) + e(ρ̇ + u · ∇∇∇ρ)

×
[
ρ3 + (1 + r)ρ + 2δ2 ˜̃ν + δ4

e
∇∇∇ · (e∇∇∇ν̃)

]

− u · ∇∇∇ · (2δ2e∇∇∇ρ ⊗ ∇∇∇ρ + δ4e∇∇∇ν̃ ⊗ ∇∇∇ρ

+ δ4e∇∇∇ρ ⊗ ∇∇∇ν̃) dx. (66)

We can insert Eq. (66) into Eq. (52), which gives

˙̃Espfc =
∫

�

El−1

ε
(f̃ − δ4ν̃2 − δ4∇∇∇ν̃ · ∇∇∇ρ)(ė + u · ∇∇∇e)

+ e(ρ̇ + u · ∇∇∇ρ)
δẼ

δρ
− El−1

ε
u · ∇∇∇ · (2δ2e∇∇∇ρ ⊗ ∇∇∇ρ

+ δ4e∇∇∇ν̃ ⊗ ∇∇∇ρ + δ4e∇∇∇ρ ⊗ ∇∇∇ν̃) dx, (67)

where we have introduced

δẼ

δρ
:= El−1

ε

[
ρ3 + (1 + r)ρ + 2δ2ν̃ + δ4

e
∇∇∇ · (e∇∇∇ν̃)

]
. (68)

Note that the notation δẼ
δρ

makes sense, since the material
derivative of ρ is multiplied with this term in the energy time
derivative. Now, let us insert the evolution equation for ρ from
Eq. (43). We obtain

˙̃Espfc =
∫

�

[
El−1

ε
(f̃ − δ4ν̃2 − δ4∇∇∇ν̃ · ∇∇∇ρ) − δẼ

δρ
(ρ + ρ̃)

]

× (ė + u · ∇∇∇e) − δẼ

δρ
∇∇∇ · Jρ − El−1

ε
u · ∇∇∇

· (2δ2e∇∇∇ρ ⊗ ∇∇∇ρ + δ4e∇∇∇ν̃ ⊗ ∇∇∇ρ+δ4e∇∇∇ρ ⊗ ∇∇∇ν̃) dx.

(69)

By analogy with Eq. (68) we may also define the notation δẼ
δe

by

δẼ

δe
:= El−1

ε
(f̃ − δ4ν̃2 − δ4∇∇∇ν̃ · ∇∇∇ρ) − δẼ

δρ
(ρ + ρ̃). (70)

It remains to evaluate the material derivative of e. Using
Eq. (41) we may calculate

ė = − 1

2
B ′(ψ)∇∇∇ψ · u − ε2

2
∇∇∇ψ · ∇∇∇∇∇∇ψ · u

− ε2

2
∇∇∇ψ · ∇∇∇u · ∇∇∇ψ −

[
1

2
B ′(ψ) + ε2

2
∇∇∇ψ · ∇∇∇

]
∇∇∇ · J̃ψ

(71)

= −u · ∇∇∇e − ε2

2
∇∇∇ψ ⊗ ∇∇∇ψ : ∇∇∇u

−
[

1

2
B ′(ψ) + ε2

2
∇∇∇ψ · ∇∇∇

]
∇∇∇ · J̃ψ. (72)
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Inserting Eq. (72) into Eq. (69) yields

˙̃Espfc =
∫

�

−δẼ

δe

(
1

2
B ′(ψ) + ε2

2
∇∇∇ψ · ∇∇∇

)
∇∇∇ · J̃ψ − ∇∇∇ · J̃ρ

δẼ

δρ

− El−1

ε
u · ∇∇∇ · (2δ2e∇∇∇ρ ⊗ ∇∇∇ρ + δ4e∇∇∇ ν̃ ⊗ ∇∇∇ρ

+ δ4e∇∇∇ρ ⊗ ∇∇∇ν̃) + u · ∇∇∇ ·
(

ε2

2

δẼ

δe
∇∇∇ψ ⊗ ∇∇∇ψ

)
dx.

(73)

Now, let us put the kinetic energy, the SPFC energy, and the
surface energy together to obtain the time derivative of the
total energy:

˙̃E = −
∫

�

1

Re
∇∇∇u : ∇∇∇u dx +

∫
�

−
(

δẼ

δe
+ 2

ε

)

×
[

1

2
B ′(ψ) + ε2

2
∇∇∇ψ · ∇∇∇

]
∇∇∇ · J̃ψ dx

+
∫

�

−∇∇∇ · J̃ρ

δẼ

δρ
dx +

∫
�

u · (F̃ − ∇∇∇ · Tsing) dx, (74)

where we have introduced the singular stress tensor

Tsing = El−1

ε
e(2δ2∇∇∇ρ ⊗ ∇∇∇ρ + δ4∇∇∇ν̃ ⊗ ∇∇∇ρ + δ4∇∇∇ρ ⊗ ∇∇∇ν̃)

− ε∇∇∇ψ ⊗ ∇∇∇ψ

(
1 + ε

2

δẼ

δe

)
. (75)

Integrating by parts gives

˙̃E = −
∫

�

1

Re
∇∇∇u : ∇∇∇u dx +

∫
�

J̃ψ · ∇∇∇
(

μ

[
ε

2

δẼ

δe
+ 1

]

− ε2

2
∇∇∇ δẼ

δe
· ∇∇∇ψ

)
dx +

∫
�

J̃ρ · ∇∇∇ δẼ

δρ
dx

+
∫

�

u · (F̃ − ∇∇∇ · Tsing)dx. (76)

By taking
F̃ = ∇∇∇ · Tsing, (77)

J̃ψ = −Pe−1
ψ εB∇∇∇

(
μ

[
ε

2

δẼ

δe
+ 1

]
− ε2

2
∇∇∇ δẼ

δe
· ∇∇∇ψ

)
, (78)

J̃ρ = −Pe−1
ρ εe∇∇∇ δẼ

δρ
, (79)

we obtain ˙̃E � 0, which ensures thermodynamic consistency.
If the flux J̃ψ as defined in Eq. (78) is used in the conser-

vation equation (41), the resulting ψ does not provide a good
description of the interface layer because of the contributions
of Ẽspfc to the variational derivatives. To be more precise, the

factor of the Cahn-Hilliard chemical potential, ε
2

δẼ
δe

+ 1, may
be negative if El−1 is large, which results in a negative Cahn-
Hilliard mobility. Since the primary purpose of ψ is to track
the two-phase interface, we simplify J̃ψ and omit the terms de-
pendent on Ẽspfc, which gives the standard Cahn-Hilliard flux

J̃ψ = −Pe−1
ψ εB(ψ)∇∇∇ δEσ

δψ
= −Pe−1

ψ εB∇∇∇μ. (80)

Although the resulting system is no longer variational and
does not necessarily decrease the energy, this effect tends

to be higher order since away from the interface B(ψ) ≈ 0
and near the interface ψ locally equilibrates yielding
B ′(ψ) − ε2�ψ ≈ 0. Note that if J̃ψ ≈ 0, then ˙̃E � 0 with F
and J̃ρ given in Eqs. (77) and (79). In addition, we will show
in Sec. V that the system we obtained above is the diffuse
interface version of a thermodynamically consistent sharp
interface system, and in this sense remains variational.

B. Summary of governing equations

Putting everything together, we now summarize the new
nondimensional Navier-Stokes-Cahn-Hilliard Surface-Phase-
Field-Crystal (NSCHSPFC) equations. We write the equations
as a system of second order partial differential equations. The
advective Cahn-Hilliard equation governing the motion of the
two-phase interface remains unchanged, but is repeated here
for completeness:

∂tψ + u · ∇∇∇ψ = Pe−1
ψ ε∇∇∇ · [B(ψ)∇∇∇μ], (81)

μ = ε−1B ′(ψ) − ε�ψ. (82)

The new surface-phase-field-crystal equation on the diffuse
interface defined by ψ governs the evolution of the surface
colloids:

∂t [e(ρ + ρ̃)] + ∇∇∇ · [eu(ρ + ρ̃)] = Pe−1
ρ ∇∇∇ · (e∇∇∇ω̃), (83)

eω̃ = eρ(ρ2 + 1 + r) + 2δ2eν̃ + δ4∇∇∇ · (e∇∇∇ν̃), (84)

eν̃ = ∇∇∇ · (e∇∇∇ρ). (85)

Finally, the Navier-Stokes equations govern the motion of the
fluids:

∂tu + (u · ∇∇∇)u = −∇∇∇p + 1

Re
�u + ∇∇∇ · Tsing, (86)

∇∇∇ · u = 0, (87)

where the surface tension and elastic force are contained in
the singular stress tensor Tsing defined in Eqs. (68), (70), and
(75). The sixth order, nonlinear, nonlocal NSCHSPFC system
is equipped with the initial conditions

u(t = 0,x) = u0(x), ψ(t = 0,x) = ψ0(x),

ρ(t = 0,x) = ρ0(x), in �

and either natural boundary conditions

∂ψ

∂n
= ∂ρ

∂n
= ∂μ

∂n
= ∂ν̃

∂n
= ∂ω̃

∂n
= 0, u = u∞ on ∂�,

where n denotes the outward normal vector, or periodic
boundary conditions.

C. Evaluating the divergence of the stress tensor

In this section we will evaluate the divergence of the
stress tensor Tsing to obtain further insight into the force F̃.
This will enable a straightforward comparison with the sharp
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interface analog given in Sec. V. Moreover, we will see that F̃
includes the new elastic force Fnew. First, one may easily verify
that

El−1

ε
∇∇∇ · [e(2δ2∇∇∇ρ ⊗ ∇∇∇ρ + δ4∇∇∇ν̃ ⊗ ∇∇∇ρ + δ4∇∇∇ρ ⊗ ∇∇∇ν̃)]

= e

{
δẼ

δρ
∇∇∇ρ − ∇∇∇

[
δẼ

δe
+ δẼ

δρ
(ρ + ρ̃)

]}
(88)

and

−∇∇∇ ·
[
ε∇∇∇ψ ⊗ ∇∇∇ψ

(
1 + ε

2

δẼ

δe

)]

= −ε∇∇∇
(

1 + ε

2

δẼ

δe

)
· ∇∇∇ψ ⊗ ∇∇∇ψ − ε

(
1 + ε

2

δẼ

δe

)

× (�ψ∇∇∇ψ + ∇∇∇ψ · ∇∇∇∇∇∇ψ) (89)

= − ε∇∇∇
(

1 + ε

2

δẼ

δe

)
· ∇∇∇ψ ⊗ ∇∇∇ψ +

(
1 + ε

2

δẼ

δe

)

×
(

μ∇∇∇ψ − 2

ε
∇∇∇e

)
. (90)

Adding both gives

F̃ = ∇∇∇ · Tsing

= −∇∇∇
(

e

[
2

ε
+ δẼ

δe

])
− e(ρ + ρ̃)∇∇∇ δẼ

δρ

− ε2

2
∇∇∇ψ ⊗ ∇∇∇ψ · ∇∇∇ δẼ

δe
+

(
1 + ε

2

δẼ

δe

)
μ∇∇∇ψ. (91)

The first term on the right-hand side is a gradient term and can
therefore be neglected as it does not affect the flow profile (e.g.,
modifies the pressure). We will drop the term and note this by
using equivalent (≡) instead of equal (=) in the following.
Therefore, we have

F̃ ≡ −e(ρ + ρ̃)∇∇∇ δẼ

δρ
− ε2

2
∇∇∇ψ ⊗ ∇∇∇ψ · ∇∇∇ δẼ

δe

+
(

1 + ε

2

δẼ

δe

)
μ∇∇∇ψ. (92)

Now, examine ∇∇∇ψ · ∇∇∇ δẼ
δe

. First, we may use that ρ, ν̃ and δẼ
δρ

are to highest order constant in normal direction and ∇∇∇ψ is
normal to the interface. This allows the approximation

∇∇∇ψ · ∇∇∇ δẼ

δe
≈ El−1

ε
∇∇∇ψ · ∇∇∇(−δ2|∇∇∇ρ|2 − δ4∇∇∇ν̃ · ∇∇∇ρ) (93)

= −El−1

ε
(2δ2∇∇∇ψ · ∇∇∇∇∇∇ρ · ∇∇∇ρ + δ4∇∇∇ψ · ∇∇∇∇∇∇ρ · ∇∇∇ν̃ + δ4∇∇∇ψ · ∇∇∇∇∇∇ν̃ · ∇∇∇ρ)

= −El−1

ε
(2δ2∇∇∇(∇∇∇ψ · ∇∇∇ρ) · ∇∇∇ρ − 2δ2∇∇∇ρ · ∇∇∇∇∇∇ψ · ∇∇∇ρ + δ4∇∇∇(∇∇∇ψ · ∇∇∇ρ) · ∇∇∇ν̃ + δ4∇∇∇(∇∇∇ψ · ∇∇∇ν̃) · ∇∇∇ρ

− 2δ4∇∇∇ρ · ∇∇∇∇∇∇ψ · ∇∇∇ν̃) (94)

≈ E−1

ε
(2δ2∇∇∇ρ · ∇∇∇∇∇∇ψ · ∇∇∇ρ + 2δ4∇∇∇ρ · ∇∇∇∇∇∇ψ · ∇∇∇ν̃) (95)

≈ El−1

ε
(2δ2|∇∇∇ρ|2 + 2δ4∇∇∇ν̃ · ∇∇∇ρ)t · ∇∇∇∇∇∇ψ · t, (96)

where

t := ∇∇∇ρ

|∇∇∇ρ| = ∇∇∇ν̃

|∇∇∇ν̃| (97)

denotes the unit tangent vector. From differential geometry
(e.g., see Ref. [27]) it is known that

t · ∇∇∇∇∇∇ψ · t = κt|∇∇∇ψ |, (98)

where κt is the normal curvature of the interface along t. In
the following, we will restrict ourselves to 2D, where κt = κ .
Inserting Eq. (98) into Eq. (96), we can write

ε2

2
∇∇∇ψ ⊗ ∇∇∇ψ · ∇∇∇ δẼ

δe
≈ El−1

2
ε∇∇∇ψ |∇∇∇ψ |κ(2δ2|∇∇∇ρ|2

+ 2δ4∇∇∇ν̃ · ∇∇∇ρ). (99)

Now, we can use the fact that ∇∇∇ψ = n|∇∇∇ψ | and that
3
√

2ε|∇∇∇ψ |2 approximates the surface delta function for ε → 0
and deduce

ε2

2
∇∇∇ψ ⊗ ∇∇∇ψ · ∇∇∇ δẼ

δe

≈ El−1

2

1

3
√

2
δ�κn(2δ2|∇∇∇ρ|2 + 2δ4∇∇∇ν̃ · ∇∇∇ρ). (100)

Finally, using Eq. (32), we obtain

ε2

2
∇∇∇ψ ⊗ ∇∇∇ψ · ∇∇∇ δẼ

δe

≈ −El−1

2
μ∇∇∇ψ(2δ2|∇∇∇ρ|2 + 2δ4∇∇∇ν̃ · ∇∇∇ρ). (101)
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This can be inserted into Eq. (92) to give

F̃ ≈ −e(ρ + ρ̃)∇∇∇ δẼ

δρ
− ε

2
μ∇∇∇ψ

δẼ

δρ
(ρ + ρ̃) + μ∇∇∇ψ

+ El−1

2
μ∇∇∇ψ

(
1

4
ρ4 + 1 + r

2
ρ2 − δ4

2
ν̃2 + δ2|∇∇∇ρ|2

+ δ4∇∇∇ν̃ · ∇∇∇ρ

)
. (102)

Examining the last term on the right-hand side, we recover
the (new) elastic force Fnew derived in Sec. III. Also, the third
term, μ∇∇∇ψ , occurred in the original equations, but the first
and second terms in F̃ differ from the original NSCHSPFC
model. This is due to the fact that in the derivation of the
original NSCHSPFC model, the assumption of conserved
dynamics led to an additional term in the Cahn-Hilliard
chemical potential rather than in the force F̃ and was dropped
in the original paper, since it led to a poor description of the
interface. If in the derivation of the model we had neglected
the conservation of ρ + ρ̃ as well, that is, if we had assumed
ρ was conserved instead of ρc = ρ + ρ̃, we would have
obtained F̃ ≈ e δẼ

δρ
∇∇∇ρ + μ∇∇∇ψ + El−1

2 μ∇∇∇ψ( 1
4ρ4 + 1+r

2 ρ2 −
δ4

2 ν̃2 + δ2|∇∇∇ρ|2 + δ4∇∇∇ν̃ · ∇∇∇ρ), which is the exact same force
as derived in the previous section, with B replaced by e.

To sum up, the new NSCHSPFC model presented in
this section is in two dimensions equivalent to the original
model equipped with the new elastic force and additional
terms to account for the conservation of ρ + ρ̃. In the next
section we validate the model by demonstrating that the
NSCHSPFC model is a diffuse interface approximation of
a thermodynamically consistent sharp interface model.

V. SHARP INTERFACE MODEL

In this section we derive a 2D sharp interface version of
the NSCHSPFC model which we call Navier-Stokes surface-
phase-field-crystal (NSSPFC) model. A similar derivation can
be done in three dimensions, but involves more complicated
differential geometry (e.g., see Ref. [28]), where the variational
derivatives of the sharp interface surface PFC energy are
computed. For the derivation here we use a one-dimensional
parametrization of the interface, and we demonstrate that the
NSCHSPFC model derived in the previous section is a diffuse
interface approximation of the NSSPFC model.

A. Derivation of a sharp interface model

In the following let us denote the arc length by s and the
derivative along the interface with subscript s. We derive the
NSSPFC model following the ideas in Ref. [15] but replacing
the total energy E with its sharp interface analog

Ē = Ēspfc + Ēσ + Ekin, (103)

where

Ēspfc = El−1

6
√

2

∫
�

f̄ ds, (104)

with

f̄ = 1

4
ρ4 + 1 + r

2
ρ2 − δ2ρ2

s + δ4

2
ρ2

ss (105)

and

Ēσ =
∫

�

1

3
√

2
ds (106)

are the sharp interface versions of Espfc and Eσ , respectively.
The factors 6

√
2 and 3

√
2 arise to match the scaling according

to Eqs. (4) and (8). Now, we can parametrize the interface with
a real-valued parameter α ∈ [0,1] and write

Ē = El−1

6
√

2

∫ 1

0
f̄ sα dα +

∫ 1

0

1

3
√

2
sα dα + Ekin. (107)

To vary � and ρ we take the time derivative of Ē,

d

dt
Ē = El−1

6
√

2

∫ 1

0

˙̄f sα + f̄ ∂t sα dα +
∫ 1

0

1

3
√

2
∂t sα dα

+ d

dt
Ekin, (108)

where the overdot denotes the material derivative ∂t + u · ∇∇∇.
Now, we can use that

∂t sα = sα(Ts + κV ), (109)

where T is the tangential and V the normal velocity. We get

d

dt
Ē =

∫ 1

0

El−1

6
√

2
[ ˙̄f sα + f̄ sα(Ts + κV )]

+ 1

3
√

2
sα(Ts + κV ) dα + d

dt
Ekin

=
∫

�

El−1

6
√

2
[ ˙̄f + f̄ (Ts + κV )] + 1

3
√

2
κV ds + d

dt
Ekin.

(110)

Furthermore, we compute∫
�

˙̄f ds =
∫

�

[ρ3 + (1 + r)ρ]ρ̇ − 2δ2ρs

(
1

sα

ρα

)·

+ δ4ρss

[
1

sα

(
1

sα

ρα

)
α

]·
ds

=
∫

�

[ρ3 + (1 + r)ρ]ρ̇ − 2δ2ρsρ̇s + 2δ2ρs

∂t sα

sα

ρs

− δ4ρss

(
∂t sα

sα

ρss

)

+ δ4ρss

(
∂t sα

sα

ρs

)
s

+ δ4ρss(ρ̇)ss ds

=
∫

�

ρ̇

[
ρ3 + (1 + r)ρ + 2δ2ρss + δ4ρssss

]

+ ∂t sα

sα

(
2δ2ρ2

s − δ4ρ2
ss + δ4ρsssρs

)
ds. (111)

Now, let us define

δĒ

δρ
= El−1

6
√

2
[ρ3 + (1 + r)ρ + 2δ2ρss + δ4ρssss] (112)
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FIG. 2. (Color online) Retraction of an elliptical drop without colloidal forces (top row), with the old elastic force (middle row) and with
the new elastic force (bottom row) at times t = 0, 33, 67, 1671, from left to right. The drop and matrix fluids have different shades, lighter (red)
for ψ = 1 and darker (blue) for ψ = 0. The colloids (ρ) on the interface are colored black (ρ < 0) and white (ρ > 0).

and

ḡ := f̄ + 2δ2ρ2
s − δ4ρ2

ss + δ4ρsssρs. (113)

From Eqs. (109)–(111) we obtain

d

dt
Ē =

∫
�

ρ̇
δĒ

δρ
+ El−1

6
√

2
(Ts + κV )g ds +

∫
�

1

3
√

2
κV ds + d

dt
Ekin =

∫
�

ρ̇
δĒ

δρ
+ El−1

6
√

2
(κVg − T gs) ds

+
∫

�

1

3
√

2
κV ds + d

dt
Ekin =

∫
�

ρ̇
δĒ

δρ
+ El−1

6
√

2
κVg − T

δĒ

δρ
ρs ds +

∫
�

1

3
√

2
κV ds + d

dt
Ekin. (114)

Now, we can use that d
dt

Ekin = ∫
�

u · ∂tu dx and suppose that the fluid motion is governed by the Navier-Stokes equation, which
in nondimensional form is given by

∂tu = −u · ∇∇∇u − ∇∇∇p + 1

Re
�u + F̄, ∇∇∇ · u = 0 in �. (115)
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FIG. 3. (Color online) The interface length versus time for the
new elastic force formulation for different strengths of elastic forces
(a)–(d), and for the old elastic force for El = 0.002 (e), for the
simulations presented in Fig. 2.

The force F̄ is as yet unspecified. Furthermore, we assume the
evolution of ρ as

ρ̇ = −∇∇∇� · T (ρ + ρ̃) − (ρ + ρ̃)κV − ∇∇∇� · J̄ρ on �, (116)

which ensures conservation of ρ + ρ̃. Also the flux J̄ρ has not
yet been specified. Now, we can insert Eqs. (115) and (116)
into Eq. (114). The time derivative of the energy becomes

d

dt
Ē =

∫
�

− 1

Re
∇∇∇u : ∇∇∇u + u · F̄ dx +

∫
�

J̄ρ∇∇∇�

δĒ

δρ
ds

+
∫

�

El−1

6
√

2
κVg + 1

3
√

2
κV − κV (ρ + ρ̃)

δĒ

δρ

+ T (ρ + ρ̃)∇∇∇�

δĒ

δρ
ds

= − 1

Re

∫
�

∇∇∇u : ∇∇∇u dx +
∫

�

J̄ρ∇∇∇�

δĒ

δρ
ds

+
∫

�

u ·
{

F̄ + δ�

[
El−1

6
√

2
κng + 1

3
√

2
κn

− κn(ρ + ρ̃)
δĒ

δρ
+ (ρ + ρ̃)∇∇∇�

δĒ

δρ

]}
dx.

Hence, we obtain decreasing energy, ˙̄E � 0, by taking

F̄ = −El−1

6
√

2
δ�κng − 1

3
√

2
δ�κn + δ�κn

δĒ

δρ
(ρ + ρ̃)

− δ�(ρ + ρ̃)∇∇∇�

δĒ

δρ
, (117)

J̄ρ = −6
√

2Pe−1
ρ ∇∇∇�

δE

δρ
. (118)

Now, the resulting governing equations for the sharp interface
NSSPFC model are Eqs. (115) and (116) with F̄ and J̄ρ from
Eqs. (117) and (118).

We can obtain a diffuse interface approximation for F̄
by using Eqs. (3) and (32) to approximate δ� and δ�κn,
respectively. Doing so, we recover the force F̃ from Eq. (102)
derived in the previous section with the identifications ∇∇∇ρ →
ρs , ν̃ → ρss and ∇∇∇ν̃ → ρsss . Furthermore, with J̄ρ chosen
as in Eq. (118) the evolution equation for ρ matches exactly
its diffuse interface analog given in Eq. (42). In this sense,
the NSCHSPFC system given in Sec. IV is the diffuse
interface version of the thermodynamically consistent sharp
interface model (115)–(118) and its generalization to three
dimensions.

VI. NUMERICAL METHODS

An adaptive finite element method is used to solve the
sixth order nonlinear, nonlocal system of Eqs. (81)–(87);

FIG. 4. Velocity field at the top of the ellipse for the old (top) and new (bottom) formulation of the elastic force at the early time t = 0.5
(left) and at t = 5.0 (right). The black-white line indicates the interface position and the location of the colloids. The arrow length indicates the
velocity magnitude, for the new formulation at t = 5.0 (bottom right) the arrows are too small to be seen.
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FIG. 5. (Color online) The kinetic energy (left) and total energy (right) over time for the simulations shown in Fig. 2.

the method is implemented using the adaptive finite element
toolbox AMDiS [29]. We solve the coupled system as follows.
First the Cahn-Hilliard equations (81) and (82) are solved
to determine the position of the interface, then the SPFC
equations (83)–(85) are solved to determine the surface colloid
particle density. Finally the Navier-Stokes equations (87) and
(86) are solved to determine the fluid velocity using the new
position of the interface and the surface particle density of the
colloids in the surface tension and elastic forces. To ensure the
well-posedness of Eqs. (83)–(85), e is replaced by e + ξ (see
Ref. [25], for example), with ξ = 10−6.

A semi-implicit Euler method is used for the time
discretization keeping as many terms implicit as possible.
Nonlinear terms are linearized by a Taylor expansion dropping
terms of order two and higher so that the equations are linear
at the implicit time step. In two dimensions the linearized

system is solved using the direct unsymmetric multifrontal
method (UMFPACK [30]). For the 3D simulations we use an
MPI-based parallelization with 64 cores and a PETSc solver
TFQMR (transpose-free quasiminimal residual) with the block
Jacobi preconditioner. The local subproblems are solved using
incomplete LU factorization [31].

We use linear basis functions for all variables. Accordingly,
the Cahn-Hilliard and SPFC equations are solved as coupled
systems of second order equations (e.g., see Refs. [32,33]).
The Navier-Stokes equations are solved using a first order
projection method given by

u∗ − um−1

τ
− η�u∗ + um−1 · ∇∇∇u∗ + ∇∇∇pm−1 = F̃m, (119)

τ�p∗ = ∇∇∇ · u∗, (120)

FIG. 6. (Color online) Coarsening of a fluid structure after spinodal decomposition without (top) and with (bottom) colloidal forces at times
t = 0,134,267.
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FIG. 7. The interface area versus time for the case with and
without colloids.

um = u∗ − τ∇∇∇p∗, (121)

pm = pm+1 + p∗, (122)

where τ denotes the time step and the superscripts denote the
time iteration.

Adaptive mesh refinement is indispensable for providing a
high spatial resolution along the fluid-fluid interfaces described
implicitly by ψ . For local mesh adaptation, we use a L2-like
error indicator based on a jump residual (e.g., see Refs. [29,34])
for ψ to maintain approximately five grid points across the
transition layers. Although we did not find it necessary to
do here, additional mesh refinement can be used to increase
local resolution of the flow field (e.g., velocity gradients,
etc.).

VII. RESULTS

A. Retracting ellipse

As a first test for the NSCHSPFC model we consider
the case of an initially elliptical fluid droplet surrounded by
another fluid. The test setup and parameters are the same
as in Ref. [15], but repeated here for completeness. The
computational domain is � = [−2,2] × [−2,2]. We start with

an initial condition as in Eq. (1) using

d = 1.0 −
√( x

0.35

)2
+

( y

1.8

)2
.

Since this d is only an approximation to a signed distance
function of an ellipse, we refine the initial condition by solving
the Cahn-Hilliard equations (81) and (82) for a short time
with velocity u = 0 to obtain better approximation of Eq. (1).
The resulting ψ is the initial condition ψ0 for the following
simulations. It describes an elliptical drop with a vertical
diameter of about 3 and a horizontal thickness of around 0.75.

To obtain an initial condition for ρ we solve the SPFC
equations (83)–(85) with ρ̃ = 0 on the fixed interface defined
by ψ0 (e.g., u is set to zero). We use as an initial condition for ρ,
a constant value of −0.3 plus a uniformly distributed random
perturbation between [−0.05,0.05] at each node. Hereafter,
we write such a condition as ρ0 = −0.3 ± 0.05. Since this
surface density is in the crystal phase of the PFC, the colloidal
particles become ordered and arrange in a crystal-like state.
We stop solving the SPFC equations when a stationary state of
colloid particle density is reached. The solution ρ is taken as
the initial condition ρ0 for the full NSCHSPFC system. Note
that a single colloid corresponds to the combination of one
darker region (ρ < 0) and one lighter region (ρ > 0).

The remaining parameters are chosen as follows: τ =
1.67 × 10−3, r = −0.4, Peρ = 3.76, Peψ = 0.47, Re = 0.38,
El = 0.002, ε = 0.03, δ = 0.067, and the fluid is initially
quiescent (e.g., u = 0 at time t = 0). The natural boundary
conditions with u∞ = 0 are used.

Figure 2 shows the simulation without colloids (El−1 = 0,
top row), with the old elastic force (middle row), and with the
new elastic force (bottom row). When no colloids are present
the surface tension makes the ellipse retract to become circular.
The presence of colloids stops the retraction by the elastic force
as the colloids jam at the interface, generating a strong elastic
force, and the interface crystallizes. This occurs using both
the old and new forms of the elastic force. Driven by the new
force, the ellipse starts to develop a neck in the middle, similar
to results for elastic membranes. Such results are observed for
a Helfrich model with a bending energy under the constraint
of local inextensibility (see, e.g., Ref. [35]). The jamming of
the colloidal particles in our model effectively leads to such

FIG. 8. (Color online) The fall of a solid ball through a fluid-fluid interface without colloids at times t = 0, 224, 254, 401, 685.
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FIG. 9. (Color online) The fall of a solid ball through a fluid-fluid interface with colloids and low elasticity (El = 0.01). Images correspond
to the same times as Fig. 8.

a constraint and the elastic force resulting from the particle
interactions might be interpreted as a microscopic origin of the
bending energy. These interpretations provide further support
for the use of the new forcing term.

In Fig. 3 the interface length, calculated by the length of the
ψ = 0.5 contour, is plotted as a function of time for different
strengths of elastic forces. Initially the particles are slightly
overcompressed, which results in a slight expansion of the
elliptical drop. When the elasticity increases (El decreases),
this effect increases and the particles can better counteract
the surface tension. Furthermore, the old and new formulation
of the elastic force lead to different final interface lengths
[Figs. 3(a) and 3(e)].

The velocity u at the top of the ellipse at early times is shown
in Fig. 4. For the previous model, the elastic force induces local
straining flows around the interface (two per colloid), which
restricts the numerical simulations to relatively small time
steps and a very fine grid in a neighborhood of the interface.
With the new model the straining flows seems to vanish and
the velocity is much smoother.

Another nonphysical behavior of the old model is the
achievement of a stable, almost stationary state with nonzero
velocity. This is a characteristic feature of spurious currents

(e.g., Ref. [36]). Figure 5 (left) shows the kinetic energy of the
system as a measure for the total magnitude of the velocity. For
the previous model Ekin reaches a plateau above zero, whereas
with the new model Ekin seems to converge to zero over time.
Also the total energy (Fig. 5, right) is decreased significantly
more when Fnew is used instead of Fel.

B. Jamming spinodal decomposition

A significant benefit of the new formulation is that it
requires much less computational power and therefore enables
3D simulations to be performed. Next, we investigate the
potential of colloidal particles to stabilize bicontinuous struc-
tures generated by spinodal decomposition. The computational
domain is � = [0,8/3]3. As initial condition, we first generate
fluid structures via spinodal decomposition by solving the
CH equation in the absence of flow (u = 0) using the initial
condition ψ = 0.5 ± 0.1 with a large interface thickness ε =
0.1 for a few time steps. Then, to generate the initial condition
for the full NSCHSPFC system, the CH and SPFC equations
are solved together for several more time steps, again in the
absence of flow, with ε = 0.03 to refine the interface thickness
and to create the colloid structure on the complex interface. As

FIG. 10. (Color online) The fall of a solid ball through a fluid-fluid interface with colloids and high elasticity (El = 0.002). Images
correspond to the same times as Fig. 8.
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initial data for the CHSPFC solver, the previously generated
ψ is used together with the colloid density ρ0 = −0.3 ± 0.05.
The resulting ψ,ρ are used as the initial condition ψ0,ρ0 for
the full NSCHSPFC system. Taking τ = 6.7 × 10−2, Peψ =
0.23, El = 0.005, and ρ̃ = 0.3, with all other parameters as
in Sec. VII A, the simulations are performed with periodic
boundary conditions in each coordinate direction.

Figure 6 shows a comparison between the NSCHSPFC
model (bottom) and a NSCH model without colloidal forces
(El−1 = 0, top). In the latter case the structure coarsens
significantly. When colloids are present, the elastic force
induced by the particles is able to prevent the coarsening as
the colloids jam and the interface crystallizes. The interface
area as a function of time time is plotted in Fig. 7.

C. A ball falling into a fluid structure

Finally, we demonstrate a significant advantage of the mul-
tiscale NSCHSPFC model: The possibility of incorporating
additional macroscopic effects. We model a solid ball, under
the influence of gravity, falling through a colloid crystallized
surface. This involves (1) solving the NSCHSPFC model only
in �\�ball and (2) moving the ball with a velocity that takes
into account all the forces acting on the ball. For the first part we
can apply a diffuse domain approach as done in Refs. [32,37].
We therefore define a ball of radius 1 by a phase field φ using
Eq. (1) with

d = 1.0 −
√

(x − x0)2 + (y − y0)2. (123)

Here (x0,y0) denotes the coordinate of the ball’s center.
Using the diffuse domain approach we can now formulate
the NSCHSPFC model in the domain where {φ ≈ 1}: The
advective Cahn-Hilliard equation becomes

φ(∂tψ + u · ∇∇∇ψ) = Pe−1
ψ ε∇∇∇ · (φB(ψ)∇∇∇μ), (124)

φμ = ε−1φB ′(ψ) − ε∇∇∇ · (φ∇∇∇ψ). (125)

Note that this formulation imposes a contact angle of 90◦
between the fluid-fluid interface and the solid ball. The diffuse
domain surface-phase-field-crystal equation is1

∂t [eφ(ρ + ρ̃)] + ∇∇∇ · [eφu(ρ + ρ̃)] = Pe−1
ρ ∇∇∇ · (eφ∇∇∇ω̃),

(126)

eφω̃ = eφρ(ρ2 + 1 + r) + 2δ2eφν̃ + δ4∇∇∇ · (eφ∇∇∇ν̃), (127)

eφν̃ = ∇∇∇ · (eφ∇∇∇ρ). (128)

Finally, the Navier-Stokes equation becomes

φ(∂tu + (u · ∇∇∇)u) = −φ∇∇∇ap + 1

Re
∇∇∇ · (φ∇∇∇u) + ∇∇∇ · (φTsing),

(129)

∇∇∇ · (φu) = v · ∇∇∇φ, (130)

1This equation is derived variationally by restricting the total energy
to the diffuse domain marked by φ ≈ 1, and then restricting the energy
to the surface using e.

FIG. 11. (Color online) (a) The vertical position of the center
of the ball over time for different strengths of elastic forces.
(b) The distance minimum distance between the ball and interface
when El = 0.002.

where v is the velocity of the moving ball. To obtain the ball ve-
locity we solve Newton’s equation, which in nondimensional
form, reads

v̇ =
(

ρfluid

ρball
− 1

)
g + ρfluid

Vρball

∫
∂�ball

T · ndA, (131)

where ρball is the physical density of the ball, V the nondimen-
sional ball volume, g the nondimensional gravity force, and

T := −pI + 1

Re
(∇∇∇u + ∇∇∇uT ) + Tsing (132)

the nondimensional total stress tensor, with Tsing from Eq. (75).
We can approximate Eq. (131) by

v̇ =
(

ρfluid

ρball
− 1

)
g + ρfluid

Vρball

∫
�

T · ∇∇∇φ dx. (133)

Finally, we can calculate the new ball coordinates at any time
step m by (x0,y0)m = (x0,y0)m−1 + τv, and then compute the
new ball phase field φ according to Eq. (123).

The simulation is performed in � = [−2,2] × [0,12]. We
define ψ so that there is a single horizontal fluid-fluid interface
at y = 6 2

3 (see Fig. 8). The initial condition for ρ is created
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as in the previous sections. We set the ball’s center initially
at [x0(0),y0(0)] = (0,8 2

3 ), the initial ball velocity is set to
zero. Furthermore, we use ρball = 2ρfluid, τ = 0.033, ε = 0.04,
Peψ = 1.88, and g = (0,−0.48). Simulations are carried out
once without colloids (El−1 = 0, Fig. 8), once with little elastic
colloid interaction (El = 0.01, Fig. 9) and once with stronger
colloid interaction (El = 0.002, Fig. 10). The remaining
parameters and boundary conditions are as in Sec. VII A.

In the case when no colloids are present the ball pushes
the interface downwards, then penetrates it and falls right
through it. A little droplet of the upper (blue) fluid adheres
to the ball, where we observe the prescribed contact angle
of 90◦. The presence of colloids makes the interface stiffer.
In the case of a small amount of elasticity (El = 0.01) the
interface deforms significantly less before the ball touches
it. As the ball penetrates into the crystallized interface some
colloids are pushed out and the ball loses speed. Finally, the
ball stops falling and is trapped at the interface, despite gravity,
held by the colloid-induced elastic forces. When the elastic
interactions are stronger (El = 0.002) the ball does not even
penetrate the interface. Here, the interface behaves like a solid
and the ball reaches a steady position right above the interface
and seems to be held by lubrication forces. Figure 11(a) shows
the position of the ball over time for the three test cases, and
Fig. 11(b) shows the minimum distance between the ball and
interface when El = 0.002.

VIII. CONCLUSIONS

In this paper we have reconsidered a model we previously
developed to simulate the presence of colloids in a system
with two immiscible fluid components. The model combines
the NSCH equations for the two-component system with the
surface PFC equations for the colloids at the interface. In
particular, colloid interactions introduce elastic forces at the
interface. In this paper we have introduced a new form for the
elastic forces that largely eliminates spurious currents, making
the system more accurate and stable to simulate. This makes
3D simulations feasible.

We derived the new elastic force in three ways. First, the old
elastic force from Ref. [15] is regularized in two dimensions
by averaging across the interface. Second, the elastic force is
derived using an energy variation approach with a different
approximation of the surface delta function than in Ref. [15].
The latter derivation is valid in two and three dimensions. If
restricted to two dimensions, this leads to the same model as the
previous approach. Third, a sharp interface derivation using an
energy variation approach is presented in two dimensions. We
show that the new formulation is the diffuse interface analog
of the sharp interface model. Although we did not present
the results here, we have considered another approximation
of the surface delta function that contains only the gradient

term in Eq. (35), scaled by a factor of two, and found results
similar to those presented here. This suggests that to eliminate
spurious numerical effects and to obtain a more physical
solution of the problem, gradient terms should be included
in the approximation of the surface delta function.

An adaptive finite element method is used to solve the
new diffuse interface model numerically. We demonstrated
that the new model suppresses spurious velocities and that it
decreases the total energy of the system significantly more
than the model derived in Ref. [15]. In two different test
scenarios we show that as colloids jam on the interface and the
interface crystallizes, the elastic force becomes strong enough
to make the interface sufficiently rigid to resist surface tension
induced coarsening. This can be shown over long times and
demonstrates the stability of particle-stabilized bicontinuous
gels. The particle interactions resist interface deformation and
surface tension-driven coarsening, in particular. Both attractive
and repulsive interactions can be used; see Ref. [19] for an
appropriate parametrization of the SPFC model.

Finally, we demonstrate an important advantage of our
multiscale model: The possibility of incorporating additional
macroscopic effects using the diffuse domain approach [37].
We modeled a solid ball, driven by gravity, falling through
a colloid crystallized surface. Compared to the case without
colloids, the stiffness imparted to the interface by the colloids
resisted the ball motion. At small to medium colloid elasticity
the ball penetrated but did not fall through the interface as
it would if the interface were clean. Interestingly, for higher
elasticity the ball may not even penetrate the interface but
reaches a steady position right above the interface. This clearly
demonstrates the solid like properties of the particle-stabilized
bicontinuous gel.

There are many interesting directions to pursue in the
future. This includes developing methods to upscale the
microscopic SPFC model and elastic force to obtain a fully
macroscopic system, investigating the rheological properties
of simulated bijels and comparing the results with physical
systems (e.g., Refs. [38,39]), and developing a model of a
cross-flow microreactor in which two fluids flow in opposite
direction allowing close contact between mutually insoluble
reagents across a colloid-stabilized interface in a bijel [6].
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