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a b s t r a c t

In this paper, we present a new phase-field model including combined effects of edge diffusion, the
Ehrlich–Schwoebel barrier, deposition and desorption to simulate epitaxial growth. A new free energy
function together with a correction to the initial phase variable profile is used to efficiently capture
the morphological evolution when a large deposition flux is imposed. A formal matched asymptotic
analysis is performed to show the reduction of the phase-field model to the classical sharp interface
Burton–Cabrera–Frankmodel for step flowwhen the interfacial thickness vanishes. The phase-fieldmodel
is solved by a semi-implicit finite difference scheme, and adaptive block-structured Cartesian meshes are
used to dramatically increase the efficiency of the solver. The numerical scheme is used to investigate the
evolution of perturbed circularly shaped small islands. The effect of edge diffusion is investigated together
with the Ehrlich–Schwoebel barrier. We also investigate the linear and nonlinear regimes of a step
meandering instability.We reproduce the predicted scaling law for the growth of themeander amplitude,
which was based on an analysis of a long wavelength regime. New nonlinear behavior is observed when
themeanderwavelength is comparable to the terracewidth. In particular, a previously unobserved regime
of coarsening dynamics is found to occur when the meander wavelength is comparable to the terrace
width.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Thin film growth through for example, molecular beam
epitaxy (MBE), liquid phase epitaxy (LPE) and chemical vapor
deposition (CVD) is a modern technology of growing single
crystals that inherit atomic structures from a substrate [1].
Epitaxial growth produces almost defect-free, high quality crystals,
which have wide ranges of applications in electronic, optical and
magnetic materials. For example, epitaxial growth is useful in
the manufacture of reflective or anti-reflective coatings for optics,
and is important in the fabrication of layers of insulators and
semiconductors for integrated circuits (e.g. see [2]). Moreover,
epitaxial growth can be used to create structures on much smaller
length scales through self-assembly, that is the nanostructure
emerges spontaneously, rather than structures produced by top-
down methods. Examples include quantum dots and quantum
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wires which have very good transport and optical properties,
and therefore have specific importance in the development of
diode lasers, amplifiers, biological sensors and etc. (e.g. see [3,4]).
The fundamental problem in epitaxial growth is to understand
growth processes so that one can develop techniques to control
nanostructure formation and promote self-assembly of spatially
ordered nanostructures.

During epitaxial growth, physical and chemical processes occur
at widely varying length and time scales. Examples of such
phenomena include, the chemical interaction of the film and
substrate; the heteroepitaxial misfit between substrate and film;
the formation of defects, such as dislocations and grain boundaries;
the extreme elastic heterogeneity of the system; the strong
elastic and surface anisotropies; interface kinetic effects; epilayer
deposition; edge diffusion; substrate topographical patterning
and subsurface implant patterning. These processes interact and
compete to form complex thin film morphologies, such as step
structures, and faceted quantum dots and wires. Given such a
complex multi-scale problem, modeling epitaxial growth presents
an enormous challenge to mathematicians, theoretical physicists
and materials scientists. Since the macroscopic evolution of the
growing film is directly related to the movements of adatoms
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Fig. 1. Schematic of Ehrlich–Schwoebel barrier. An adatom detaching from a step
edge is experiencing an additional energy∆Es [30].

(absorbed atoms) on surfaces and their various interactions, it
is appealing to use atomic scale simulations for a theoretical
description of epitaxial growth (e.g., ab-initio [5] molecular
dynamics [6] and kinetic Monte Carlo [7–9] models). However,
the length and time scales that can be achieved by the atomic
scale simulations are limited, thus semi-discrete step-flowmodels
(e.g., [10–15]) and continuum models (e.g., [16–27]) may be used
in order to study various applications at larger scales.

Below the roughening temperature, steps as long-lived surface
defects are suitable as a basis for the description of the surface
morphology. Atomic steps separate exposed lattice terraces that
differ in height by a single lattice spacing and provide the kink
sites at which new atoms are incorporated into the crystal. The
growth of a crystal surface can thus be reduced to the advancement
of existing steps, the nucleation and growth of new closed step
loops (i.e., atomic height islands), the annihilation of steps by
the merging of islands and terraces. Burton, Cabrera and Frank
(BCF) [28] first introduced a semi-discrete model, in which the
growth direction is discrete but the lateral direction is continuous,
to describe the diffusion of adatoms and themotion of steps during
epitaxial growth of thin films. The BCF model, supplemented with
later modifications and extensions, has been used to study the
stability of step trains and islands.

A fundamental investigation to predict the meandering wave-
length for the step meandering instability using linear stability
analysis, was performed by Bales and Zangwill [10]. Their analysis
shows that stepmeandering is an instability that may arise as a re-
sult of a terrace Ehrlich–Schwoebel barrier, see Fig. 1, which char-
acterizes the preference of adatoms to attach to an ascending step,
i.e., k+ < k− in Eqs. (2) and (3). More recently, following Avignon
and Chakraverty [13], Mullins and Sekerka [14] and Li et al. [15], a
comprehensive morphological stability analysis of small circularly
shaped islands was performed by Hu et al. in [29]. In this work, Hu
et al. demonstrated the existence of a naturally stabilizing radius
of the growing island, so that beyond this radius, the growth is al-
ways stable. Up to this radius, taking fluxes larger than a critical
flux results in unstable growth. The explicit form of the dispersion
relation is given in a supplementary document. Hu et al. also sug-
gested a way of controlling the shape of an island using the de-
position flux and far-field flux as control parameters. However, in
thenonlinear regime,mathematicalmodeling and efficient numer-
ical algorithms are essential and it remains to determine whether
shape control may be achieved in the nonlinear regime.

In this paper, a new phase-field model for step flow accounting
for Ehrlich–Schwoebel barrier, edge diffusion, a far-field flux,
deposition and desorption, is presented and used to investigate
instabilities during epitaxial growth. To accurately and efficiently
capture the dynamics when the deposition flux is large, we
propose a different free energy function from that used by Rätz
et al. [31] andOtto et al. [32]. An analysis usingmatched asymptotic
expansions is performed to show that the phase-field model
reduces to classical sharp interface models of BCF type when the
interfacial thickness vanishes. Advantages of using a phase-field
approach include the automatic capture of topological changes
such as island formation, coalescence and coarsening. In addition,
other physical effects such as nucleation and elastic interactions
may be included. Previously, front tracking methods have been
used to study the combined effects of edge diffusion and the
Ehrlich–Schwoebel during island growth [33–35]. In phase field
simulations [36,37] the edge diffusion term is typically neglected.
Only in [2] was this effect considered, however attachment and
detachment processes were neglected. In [38], a level-set method
was used, where the edge diffusion term in the normal velocity
was approximated by the deviation of the curvature from the
averaged curvature. But none of these methods considered the
combined effects of edge diffusion, the Ehrlich–Schwoebel barrier
and desorption.

Moreover, to demonstrate the versatility of the proposed
phase-field model, we also investigate the linear and nonlinear
regimes for the step trains concentrating on the step meandering
instability. A similar study has been performed by Haußer and
Voigt [39] in which a front tracking method based on linear
adaptive finite elements is used. In this work, we confirm some
of their nonlinear results and identify a new regime of coarsening
with different sets of parameters. In particular, we reproduce the
predicted scaling law for the growth of the meander amplitude,
which was based on an analysis of a long wavelength regime
[40–42]. New nonlinear behavior is observed when the meander
wavelength is comparable to the terrace width.

This paper is organized as follows: In Section 2, we describe
the BCF model. In Section 3, the new phase-field model is
presented. In Section 4, we briefly discuss the numerical solution
of the phase-field model. In Section 5, we present and discuss
our numerical results applied on both island dynamics and step
trains. We give some concluding remarks and suggest some future
work in Section 6. In Appendix A, a formal matched asymptotic
analysis is performed to show the reduction of the phase-field
model to the classical sharp interface BCF model for step flow
when the interfacial thickness vanishes. The computation of the
surface Laplacian is outlined in Appendix B. We present the initial
condition used in the simulation of the growth under a constant
flux (Section 5.1.1) in Appendix C. In Appendix D, the dispersion as
appeared in [10] is presented. A supplementary document contains
details of the linear stability analysis.

2. The BCF model

2.1. The BCF model for island dynamics

We consider a domain Ω on a plane containing a sequence
of steps and terraces. To model island dynamics, the steps are
described by closed curves Γi, which divide Ω into terraces Ωi
where i = 0, . . . ,N denotes the discrete height of the layers, cf.
Fig. 2.

Let ρi = ρi(x, y, t) be the adatom concentration on a terraceΩi,
with i = 0, . . . ,N . Then, the BCF model [28] is

∂tρi − ∇ · (D∇ρi) = F − τ−1ρi inΩi, (1)

where D is the diffusion constant, F is the deposition flux rate
and τ−1 is the desorption rate. At the step edges Γi, the adatom
concentration satisfies the kinetic boundary conditions

−D∇ρi · ni = k+


ρi − ρ∗ (1 + σκi)


on Γi, (2)

D∇ρi−1 · ni = k−


ρi−1 − ρ∗ (1 + σκi)


on Γi, (3)
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Fig. 2. Schematic of island domains, after [31].

where ni is the unit normal pointing from the upper to lower
terrace, k+ and k− are the kinetic attachment rates from the upper
and lower terraces respectively, ρ∗ is the equilibrium value of the
adatom concentration for a straight step, σ is the line tension and
κi is the curvature of Γi.

We also assume that Ω0 is enclosed in a large, fixed circle
Γ∞ with radius R∞, and an additional far-field flux J is imposed
uniformly along Γ∞

1
2π

∫
Γ∞

D∇ρ0 · n dΓ = J on Γ∞, (4)

where n is the unit exterior normal at Γ∞. This far-field flux could
arise due to the diffusion of adatoms from other regions of the thin
film as discussed in [29].

The normal velocity of a step-edge is given by

vi = −D∇ρi · ni + D∇ρi−1 · ni + ∇si · (ν∇siκi) on Γi, (5)

where ν is the edge diffusion coefficient and ∇si = (I − nini)∇ is
the surface gradient. Note that Eq. (5) is a fourth-order differential
equation, due to the presence of edge diffusion.We refer the reader
to [28,12,1,43] for more discussion about BCF models.

Here we will focus on the case in which the evolution is quasi-
steady. That is, when the time scale for adatoms diffusion is much
smaller than the time scale for deposition: l2T/D ≪ 1/F where lT is
a typical terrace width. Under this assumption, Eq. (1) reduces to

−∇ · (D∇ρi) = F − τ−1ρi inΩi,

while the other equations do not change.

2.2. Nondimensionalization

Time and space are non-dimensionalized by using the diffusion
time scale t∗ = R2

∞
/D (assume D is constant) and the length scale

l∗ = R∞ which is the radius of Γ∞ [29]. We then define the non-
dimensional time and space variables as

t̂ = t/t∗, l̂ = l/l∗.

Wealso introduce themodified adatom concentrationωi = ρi−ρ
∗

andωi−1 = ρi−1 −ρ∗
−Ψ r , where r is the non-dimensional radial

distance to the center ofΩ0 and the non-dimensional far-field flux
Ψ is defined below. It follows that the non-dimensional BCFmodel
is

−∆̂ωi = Λ− µ2(ωi + ρ∗) in Ω̂i (6)

−∆̂ω0 = Λ− µ2(ω0 + ρ∗)+ Ψ


1
r

− µ2r


in Ω̂0 (7)

−ξ+∇̂ωi · ni = ωi − ρ∗δκ̂i on Γ̂i (8)

ξ−∇̂ωi−1 · ni = ωi−1 − ρ∗δκ̂i on Γ̂i (9)

ξ−∇̂ω0 · n1 = ω0 − ρ∗δκ̂1 + Ψ (R1 − ξ−) on Γ̂1 (10)
Fig. 3. Diagram of terraces (top) and the phase-field variable (bottom).

1
2π

∫
Γ̂∞

∇̂ω0 · n dΓ̂ = 0, on Γ̂∞ = 1 (11)

v̂i = −∇̂ωi · ni + ∇̂ωi−1 · ni + ∇̂si · (β∇̂si κ̂i)+ Ψ δi1 on Γ̂i (12)

for i = 1, . . . ,N . Here R1 is the radius of Ω1, and δi1 is the
Kronecker delta function (δi1 = 1 if i = 1 and δi1 = 0 other-
wise). Note that ωi and ωi−1 are already dimensionless. The non-
dimensional parameters in Eqs. (6)–(12) are

Λ =
FR2

∞

D
, µ =

R∞
√
Dτ
, ξ± =

D
k±R∞

,

δ =
σ

R∞

, Ψ =
J
D
, β =

ν

DR∞

,

which are non-dimensional measures of the deposition flux, the
desorption rate, the attachment rates, the line tension, the far-field
flux and the edge diffusion, respectively.

For simplicity, we will drop the hat notation in Eqs. (6)–(12) to
refer to the non-dimensional model from now on.

3. Phase-field formulation

In the phase-field approach, the island boundaries are treated
as diffuse interfaces with thickness O(ϵ∗), in order to match the
non-dimensional model, we use a non-dimensional thickness ϵ =

ϵ∗/l∗. Both islands and lower terraces can be viewed as separate
phases of the systemand accordingly are described by a phase-field
variable φϵ = φϵ(x, y, t; ϵ), cf. Fig. 3. The phase function φϵ also
can be interpreted as a continuous approximation of the discrete
height function of the growing film. By extending the model of
Rätz et al. [31], we present a new 6-th order phase-field model to
account for edge diffusion and a far-field flux:

∂tφ
ϵ
− ∇s · (β∇sκ)|∇φ

ϵ
|

= ∇ · (M(φϵ, ϵ)∇ (ωϵ + K(φϵ, r; ϵ)))

+Λ− µ2 ωϵ + K(φϵ, r; ϵ)+ ρ∗

, (13)

αϵ2 (∂tφ
ϵ
− ∇s · (β∇sκ)|∇φ

ϵ
|)

= ϵ2∆φϵ − G′(φϵ)+
ϵ

ρ∗δ
(ωϵ + K(φϵ, r; ϵ)) , (14)

where ωϵ = ωϵ(x, y, t; ϵ) is the approximated modified adatom
density and κ is the curvature and can be calculated by −∇ ·

∇φϵ

|∇φϵ |
.

In the following sections we will drop superscript ϵ and use
ω and φ in the phase-field model. In Eqs. (13) and (14), the
Hamilton–Jacobi like term∇s ·(β∇sκ)|∇φ| accounts for the effects
of edge diffusion and M(φ, ϵ) is the anisotropic mobility that
models the Ehrlich–Schwoebel barrier. The function K(φ, r; ϵ) =

ΨΠN
j=1(1−φ/j)r is used to account the far-field flux, and vanishes

on all terraces except for on Ω0, i.e., φ = 0. The parameter α is
introduced in order to match the sharp interface model as shown
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Fig. 4. The multiwell potential G(φ) from Eq. (15).
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Fig. 5. The asymmetric mobility functionM(φ, ϵ) from Eq. (16).

in Eq. (17) (see [31] and Appendix A for more details). The function
G(φ) is a multi-well free energy function, cf. Fig. 4,

G(φ) = b

ef (i) − 1

 
ef (i+1)

− 1

, for φ ∈ [i, i + 1], (15)

where f (i) = 4.5(i − φ)2 + 0.9(i − φ)4 and b is a scaling factor
such that

 i+1
i

√
2G(φ) dφ = 1 for i = 0, . . . ,N − 1. Note that

G(φ + 1) = G(φ) for φ ∈ [0,N − 1] and G(φ) has the symmetry
G(i + 1/2 + φ) = G(i + 1/2 − φ) for i = 0, . . . ,N − 1.
This energy function is different from the standard polynomial free
energy that was used in [31]. We will show in Section 5 that this
specific form of energy function helps to more accurately model
the adatom mobility on the terraces when the deposition flux is
large. To account for the Ehrlich–Schwoebel barrier, the mobility
is asymmetric [31], cf. Fig. 5,

M(φ, ϵ) =
1

1 + ϵ−1ζ (φ)
(16)

where ζ (φ) = γ (φ − (i − 1))pG(φ) when φ ∈ [i − 1, i] for
i = 1, . . . ,N . Here, as shown in Eq. (A.37), γ and p satisfy∫ i

i−1

ζ (φ)
√
2G(φ)

(1 − φ) dφ = ξ−,

∫ i

i−1

ζ (φ)
√
2G(φ)

φ dφ = ξ+.

The interfaces are now defined by

Γi(ϵ) :=


(x, y) ∈ Ω : φ(x, y, t; ϵ) = i −

1
2


, i = 1, . . . ,N .

We will show in Appendix A that in the asymptotic limit, i.e., ϵ →

0, taking

α =
1
ρ∗δ

∫ 1

0

ζ (φ)
√
2G(φ)

(1 − φ)φ dφ, (17)

the phase-field model (Eqs. (13)–(14)) reduces to the quasi-steady
BCF model (Eqs. (6)–(12)) accounting for Ehrlich–Schwoebel
barrier, edge diffusion, a far-field flux, deposition and desorption.

4. Numerical solutions

In this section we discuss a numerical algorithm to solve
the phase-field model. We use semi-implicit time and centered
difference space discretizations on Eqs. (13) and (14). Following
Smereka [44], we introduce a smoothing method originally
developed for a level-set method to efficiently calculate the edge
diffusion term. Basically, two bi-Laplacians (∆2φ) are added and
subtracted from the equations inwhich the edge diffusion appears.
Defining ϱ := ω + K(φ, r; ϵ) and ϖ := ∆φ, we present our
numerical scheme as follows:

φk+1
i,j − φk

i,j

∆t
− ∇s · (β∇sκ

k
i,j)|∇φ

k
i,j| + ϑ∆ϖ k+1

i,j

= ∇d · (M
k+ 1

2
i,j ∇dϱ

k+ 1
2

i,j )+Λ− µ2(ϱ
k+ 1

2
i,j + ρ∗)+ ϑ∆ϖ k

i,j (18)

αϵ2


φk+1
i,j − φk

i,j

∆t
− ∇s · (β∇sκ

k
i,j)|∇φ

k
i,j| + ϑ∆ϖ k+1

i,j



=
ϵ2

2
∆d(φ

k+1
i,j + φk

i,j)−
1
2


G′(φk+1

i,j )+ G′(φk
i,j)
 ϵ

ρ∗δ
ϱ
k+ 1

2
i,j

+αϵ2ϑ∆ϖ k
i,j (19)

ϱ
k+ 1

2
i,j = ω

k+ 1
2

i,j + K k
i,j (20)

ϖ k+1
i,j = ∆φk+1

i,j (21)

κk
i,j = −∇ ·


∇φk

i,j

|∇φk
i,j|


(22)

where M
k+ 1

2
i,j =

1
2 (M(φ

k+1
i,j ) + M(φk

i,j)). The bi-Laplacian is added
to the system as a smoothing operator and a coarse approximation
of the curvature. Our study shows that taking ϑ = β/2 results in a
stable scheme at the time steps we have tested. This observation
matches with Smereka’s results in [44]. The computation of the
surface Laplacian is outlined in Appendix B. We remark that, all
terms in Eqs. (18) and (22) are second-order in time, except for
the edge diffusion term and the far-field flux term. We found it is
difficult to make a stable, fully second-order scheme. To efficiently
solve the discrete system at the implicit time-level, we use a
nonlinearmultigridmethod originally developed for Cahn–Hilliard
equations by Kim et al. [45] for uniform grids and extended by
Wise et al. [46] to adaptive block-structured Cartesian meshes.
Fig. 6 shows a typical adaptive mesh generated by the solver for
island dynamics simulations. We refer the reader to Trottenberg
et al. [47], Kim et al. [45] and Wise et al. [46] for further details
about the nonlinear FAS multigrid scheme and to Hu [48] for the
applications to the Eqs. (18)–(22).

5. Applications

In this section, we apply the phase-field model developed
in Section 3 to investigate the morphology of thin films during
epitaxial growth. The goal is to characterize the nonlinear
evolution of nanoscale islands and step trains. It is also important
to determine the extent of applicability of the linear stability
theory for islands developed by [29] and the more classical linear
stability theory for step trains by [10]. We first present results
related to island dynamics. The step trains are investigated in the
next subsection.

5.1. Island dynamics

5.1.1. Growth under a constant flux
We startwith a preliminary result, inwhich the desorption rate,

edge diffusion and far-field flux are absent, and the deposition flux
is constant. To simulate the growth of a circular island enclosed in
a unit disk, we use [−1, 1]× [−1, 1] as the computational domain
and scale the deposition flux by a cutoff function, specifically, a
hyperbolic tangent function supported on the unit disk. The linear
stability analysis by Hu et al. [29] indicates that instability occurs
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Fig. 6. Snap-shots of the adaptive block-structured Cartesian meshes at two
different times during the growth of a small, perturbed circular island. There are
6 levels of refinement and all parameters are the same as those in Fig. 7.

when the deposition flux is sufficiently large. However, in order to
capture the morphological evolution of the interface under large
deposition fluxes, a very smaller interface thickness is required
in the original phase-field model for island dynamics developed
by Rätz et al. [31]. This means, even though asymptotic analysis
of the model in [31] indicates convergence in ϵ, the regime of
applicability requires ϵ to be very small. To make the calculations
feasible and to extend the applicability of the phase-field model,
we utilize the free energy G(φ) in Eq. (15) and we have also found
that it is helpful to correct the hyperbolic tangent initial profile
of the phase variable by adding the first order outer solution of
the phase variable from the asymptotic analysis. In particular, the
correction term we add is ϵφ1, where φ1 =

ωlinear
ρ∗δG′′(φ0)

, ωlinear

is the linear solution, and φ0 is the hyperbolic tangent function.
The explicit expression of the initial condition is presented in
Appendix C.

In Fig. 7(a), the evolution of a perturbed circular island under a
constant flux is shown. The island boundary is defined by R(θ, 0) =

R(0)(1+ P(0) cos(5θ))with radius R(0) = 0.228 and shape factor
P(0) = 0.087, initially. We use ϵ = 0.00625, and 7 levels of mesh
refinement with hmax = 1.25 × 10−1 on the coarsest mesh and
hmin = 9.765625 × 10−4 at the finest level in each coordinate
X

Y

X

ω
ε

–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1

t=0→ t=0.00174

–1 –0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1

0.2 0.3 0.4 0.5 0.6 0.7
0

0.5

1

1.5

2

0

2

4

6

8
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12b

a

Fig. 7. (a) The evolution of a perturbed circular island under a constant deposition
flux at 6 times: t = 0, t = 0.0030, t = 0.0066, t = 0.0102, t = 0.0138, and
t = 0.0174. (b) Slices of the concentration field along y = 0 corresponding to the
times shown in (a). The non-dimensional parameters are Λ = 25, ξ+ = 0.0256,
ξ− = 0.002, ρ∗

= 1, δ = 0.02, β = 0.0, p = 20, ϵ = 6.25 × 10−3 ,∆t = 1 × 10−7

and hmin = 9.765625 × 10−4 .

direction. There are approximately 6 computational nodes across
the island interface on the finest mesh. The time step is ∆t =

1 × 10−7 and the islands are shown at non-dimensional times
t = 0, t = 0.0030, t = 0.0066, t = 0.0102, t = 0.0138, and t =

0.0174. The small time step is chosen to achieve highly accurate
results; the method is stable with larger time steps. As seen from
the figure, the island undergoes unstable growth initially but the
perturbations start to decrease as the island becomes sufficiently
large. This matches the linear stability analysis result presented
in [29]. The explicit expression of the dispersion relation in terms
of the wave number is presented in a supplementary material.
Slices of the concentration ωϵ at y = 0 are shown in Fig. 7(b).
We observe in a close-up of the plot that the concentration has
a near jump at the island boundary, which is consistent with the
classical theory where there is a jump. Moreover, the radius of
the underlying circle R(t) during the evolution is plotted versus
time in Fig. 8(a). The plot shows an excellent agreement between
the linear theory (the solid line) and the numerical result (the
dash–dotted line). To find the numerical underlying radius at time
t , we first find the distance from points along the 0.5 contour



82 Z. Hu et al. / Physica D 241 (2012) 77–94
0.02
0.2

0.3

0.4

0.5

0.6

0.7

t

R
(t

)

0.08

0.1

0.12

0.14

0.16

0.18

t

P
(t

)

0 0.005 0.01 0.015

0 0.005 0.01 0.015 0.02

a

b

Fig. 8. (a) The radii of the underlying circle during the evolution versus time. The
solid curve is the solution from linear analysis and thedash–dot line is the numerical
result from Fig. 7 (see text for definition of the numerical radius). (b) The evolution
of the corresponding shape factors (see text for definition) versus time. The non-
dimensional parameters areΛ = 25, ξ+ = 0.0256, ξ− = 0.002, ρ∗

= 1, δ = 0.02,
β = 0.0, p = 20, ϵ = 6.25 × 10−3 ,∆t = 1 × 10−7 and hmin = 9.765625 × 10−4 .

(φ = 0.5) and the center of the island, denoted by d(θ, t),
where θ is the parametrization of the 0.5 contour. The numerical

underlying radius is then R(t) =


1
2π

 2π
0 d2(θ, t)dθ and the

integral is evaluated by the trapezoidal rule. In Fig. 8(b), the
evolution of the shape factor P(t) (the dash–dotted line) is shown.
The numerical shape factor is the numerical perturbation divided
by the numerical radius, where the numerical perturbation is the
maximum deviation from points along the 0.5 contour relative to
the numerical radius, i.e., P(t) = maxθ (d(θ, t))/R(t). We observe
that the linear theory (the solid line) over-predicts the growth of
the perturbation.

5.1.2. Examining the effect of the edge diffusion
We now present results accounting for the effect of edge

diffusion with and without kinetic effects. We first validate the
scheme by verifying convergence in interfacial thickness. Three
different interfacial thicknesses are used to simulate the evolution
of a perturbed circular island, and then the shape factors are
calculated and compared to the linear result.

The same computational domain as in the previous example
is used and the deposition flux, the far-field flux and the kinetic
rates are absent, i.e., α = 0. Initially, the island is defined by
R(θ, 0) = R(0)(1 + P(0) cos(5θ)) with radius R(0) = 0.2 and
shape factor P(0) = 0.078. We use ϵ1 = 0.04, ϵ2 = 0.03,
ϵ3 = 0.02, and the corresponding mesh sizes on the finest grid
are h1 = 2.8 × 10−3 (two levels of refinement starting with grid
size 1.1111 × 10−2 on the coarsest mesh), h2 = 2.0 × 10−3

(three levels of refinement starting with grid size 1.5625 × 10−2

on the coarsest mesh), h3 = 1.4×10−3 (three levels of refinement
starting with grid size 1.1111× 10−2 on the coarsest mesh). There
are approximately 12–14 computational nodes on the finest mesh
across the island interface for all cases and the time step is 1.25 ×

10−7 for all three cases. In the first row of Fig. 9, the evolution of
the island described above is shown for ϵ = 0.04 at two non-
dimensional times t = 2.5 × 10−4 and t = 1.0 × 10−3. Note
for the sake of presentation, only part of the domain is shown.
As seen from the plots, the perturbation of the island decays and
the decaying rate matches the linear stability analysis presented
in [29] as shown in Fig. 10(a). The second row in Fig. 9 shows the
numerical results related to the calculation of the edge diffusion. In
fact, the numerical result of f (φ)∇s · (β∇sκ

k
i,j)|∇φ

k
i,j| in Eq. (18) is

plotted, and one should notice that the numerical result provides
smooth approximation to the original expression. (See Appendix B
for details about function f (φ)).

In Fig. 10(a), the evolution of the shape factors P(t) is shown in
both linear and log scales (inset). The solid lines describe the linear
prediction and the dashed lines show the numerical result. We
observe from the inset, that the growth rate given by the numerical
results with all three interfacial thickness match with the linear
theory verywellwhen the perturbation is not very small.When the
numerical perturbation reaches the size of the truncation error, it
saturates. Quantitatively, we calculate the growth rate of the shape
factor for all three cases and plot the result versus ϵ in Fig. 10[b].
The growth rate of the shape factor P(t) is obtained by performing
a linear least square fit of log(P(t)/P(0)) up to t = 3.0×10−3. The
three growth rates obtained are −1218.9 for ϵ = 0.04, −1164.1
for ϵ = 0.03, and −1089.1 for ϵ = 0.02. The dashed-line shows a
best fit linear to the calculated numerical growth rates, which gives
a y-intercept equals −962.7. This y-intercept compares very well
to the growth rate calculated by the linear stability analysis which
equals −970.5. Fig. 10[b] also implies first-order convergence of
the growth rate in the interfacial thickness.

When kinetics and edge diffusion are present, the phase-
field model is indeed sixth-order. Our numerical simulation still
matches the linear theory well as shown in Fig. 11. In Fig. 11,
the evolution of the shape factors P(t) when kinetics is present is
shown in both linear and log-linear scales (inset). Again the solid
lines describe the linear prediction and the dashed lines indicate
the numerical result.

5.1.3. Demonstrating the idea of shape control
Following the shape control idea presented by Hu et al. in [29],

we simulate the growth of a circular island perturbedwith 3modes
under a variable deposition flux (cf. Fig. 12(b)). Themodes included
initially are l = 3, l = 5, l = 8 and the deposition flux is varying
in time such that it always amplifies l = 5 most according to the
linear theory presented in [29]. As seen from Fig. 12(a), the growth
of the 5th-mode (l = 5) dominates among all the modes toward
the end of the evolution. This implies that this variable deposition
flux obtained through the linear stability analysis, can provide a
good approximation to the actual deposition flux needed in the
nonlinear simulation.

5.2. Step trains

We now move on to the step trains. On a vicinal (stepped) sur-
face with straight, equidistant steps, either the surface separates
into regions of high step density (step bunches) and wide ter-
races, or the steps become wavy (step meandering). In this sec-
tion, we concentrate on the step meandering instability due to the
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Fig. 9. The evolution of a perturbed circular island with edge diffusion, but no interface kinetics, at times: t = 0.00025, and t = 0.001. Top row: the numerical phase
variable φ is plotted, where the value 1 indicates the island, and the value 0 indicates the lower terrace. Bottom row: the numerical result related to the calculation of the
edge diffusion is plotted, see the text for a description. The non-dimensional parameters are Λ = 0, ξ+ = 0.027, ξ− = 0.002, ρ∗

= 1, δ = 0.03, β = 0.001, p = 20,
ϵ = 0.03,∆t = 1.25 × 10−7 and hmin = 2.8 × 10−3 .
Ehrlich–Schwoebel (ES) barrier. We note that none of the instabil-
ities presented here occur in the absence of the ES barrier.

Similar to the island dynamicsmodel described in Section 2, we
consider a domain Ω on a plane containing a sequence of steps
and terraces in which the steps are described by curves Γi (need
not to be closed), cf. the top graph in Fig. 3. The only assumption
that differs from the island dynamics model in Section 2, is the far-
field boundary condition.More specifically, we assume the adatom
density is periodic in both horizontal and vertical directions. It then
follows that the non-dimensional BCF equations for step trains are

−∆̂ρi = Λ− µ2ρi, in Ω̂i(t̂) (23)

−ξ+∇̂ρi · ni = ρi − ρ∗(1 + δκ̂i) on Γ̂i(t̂) (24)

ξ−∇̂ρi−1 · ni = ρi−1 − ρ∗(1 + δκ̂i) on Γ̂i(t̂) (25)

V̂i = −∇̂ρi · ni + ∇̂ρi−1 · ni + ∇̂ŝi · (β∇̂ŝi κ̂i) on Γ̂i(t̂). (26)

Here all variables and nondimensional parameters are defined as
in Section 2.2.

5.2.1. Linear stability results for step meandering
Through a linear stability analysis, Bales and Zangwill [10]

first showed that ES barrier induces step meandering that is,
straight steps are susceptible to instabilities. Because of an
effective step–step repulsion, the meander can be most easily
accommodated if the steps meander in phase. In the context of the
linear analysis, this means that the in-phase meander is the mode
with the largest growth rate. The growth rate ω(ℓ) in terms of the
wave number ℓ is presented in Appendix D for the case without
desorption. Following the analysis in [29], setting ∂ω(ℓ)

∂ℓ
= 0, and

solving for the fluxΛ, we find a fluxΛm whichuniquely determines
the most unstable wavelength λm. The explicit form of such flux is
presented in a supplementary material.
5.2.2. Phase-field model revisited for step trains
We present the phase-field formulation for the step trains

without the far-field flux as follows:

∂tφ
ϵ
− ∇s · (β∇sk)|∇φϵ |

= ∇ · (M (φϵ, ϵ)∇ρϵ)+Λ− µ2ρϵ (27)
αϵ2 (∂tφ

ϵ
− ∇s · (β∇sk)|∇φϵ |)

= ϵ2∆φϵ − G′(φϵ)+
ϵ

ρ∗δ
(ρϵ − ρ∗) (28)

where ρϵ = ρϵ(x, y, t; ϵ) is the approximated adatom density.
To simulate an infinite step train, we assume that ρϵ is periodic

in both coordinates and φϵ is quasi-periodic, i.e., φϵ is periodic in
the y-direction and in the x-directionφϵ(xleft, y) = φϵ(xright, y)+N ,
in which the computational domain is define as [xleft, xright] ×

[ydown, yup], and N is the total number of steps. Under this
assumption, as a step moves out of the domain at the right, it re-
enters the domain from the left and grows in height by one atomic
level.

5.2.3. Match to the linear stability result
We first use linear stability theory to validate the numerical

scheme. To this end we consider a periodic step placed in a quasi-
periodic domain defined by [−0.5, 0.5] × [−2, 2]. In this setup,
the terrace width is equal to the domain width L = 1. Using the
parameters δ = 0.03, ρ∗

= 1.0, ξ− = 0.1, ξ+ = 1.0, β = 0, we
find the flux such the most unstable wavelength λm = 4 is Λm =

0.624782. Computationally,∆t = 2 × 10−4 and ϵ = 0.03. We use
3 levels of mesh refinement with grid size hmax = 3.125 × 10−2

on the coarsest mesh and grid size hmin = 3.90625 × 10−3 at
the finest level. There are approximately 6 computational nodes
across the interface on the finest mesh. The straight step is initially
perturbed by small amplitudes with two different wavelengths:
λ = 4 and λ = 1. As shown in Fig. 13(a), the steps synchronize
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very quickly and then meander with a growth rate that coincides
very well with the linear stability theory as seen in Fig. 13(b). In
Time

F
lu

x 
am

pl
ifi

es
 th

e 
5t

h 
m

od
e

–1

–0.5

0

0.5

1

–1 –0.5 0 0.5 1

17

18

19

20

21

22

23

24

25

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018

a

b

Fig. 12. Controlling the shape of a small island with deposition flux. (a). The
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the shape of the island is plotted versus time. The non-dimensional parameters are
ξ+ = 0.0256, ξ− = 0.002, ρ∗

= 1, δ = 0.02, β = 0.0, p = 20, ϵ = 1.25 × 10−2 ,
∆t = 2 × 10−7 and hmin = 9.765625 × 10−4 .

Fig. 13(b) the amplitude of the step perturbation is plotted as a
function of time in a log-linear scale. The predicted growth rate
based on the numerical data is about 0.127852 which matches
with the linear theory (Eq. (D.1), ω(2π/4,Λm) = 0.127853) very
well. To determine the numerical perturbation amplitude, we first
find the mean of the interface position. This is done by averaging
of the x-coordinate of all points on the 0.5 contour line of the
phase variable φ. The amplitude is the maximum deviation from
all points along the 0.5 contour line relative to the interface mean.

5.2.4. Meandering in the long wavelength regime
Having validated the numerical method with linear stability

theory, we next turn to the nonlinear evolution. We first consider
the case in which the most unstable wavelength is much longer
than the inter-terrace distance: λm/L = 4. We used the exact
same computational domain, initial data and parameters as those
in Section 5.2.3. To access the nonlinear region, the simulation
was run to a much longer time t = 200; the results are shown
in Fig. 14. We observe: (i) endless growth of the amplitude,
(ii) the forward and the backward meander are no longer



Z. Hu et al. / Physica D 241 (2012) 77–94 85
X

Y

X

Y
0 1 2 3 4 5 6 7 8 9

10
–1.5

10
–1.4

10
–1.3

10
–1.2

10
–1.1

Time

A
m

pl
itu

de

Numerical Data
Fitted line with slope=0.127852

Time = 0

–2

–1

0

1

2

–1.5 –1 –0.5 0 0.5 1 1.5

Time = 9

–2

–1

0

1

2

–1.5 –1 –0.5 0 0.5 1 1.5

a

b
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symmetric, and (iii) the backward meander creates a region with
finite slope, which is defined as a plateau by Gillet et al. [41]. Also,
we find out that at the late stage, the growth rate of the amplitude
is t0.4981. These results quantitativelymatchwith Pierre-Louis et al.
[40–42], in which the growth rate is predicted to be t0.5 based on
a local amplitude equation. A qualitatively similar result was also
observed by Haußer & Voigt [39].

5.2.5. Meandering in the short wavelength regime
We now move on to the regime in which the most unstable

wavelength is comparable to the inter-terrace distance. In this
case, the nonlinear behavior of steps is not predictable by the local
amplitude equation.

• Existence of a steady-state. In Fig. 15, the parameters are selected
such that the most unstable wavelength λm = 1 and is equal
to the inter-terrace distance, i.e. L/λm = 1. At early times, the
growth of the amplitude follows the prediction given by the
linear stability theory, but starts to level off and reaches to a
steady state at late times. We remark that, Haußer & Voigt [39]
reported the existence of a steady-statewhen themost unstable
wavelength is much smaller than the inter-terrace distance
(i.e., L/λm = 5) and ξ+/ξ− = 100 which is 10 times bigger
than what we used.

• Formation of a vacancy island. Using the same L/λm ratio, one
may observe a different morphology if a large amplitude is
assumed initially. Taking the same parameters as in Fig. 15,
the evolution from a large amplitude initial condition is shown
in Fig. 16. We observe the formation of a mushroom, pinch
off, and the appearance of a vacancy island. Shortly after
the island forms, it fills due to the adatom attachment from
deposition and diffusion on the terraces. Finally growth is
stabilized. We remark that Haußer & Voigt [39] observed
a similar morphological evolution. Since they used a front-
tracking method which breaks down at pinch-off, they did not
report the behavior following by the pinch-off. Other initial
amplitudes were also simulated, and we found that at the
final stage, the amplitude tends to stabilize at the same value
independent of the initial amplitude, though the dynamics to
reach the steady-state could be dramatically different. More
specifically, the final amplitude for the case showing in Fig. 16 is
the same as the case showing in Fig. 15, and the value is around
0.15.

• Coarsening. Lastly, we report the existence of coarsening due to
competition among different wavelengths. The initial condition
we adopt is a perturbed sinusoidal curve with two different
wavelengths: λ1 = 1 and λ2 = 4, and the inter-terrace distance
is L = 1. The parameters have been chosen such that the most
unstable wavelength is λm = λ1 = 1. As seen in Fig. 17(a),
coarseningmay occur in the nonlinear regime. In Fig. 17(a), two
backward meanders (areas with negative amplitude relative to
the center of the step) join with one forward meander (areas
with positive amplitude relative to the center of the step) and
form a new backward meander. This is comparable to the
finding by Haußer & Voigt [50] in their study of geometric
Ginzburg–Landau theory for faceted crystals, in which they
reported coarsening via kink–anti-kink–kink coalescence. The
kinks are the backward meanders and the antikinks are the
forward meanders. We think the coarsening is due to the
competition of twowavelengths in the nonlinear regime. Recall
that in Section 5.2.5, we showed that the growth of λ1 = λm =

1 will become steady in the nonlinear regime. In Fig. 17(b),
the blue curve with circles depicts the growth of λ1 = λm =
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1 (similar to the curve shown in Fig. 15, but the domain in
y-direction is 4 times longer here). On the contrary, the
amplitude of λ2 = 4 will keep growing, and the amplitude
is plotted in Fig. 17(b) by a black curve with dots. Note that
the most unstable wavelength λm = 1 in this simulation.
Comparing the blue curve with the black one, one notices that
the growth of λ1 = 1 dominates the growth of step initially as
predicted by the linear theory. An example of the interface is
shown in the inset at t = 0.8, and clearly λ = 1 dominates the
growth. However, at later times (for example, at t = 2.6), λ2 =

4 starts to dominate the growth by maintaining a moderate
growth rate. This turning point is where the whole process of
coarsening starts. Another example of the interface is shown
in the second inset at t = 4. Observe that the second forward
meander (counted from below) is about to disappear, and the
first and second backward meanders are going to join together.
This will eventually lead to a configuration at t = 8 as shown in
Fig. 17(a). Since the growth of λ2 = 4 tends to dominate at later
times, and the domain length in y-direction equals 4, we expect
only one backward meander left at the last stage. We remark
that this regime is different from the long wavelength regime
investigated in [39] in which they did not observe coarsening
for isotropic edge energies. We also did not find coarsening in
the long wavelength regime (i.e., λm > L). This is because the
growth of some λm (for example, λm = 4, as shown in Fig. 14)
will not only dominate the growth initially (according to the
linear stability theory), but also dominate the growth at later
times (following the linear amplitude equation). However, in
the short wavelength regime (i.e., λm ≤ L), for example, as
shown in Fig. 15, the amplitude stops growing at later times,
while amplitude ofλ > λm keeps growing and dominates, leads
to coarsening, and dominates the morphology eventually.

To make the coarsening clearer, we perform the following
comparison experiments. On a domain of size [−0.5, 0.5] ×

[−8, 8], we simulate the growth of a perturbed sinusoidal curve
with 5 wavelengths: λ = 1, 2, 4, 8, and 16. In case I, parameters
are selected such that λm = 4, cf. Fig. 18(a), and coarsening does
not happen in this case. In case II, however, parameters are chosen
such that λm = 1, cf. Fig. 18(b), and coarsening does happen in
this case. To see the process of coarsening clearly, trajectories of
backward meander and forward meander positions obtained by
numerical simulation are plotted in Fig. 18, in which a forward
meander is plotted by a plus sign, and a backward meander is
plotted by a star. We observe from case I that (i) the amplitude
of λ = 1 and 2 does not grow at all and disappears right away,
and this is because λm = 4 > λ = 1, 2; (ii) λ = λm =

4 dominates the morphology at later times. However, in case II,
(i) the amplitude of λ = 1 and 2 does grow initially, and this is
because that λm = 1 ≤ λ = 1, 2; (ii) coarsening starts to happen
around t = 3.2, where backward meanders (two trajectories
of stars) start to join with forward meanders (one trajectory of
pluses) and formnewbackwardmeanders (one trajectory of stars);
(iii) this process continues until only 4 pairs of backwardmeanders
and forward meanders left. We remark that the final morphology
of case II is similar to that of the case I.

6. Conclusions

In this paper, we have presented a new phase-field model
including the combined effects of edge diffusion, the Ehrlich–
Schwoebel barrier and desorption to simulate epitaxial growth.
A new free energy function together with a correction to the
initial phase variable profile was given to efficiently capture the
morphological evolution when a large deposition flux is imposed
for island dynamics. A formal matched asymptotic analysis was
given in the appendix to show that the phase-field model
converges to the classical BCFmodelwhen the interfacial thickness
vanishes. The phase-field model was then used to simulate the
growth of islands and perturbed step trains. We observed that
the island radius is well predicted by linear theory and that linear
theory over-predicts the growth of the perturbation. Edge diffusion
has also been investigated together with the Ehrlich–Schwoebel
barrier. We conclude that the new phase-field model provides
accurate solution to simulate the effect of edge diffusion. We
also simulated the growth of a perturbed island under a variable
deposition flux to demonstrate in the nonlinear regime the idea of
shape control proposed by Hu et al. [29] based on linear stability
theory.

Moreover, to demonstrate the versatility of the proposedphase-
field model, we also investigated the linear and nonlinear regimes
for step trains concentrating on the step meandering instability.
We observed similar nonlinear behavior as Haußer & Voigt [39]
when the meander wavelength is large compared to the terrace
width. However, we found coarsening could occur when the
meander wavelength is comparable to the terrace width.

In the future, since stress can play a critical role in island
dynamics and step flow, we plan to investigate the effects of the
elastic interactions. Recently, Haußer & Voigt [51] proposed a new
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Fig. 15. The evolution of meandering in the short wavelength regime with λm = 1 and λm/L = 1. Note that 3 periods are shown in x-direction, and the step is moving
from left to right. (a) The 0.5 contour lines of the step at different times demonstrate the existence of a steady-state. (b) The amplitude the interface is plotted versus time in
log-linear scale. It is clear that the steps evolve to a steady shape and spacing. The parameters are δ = 0.003, ρ∗

= 1.0, ξ− = 0.1, ξ+ = 1.0, β = 0,Λ = 0.798917, L = 1,
domain [−0.5, 0.5] × [−0.5, 0.5], ϵ = 0.015,∆t = 2 × 10−4 and hmin = 1.953125 × 10−3 .
Fig. 16. Time evolution of meandering in the short wavelength regime. Note that 3 periods are shown in the x-direction, and the step is moving from left to right. (a) The
0.5 contour lines of the step at different times demonstrate the mushroom formation, pinch off, formation of vacancy island, filling of vacancy island and stabilization of
amplitude. The parameters are δ = 0.003, ρ∗

= 1.0, ξ− = 0.1, ξ+ = 1.0, β = 0,Λ = 0.798917, L = 1, domain [−0.5, 0.5] × [−0.5, 0.5], ϵ = 0.015,∆t = 2 × 10−4 and
hmin = 1.953125 × 10−3 .
sharp-interface model by extending the BCF model to incorporate
coupling among the evolving steps, the transport of atoms on
the terraces and along the step edges, bulk atomic diffusion and
elasticity. This model should provide a basis from which a phase-
field model may be developed. We can then compare nonlinear
simulations with the linear stability theory presented in [52] in
which a linear stability analysis for step meandering instability
with elastic interactions was studied.
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Fig. 17. Time evolution of meandering in the short wavelength regime. Note that 3 periods are showing in x-direction, and the step is moving from left to right. (a) The 0.5
contour lines of the step at different times demonstrate the existence of coarsening. (b) The amplitude of the interface is plotted versus time in semi-log scale. The parameters
are δ = 0.003, ρ∗

= 1.0, ξ− = 0.1, ξ+ = 1.0, β = 0,Λ = 0.798917, L = 1, domain [−0.5, 0.5] × [−2, 2], ϵ = 0.015,∆t = 2 × 10−4 and hmin = 1.953125 × 10−3 .
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Appendix A. Matched asymptotic expansion

By extending the analysis in [31], we provide a matched asym-
ptotic analysis to show the formal convergence of Eqs. (13)–(14)
to Eqs. (6)–(12) as the interfacial thickness ϵ → 0.

A.1. Preliminaries

We first introduce an orthogonal curvilinear coordinate system
(r̃i, si) in a neighborhood of the interface Γi(ϵ), i.e., r̃i =

r̃i(x, y, t; ϵ) := the signed distance of (x, y) from Γi(ϵ), such that
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Fig. 18. Trajectories of backwardmeander and forwardmeander positions are plotted versus time. (a) δ = 0.03,Λ = 0.62478, and ϵ = 0.03. (b) δ = 0.003,Λ = 0.798917,
and ϵ = 0.015. The parameters are ρ∗

= 1.0, ξ− = 0.1, ξ+ = 1.0, β = 0, L = 1, domain [−0.5, 0.5] × [−8, 8],∆t = 2 × 10−4 and hmin = 1.953125 × 10−3 .
r̃i > 0 ∈ Ωi−1 and r̃i < 0 ∈ Ωi for i = 1, . . . ,N; si =

si(x, y, t; ϵ) := the arc length along Γi(ϵ) to the projection of (x, y)
onto Γi(t). Variables ω and φ in Eqs. (13)–(14) are transformed to
the new coordinate system:

ω(x, y, t; ϵ) = ω̃(r̃i, si, t; ϵ),

φ(x, y, t; ϵ) = φ̃(r̃i, si, t; ϵ).

Introducing a stretched variable zi :=
r̃i
ϵ
for i = 1, . . . ,N , we define

P(zi, si, t; ϵ) := ω̃(r̃i, si, t; ϵ),

Φ(zi, si, t; ϵ) := φ̃(r̃i, si, t; ϵ).

In addition, the following Taylor expansion approximations for
small ϵ are assumed to be valid in three regions around each
interface Γi(ϵ):
(i) Away from Γi(ϵ)

ω(x, y, t; ϵ) = ω0(x, y, t)+ ϵω1(x, y, t)+ · · · , (A.1)
φ(x, y, t; ϵ) = φ0(x, y, t)+ ϵφ1(x, y, t)+ · · · , (A.2)

(ii) Matching region (overlapping domain)

ω̃(r̃i, si, t; ϵ) = ω̃0(r̃i, si, t)+ ϵω̃1(r̃i, si, t)+ · · · ,

i = 1, . . . ,N , (A.3)

φ̃(r̃i, si, t; ϵ) = φ̃0(r̃i, si, t)+ ϵφ̃1(r̃i, si, t)+ · · · ,

i = 1, . . . ,N , (A.4)

(iii) Inner region near Γi(ϵ)

P(zi, si, t; ϵ) = P0(zi, si, t)+ ϵP1(zi, si, t)+ · · · ,

i = 1, . . . ,N , (A.5)
Φ(zi, si, t; ϵ) = Φ0(zi, si, t)+ ϵΦ1(zi, si, t)+ · · · ,

i = 1, . . . ,N . (A.6)

Eqs. (A.1)–(A.4) are called outer expansions while Eqs. (A.5)–(A.6)
are called inner expansions.We assume that these expansions hold
simultaneously in someoverlapping region and represent the same
functions, so the following matching conditions hold:

lim
r̃i→±0

ω̃0(r̃i, si, t) = lim
zi→±∞

P0(zi, si, t), i = 1, . . . ,N ,

lim
r̃i→±0

∂r̃i ω̃0(r̃i, si, t; ϵ) = lim
zi→±∞

∂ziP1(zi, si, t), i = 1, . . . ,N ,
lim
r̃i→±0

φ̃0(r̃i, si, t) = lim
zi→±∞

Φ0(zi, si, t), i = 1, . . . ,N ,

lim
r̃i→±0

∂r̃i φ̃0(r̃i, si, t) = lim
zi→±∞

∂ziΦ1(zi, si, t), i = 1, . . . ,N .

Here the functions ωj, ω̃j, Pj, φj, φ̃j, Φj, j = 0, 1, 2, . . . , need not to
be smooth for r̃i = 0. Only the existence of the one-sided limits
at r̃i = 0 is required. In the new coordinates (r̃i, si), the time
derivative, gradient and the Laplacian operators take the following
forms:

∂t = ∂t + ∂t r̃i∂r̃i + ∂tsi∂si
∇ = ∇ r̃i∂r̃i + ∇si∂si
∆ = ∂r̃i r̃i + |∇si|2∂sisi +∆r̃i∂r̃i +∆si∂si .

Let ni = ni(si, t; ϵ), vi = vi(si, t; ϵ) and κi = κ(si, t; ϵ) denote the
normal, the normal velocity and the curvature, inwhich the normal
is pointing from the upper terrace to the lower terrace. Noting that
∂t r̃i = −vi and ∆r̃i = κi, for i = 1, . . . ,N , we find the time
derivative, gradient and the Laplacian operators in the stretched
coordinates (zi, si):

∂t = ∂t −
1
ϵ
vi∂zi + ∂tsi∂si

∇ =
1
ϵ
∇ r̃i∂zi + ∇si∂si

∆ =
1
ϵ2
∂zizi + |∇si|2∂sisi +

1
ϵ
κi∂zi +∆si∂si .

A.2. Outer approximation

Inserting the outer expansions Eqs. (A.1)–(A.4) into Eqs.
(13)–(14) and gathering the leading order coefficients of ϵ, we get
O(1):

∂tφ0 − βκss|∇φ0| = ∇ · (M(φ0, ·)∇ (ω0 + K(φ0, r, ·)))+Λ

−µ2 ω0 + K(φ0, r, ·)+ ρ∗

, (A.7)

0 = −G′(φ0). (A.8)

Eq. (A.8) has 3 solutions around each Γi(ϵ), but only two of them
satisfy the initial conditions and they are φ0 = i− 1 and φ0 = i for
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Γi(ϵ), i = 1, . . . ,N . It then follows thatM(φ0, ϵ) = 1 for all ϵ > 0.
Now combining this with Eq. (A.7), we obtain the sharp interface
governing equations Eqs. (6)–(7)

−∆ω0,i = Λ− µ2(ω0,i + ρ∗) inΩi,

−∆ω0,0 = Λ− µ2(ω0,0 + ρ∗)+ Ψ


1
r

− µ2r


inΩ0,

for i = 1, . . . ,N as desired.

A.3. Taylor expansion of the mobility M(φ, ϵ)

Based on the definition of the mobility M(φ, ϵ), we adopt the
following Taylor expansion forM(φ, ϵ) at the inner region:

M(Φ(ϵ), ϵ) = ϵ
1

ζ (Φ0)
− ϵ2


ζ ′(Φ0)Φ1

ζ (Φ0)2
+

1
ζ (Φ0)2


+ O(ϵ3).

(A.9)

A.4. Taylor expansion of ∇s · (β∇sκ)|∇φ|

Recall that in the phase-field formulation, the normal n can be
evaluated through n = −

∇φ

|∇φ|
, and the surface gradient ∇s =

∇ − (n̂ ⊗ n̂)∇ = ∇ − n̂(n̂ · ∇). It follows that in the curvilinear
coordinate system (zi, si), one has

∇si = (1 − ϵziκi)si∂si .

Letting the curvature κ be κ = −∇ ·n and setting β to be constant,
it follows that

∇si · (β∇siκi) = β∇si · ∇siκi = β

∂sisiκi + ϵκ

(1)
i + O(ϵ2)


,

where

κ
(1)
i = ∂sisisi


∂siφ

∂ziφ


−

1
2
∂sisi∂zi


∂siφ

∂ziφ

2

− 2ziκi∂sisiκi − ziκ2
i .

Therefore,

∇si · (β∇siκi)|∇Φ| = β


1
ϵ
∂sisiκi|∂ziΦ0|

+ κ
(1)
i |∂ziΦ0| + ∂sisiκi|∂ziΦ1| + O(ϵ)


. (A.10)

A.5. Inner approximation

Plugging the inner expansions Eqs. (A.5)–(A.6) into Eqs.
(13)–(14), using Eq. (A.9) and (A.10), and dividing Eq. (14) by ϵ, one
obtains the following equations at
O( 1

ϵ
):

−vi∂ziΦ0 − β∂sisiκi|∂ziΦ0|

= ∂zi


1

ζ (Φ0)
∂zi

P0 + ΨΠN

j=1(1 − Φ0/j)R1

, (A.11)

0 = ∂ziziΦ0 − G′(Φ0), (A.12)

O(1):

∂tΦ0 + ∂tsi∂siΦ0 − vi∂ziΦ1 − β∂sisiκi|∂ziΦ1|

= ∂zi


∂zi

P1 + ΨΠN

j=1(1 − Φ0/j)zi − ΨΦ1R1


ζ (Φ0)

−
1 + ζ ′(Φ0)Φ1

ζ (Φ0)2
∂zi

P0 + ΨΠN

j=1(1 − Φ0/j)R1

+ κi
∂zi

P0 + ΨΠN

j=1(1 − Φ0/j)R1


ζ (Φ0)

+Λ− µ2 P0 + ΨΠN
j=1(1 − Φ0/j)R1 + ρ∗


, (A.13)

−α

vi∂ziΦ0 + β∂sisiκi|∂ziΦ0|


= κi∂ziΦ0 + ∂ziziΦ1 − Φ1G′′(Φ0)

+
1
ρ∗δ


P0 + ΨΠN

j=1(1 − Φ0/j)R1

. (A.14)

By the matching condition limzi→±∞Φ0 = limr̃i→±0 φ̃0, and the
solution to Eq. (A.8), φ0 = i − 1 in Ωi−1 and φ0 = i in Ωi, we get
limzi→+∞Φ0 = limr̃i→+0 φ̃0 = i − 1 as well as limzi→−∞Φ0 =

limr̃i→−0 φ̃0 = i. Now let ψ = ψ(zi) be the unique solution to the
differential equation (A.12), we get

ψ ′′(zi)−
∂G(ψ(zi))
∂ψ

= 0, ψ(+∞) = i − 1,

ψ(0) = i −
1
2
, ψ(−∞) = i.

(A.15)

Applying a centering condition [53], one obtains from Eq. (A.15)

Φ0(zi, si, t) = ψ(zi)

Therefore Φ0 only depends on zi. Furthermore since limzi→±∞

∂ziziΦ0(zi) = 0 (which is a consequence of limzi→±∞ G′(Φ0) = 0),
limzi→+∞Φ0 = i − 1 and limzi→−∞Φ0 = i, it follows

lim
zi→±∞

∂ziΦ0(zi) = 0. (A.16)

Multiplying Eq. (A.12) by ∂ziΦ0, integrating from −∞ to z and
using limzi→+∞Φ0 = i − 1, limzi→−∞Φ0 = i as well as Eq. (A.16),
one arrives at

∂ziΦ0 = −


2G(Φ0). (A.17)

By definition and the centering condition one also has

Φ0(0, si, t) = Φ0(0) =
1
2
. (A.18)

Also, according to Eq. (A.11), there exists a constant c = c(si, t)
such that

∂zi

P0 + ΨΠN

j=1(1 − Φ0/j)R1


=

c + (β∂sisiκi − vi)Φ0


ζ (Φ0). (A.19)

Substituting (A.19) into (A.13) leads to

− vi∂ziΦ1 − β∂sisiκi|∂ziΦ1|

= ∂zi


∂zi

P1 + ΨΠN

j=1(1 − Φ0/j)zi − ΨΦ1R1


ζ (Φ0)

−
1 + ζ ′(Φ0)Φ1

ζ (Φ0)


c + (β∂sisiκi − vi)Φ0


+κi


c + (β∂sisiκi − vi)Φ0


+Λ− µ2 P0 + ΨΠN

j=1(1 − Φ0/j)R1 + ρ∗


(A.20)

Note that by the matching condition limzi→±∞ ∂ziΦ1 = limr̃i→±0

∂r̃i φ̃0 = 0 and that limzi→±∞ ζ (Φ0(zi)) = 0 (with 1/ζ (Φ0) grow-
ing exponentially), one gets the following asymptotic behavior of
Eq. (A.20)

lim
zi→±∞


∂ziP1 + ΨΠN

j=1(1 − Φ0/j)


= lim
zi→±∞


(1 + ζ ′(Φ0)Φ1)(c + (β∂sisiκi − vi)Φ0)


= c + (β∂sisiκi − vi)(1/2 ∓ 1/2), (A.21)
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where the special form of ζ such that limzi→±∞ ζ
′(Φ0(zi)) = 0 and

the boundedness ofΦ1 was used.
Using the matching condition limzi→±∞ ∂ziP1(zi, si, t) =

limr̃i→±0 ∂r̃i ω̃0(r̃i, si, t) in Eq. (A.21), we get

∇ω0,i · ni = c + (β∂sisiκi − vi), (A.22)

∇ω0,i−1 · ni = c, (A.23)

∇ω0,0 · n1 + Ψ = c, (A.24)
for i = 2, . . . ,N , which are equivalent to the sharp interface
velocity Eqs. (12)-(12)
vi = −∇ω0,i · ni + ∇ω0,i−1 · ni + ∇si · (β∇siκi)

on Γi,

v1 = −∇ω0,1 · n1 + ∇ω0,0 · n1 + ∇s1 · (β∇s1κ1)+ Ψ

on Γ1,

for i = 2, . . . ,N .
We now turn to use Eq. (A.14) to solve for Φ0. Differentiating

Eq. (A.14) with respect to z and solving for

∂ziP1 + ΨΠN

j=1

(1 − Φ0/j)

, then substituting the resultant expression into

Eq. (A.19), we get
− ∂zi


α(vi − β∂sisiκi)∂ziΦ0 + ∂ziziΦ1 + κi∂ziΦ0 − Φ1G′′(Φ0)


=

1
ρ∗δ


c − (β∂sisiκi − vi)Φ0


ζ (Φ0). (A.25)

Multiplying Eq. (A.25) by Φ0 − (i − 1), and integrating along the
z-axis, one gets:

−

∫
∞

∞

∂zi

α(vi − β∂sisiκi)∂ziΦ0 + ∂ziziΦ1

+ κi∂ziΦ0 − Φ1G′′(Φ0)

(Φ0 − (i − 1)) dzi

=
1
ρ∗δ

∫
∞

∞


c − (β∂sisiκi − vi)Φ0


× ζ (Φ0) (Φ0 − (i − 1)) dzi. (A.26)

Using Eq. (A.17), we have

−

∫
∞

∞

∂zi

(κi + α(vi − β∂sisiκi))∂ziΦ0


(Φ0 − (i − 1)) dzi

=

∫ i

i−1


κi + α(vi − β∂sisiκi)


2G(φ)dφ. (A.27)

Using integration by parts and Eq. (A.16), we find

−

∫
∞

∞

∂zi

∂ziziΦ1 − Φ1G′′(Φ0)


(Φ0 − (i − 1)) dzi

= lim
zi→−∞

Φ0

∂ziziΦ1 − Φ1G′′(Φ0)


+

∫
∞

∞

∂ziΦ0

∂ziziΦ1 − Φ1G′′(Φ0)


dzi. (A.28)

Eq. (A.14) and the matching condition limzi→±∞ P0 = limr̃i→±0 ω̃0
imply that

lim
zi→−∞

Φ0

∂ziziΦ1 − Φ1G′′(Φ0)


= −

1
ρ∗δ

ω0,i,

for i = 1, . . . ,N. (A.29)
Next, using integration by parts twice and Eq. (A.16), one gets∫

∞

∞

∂ziΦ0

∂ziziΦ1 − Φ1G′′(Φ0)


dzi

= ∂ziΦ0∂ziΦ1
∞
−∞

− Φ1∂ziziΦ0
∞
−∞

+

∫
∞

∞

Φi∂zi(∂ziziΦ0 − G′(Φ0))dzi

= 0. (A.30)
Wehave evaluated all terms on the left-hand-side of Eq. (A.26).We
next evaluate the right-hand-side of Eq. (A.26).

1
ρ∗δ

∫
∞

∞


c − (β∂sisiκi − vi)Φ0


ζ (Φ0) (Φ0 − (i − 1)) dzi

=
1
ρ∗δ

∫
∞

∞


c − (β∂sisiκi − vi)Φ0


×
ζ (Φ0)∂ziΦ0

∂ziΦ0
(Φ0 − (i − 1)) dzi

=
1
ρ∗δ


c
∫ i

i−1

ζ (φ)
√
2G(φ)

φ dφ + (β∂sisiκi − vi)

×

∫ i

i−1

ζ (φ)
√
2G(φ)

φ2 dφ

. (A.31)

Putting Eqs. (S12-1)–(S12-5) together, we get

− ω0,i + ρ∗δ

κi + α(vi − β∂sisiκi)

 ∫ i

i−1


2G(φ) dφ

= c
∫ i

i−1

ζ (φ)
√
2G(φ)

φ dφ + (β∂sisiκi − vi)

∫ i

i−1

ζ (φ)
√
2G(φ)

φ2 dφ,

(A.32)

on Γi for i = 1, . . . ,N .
Similarly, multiplying Eq. (A.25) by i − Φ0 will eventually lead

to

ω0,i−1 − ρ∗δ

κi + α(vi − β∂sisiκi)

 ∫ i

i−1


2G(φ) dφ

= c
∫ i

i−1

ζ (φ)
√
2G(φ)

(i − φ) dφ

+ (β∂sisiκi − vi)


−

∫ i

i−1

ζ (φ)
√
2G(φ)

φ2 dφ

+

∫ i

i−1

ζ (φ)
√
2G(φ)

φ dφ

, (A.33)

on Γi for i = 2, . . . ,N and

ω0,0 + Ψ R1 − ρ∗δ

κ1 + α(v1 − β∂s1s1κ1)

 ∫ 1

0


2G(φ) dφ

= c
∫ 1

0

ζ (φ)
√
2G(φ)

(1 − φ) dφ

+ (β∂s1s1κ1 − v1)


−

∫ 1

0

ζ (φ)
√
2G(φ)

φ2 dφ

+

∫ 1

0

ζ (φ)
√
2G(φ)

φ dφ


on Γ1. (A.34)

Now we choose G(φ) such that∫ i

i−1


2G(φ) dφ = 1, for i = 1, . . . ,N. (A.35)

Then applying Eqs. (A.22)–(A.24), and (A.35) in Eqs. (A.32)–(A.34),
we get

−ω0,i + ρ∗δκi = (∇ω0,i · ni)

∫ i

i−1

ζ (φ)
√
2G(φ)

φ dφ

+ (β∂sisiκi − vi)


ρ∗δα −

∫ i

i−1

ζ (φ)
√
2G(φ)

(i − φ)φ dφ


on Γi,

ω0,i−1 − ρ∗δκi = (∇ω0,i−1 · ni)

∫ i

i−1

ζ (φ)
√
2G(φ)

(i − φ) dφ
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+ (β∂sisiκi − vi)


−ρ∗δα +

∫ i

i−1

ζ (φ)
√
2G(φ)

(i − φ)φ dφ


on Γi,

(ω0,0 + Ψ R1)− ρ∗δκ1 = (∇ω0,0 · n1 + Ψ )

×

∫ 1

0

ζ (φ)
√
2G(φ)

(1 − φ) dφ

+ (β∂s1s1κ1 − v1)


−ρ∗δα +

∫ 1

0

ζ (φ)
√
2G(φ)

(1 − φ)φ dφ


on Γ1,

for i = 2, . . . ,N .
Now choosing

α =
1
ρ∗δ

∫ i

i−1

ζ (φ)
√
2G(φ)

(1 − φ)φ dφ for i = 1, . . . ,N, (A.36)

we get

−ω0,i + ρ∗δκi = (∇ω0,i · ni)

∫ i

i−1

ζ (φ)
√
2G(φ)

φ dφ,

ω0,i−1 − ρ∗δκi = (∇ω0,i−1 · ni)

∫ i

i−1

ζ (φ)
√
2G(φ)

(i − φ) dφ,

(ω0,0 + Ψ R1)− ρ∗δκ1

= (∇ω0,0 · n1 + Ψ )

∫ 1

0

ζ (φ)
√
2G(φ)

(1 − φ) dφ,

for i = 2, . . . ,N .
Finally, let us define ζ (φ) = γφpG(φ), where γ and p satisfy

the following equations∫ i

i−1

ζ (φ)
√
2G(φ)

φ dφ = ξ+,∫ i

i−1

ζ (φ)
√
2G(φ)

(i − φ)φ dφ = ξ−.

(A.37)

We now get the boundary conditions Eqs. (8)–(10)

−ξ+∇ω0,i · ni = ω0,i − ρ∗δκi on Γi,
ξ−∇ω0,i−1 · ni = ω0,i−1 − ρ∗δκi on Γi,
ξ−∇ω0,0 · n1 = ω0,0 − ρ∗δκ1 + Ψ (R1 − ξ−) on Γ1,

for i = 2, . . . ,N .

Appendix B. Numerical calculation of the surface Laplacian of
the curvature

In this section, we outline the computation of the surface
Laplacian of the curvature. We start with the calculation for the
normal vectors at a cell vertex, which is done by differentiating the
phase variable in the four surrounding cells [54]. For example, the
normal vector at the top right vertex of a cell centered at (i, j) is
given by

ni+ 1
2 ,j+

1
2

=


nx
i+ 1

2 ,j+
1
2
, ny

i+ 1
2 ,j+

1
2



=

 φx
i+ 1

2 ,j+
1
2

(φx
i+ 1

2 ,j+
1
2
)2 + (φ

y
i+ 1

2 ,j+
1
2
)2 + 10−8

,

φ
y
i+ 1

2 ,j+
1
2

(φx
i+ 1

2 ,j+
1
2
)2 + (φ

y
i+ 1

2 ,j+
1
2
)2 + 10−8

 ,
in which

φx
i+ 1

2 ,j+
1
2

=
φi+1,j − φi,j + φi+1,j+1 − φi,j+1

2∆x
,

φ
y
i+ 1

2 ,j+
1
2

=
φi,j+1 − φi,j + φi+1,j+1 − φi+1,j

2∆y
.

The curvature is calculated at cell centers from the four vertex-
centered normals that closest to the cell center [54]:

κi,j =
1

2∆x


nx
i+ 1

2 ,j+
1
2

− nx
i− 1

2 ,j+
1
2

+ nx
i+ 1

2 ,j−
1
2

− nx
i− 1

2 ,j−
1
2


+

1
2∆y


ny
i+ 1

2 ,j+
1
2

− ny
i+ 1

2 ,j−
1
2

+ ny
i− 1

2 ,j+
1
2

− ny
i− 1

2 ,j−
1
2


.

To calculate the surface Laplacian, we follow Xu and Zhao [55] and
write

∇s · ∇s = ∆−
∂2

∂n2
− κ

∂

∂n
= ∆− nD2n − κn · ∇,

in which D2 is the Hessian of the applied function. Finally, |∇φk
i,j| is

obtained at the cell center:

|∇φi,j| =
1
2


φi+1,j − φi−1,j

∆x

2

+


φi,j+1 − φi,j−1

∆y

2

.

Since we are dealing with a phase-field function, a cut-off function
is needed to ensure the calculation only applies around the
interface. A typical choice of such function is

f (φ) =


1, if φ ∈ [0.4, 0.6],
0, otherwise.

Therefore, the actual term appears in the numerical scheme is
f (φ)∇s · (β∇sκ)|∇φ| instead of ∇s · (β∇sκ)|∇φ| in Eqs. (13) and
(14). Putting this form back into the asymptotic analysis, one finds
that the effective edge diffusion is scaled by

 1
0 f (φ)dφ = 0.2, for

the function used above.

Appendix C. The phase-field initial condition

We outline the phase-field initial condition used in island
dynamic simulations. Let us first define the distance from any
point (x, y) in the domain to the center of the island to be
r(x, y), and define the island boundary by R(x, y; ℓ) = R(0)(1 +

P(0) cos(ℓθ(x, y))), where R(0) and P(0) are initial radius and
shape factor. Here ℓ is the wavenumber, and θ(x, y) is the
angle between the tangent at (x, y) and x-axis. As mentioned in
Section 5.1.1, the initial condition for the phase variable φ(x, y) at
(x, y) is

φ(x, y) = φ(r(x, y)) = φ0(r(x, y))+ ϵφ1(r(x, y)), (C.1)

where

φ0(r(x, y)) =
1
2

[
1 − tanh


r(x, y)− R(x, y; ℓ)

0.1
√
2/bϵ

]
,

φ1(r(x, y)) =
ωlinear

ρ∗δG′′ (φ0 (r(x, y)))
.

Here the parameter b is define in Eq. (15) andωlinear following from
the linear stability analysis by Hu et al. [29] is
(i) If 0 ≤ r(x, y) < R(x, y; ℓ), then

ωlinear = −
Λ

4
r2(x, y)+

ρ∗ (R(0)+ δ)

R(0)
+
ΛR(0) (R(0)+ 2ξ+)

4

+
2δρ∗(ℓ2 − 1)+Λ(R(0))2 (R(0)+ ξ+)

2(R(0))ℓ+1 (R(0)+ ℓξ+)

× (R(x, y; ℓ)− R(0))rℓ(x, y)

(ii) If R(x, y; ℓ) ≤ r(x, y) < 1, thenwe obtain the equation as given
in Box I.
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ωlinear = −
Λ

4
r2(x, y)+

Λ

2
ln (r(x, y))

+
4ρ∗ (δ + R(0))+Λ


(R(0))3 + 2ξ− − 2(R(0))2ξ−


− 2ΛR(0) ln (R(0))

4R(0)
+ C(R(x, y; ℓ)− R(0))(rℓ(x, y)+ r−ℓ(x, y)),

where

C =
(R(0))ℓ−1


2δρ∗(ℓ2 − 1)−Λ


R(0)− (R(0))3 + ξ− + (R(0))2ξ−


+ 2Ψ (R(0)+ ξ−)

2

R(0)+ (R(0))2ℓ (R(0)− ℓξ−)+ ℓξ−

 .

Box I.
Appendix D. Dispersion relation of step trains

Let L be the inter-terrace distance between steps, and ω(ℓ) be
the growth rate of the amplitude of wave number ℓ. Following the
analysis is [10], one finds

ω(ℓ) = −f1(ℓ, L, ξ−, ξ+, δ, ρ∗)− (ξ− − ξ+)Λf2(ℓ, L, ξ−, ξ+)

− f3(ℓ, β), (D.1)

for the case without desorption. Here

f1(ℓ, L, ξ−, ξ+, δ, ρ∗)

=
δℓ3ρ∗ (−2 + 2 cosh(ℓL)+ ℓ(ξ− + ξ+) sinh(ℓL))
ℓ(ξ− + ξ+) cosh(ℓL)+ (1 + ℓ2ξ−ξ+) sinh(ℓL)

f2(ℓ, L, ξ−, ξ+)

=
ℓ sinh( ℓL2 )


ℓL(L + 2(ξ− + ξ+)) cosh( ℓL2 )− 2(ξ− + ξ+) sinh( ℓL2 )


(L + ξ− + ξ+)


ℓ(ξ− + ξ+) cosh(ℓL)+ (1 + ℓ2ξ−ξ+) sinh(ℓL)


f3(ℓ, β) = βℓ4.

Using cosh(x) ≥ 1 for x ≥ 1, we note f1 is positive definite.
f2 is also positive definite though not obvious and f3 is positive
definite. Therefore, if ξ− > ξ+ (i.e., k− < k+), the growth of step
trains is always stable. Conversely, if ξ− < ξ+ (i.e., k− > k+),
morphologically unstable growth may occur.

Appendix E. Supplementary data

Supplementary material related to this article can be found
online at doi:10.1016/j.physd.2011.09.004.
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