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PDE-based approaches are used to obtain superresolution of images. Using level set method for area constraint geometric evolution
laws allows to remove pixelation in images without removing small-scale features. We compare mean curvature flow, surface
diffusion, and Willmore flow for this purpose.

1. Introduction

The goal of superresolution is to construct out of a given
low-resolution image an image with higher resolution.
Superresolution is a common problem in image processing
and numerous algorithms have been proposed [1]. Most
of these algorithms are based on interpolation and lead
to an improvement of the image but also to imperfect
reconstructions with false high-frequency components. For
interpolation methods based on PDEs, which are mostly
adapted from inpainting problems, we refer to [2–6]. These
approaches try to reconstruct the geometric properties
of the images by evolving their level curves. In order
to maintain fidelity to the original low-resolution image,
different approaches are used. A standard level set method to
modify pixel intensity which is based on evolution of mean
curvature flow ∂tφ = H‖∇φ‖, where φ is the intensity and
H the mean curvature, as used for example, in [7, 8] for
edge-preserving smoothing, noise removal, and other image
enhancement, smoothes away feature objects, as all level
curves are shortening and thus will not lead to appropriate
superresolution images. In [6], this is circumvented by
imposing constraints that preserve accuracy to the original
image using unchanging anchor pixels defining explicit
topology constraints. In [4], the problem is attacked from a
different point of view, by constraining the mean curvature
flow problem in order to preserve the area enclosed by
each level curve. We will follow this approach and extend

it to other geometric evolution problems of higher order.
Higher-order PDEs have been applied to various problems
in image processing, for example, [9–11]. They are, however,
not yet been used for superresolution. Only in [12] a higher-
order model based on a Cahn-Hilliard equation is applied to
superresolution of binary images, especially text.

The paper is organized as follows: in Section 2, we
describe a level set formulation for area conserving mean
curvature flow, surface diffusion, and Willmore flow. In
Section 3, we discuss an appropriate discretization which
conserves all level curves simultaneously. In Section 4, the
algorithms are applied to test problems. Thereby we start
from a given 256 × 256 image, lower the resolution, and use
bicubic interpolation to create an image that is again 256 ×
256. Our three area preserving evolution laws are applied
to this image for a short time and the results are compared
with the original image. We also apply the algorithms to
text images which are only known at a low resolution. In
Section 5, we draw conclusions.

2. Level Set Method

For a given initial curve M0, a geometric evolution law
defines a family of curves M(t), t ≥ 0 with M(0) = M0.
If M(t) is described implicitly as a specific level curve of
a function φ(t), we can evolve M(t) by evolving φ(t) by
solving ∂tφ + v‖∇φ‖ = 0, with v a given normal velocity.
If v is determined through a geometric evolution law, we
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Figure 1: Area preserving evolution laws for perturbed circle with
r0 = 0.5, eps = 0.075, and freq = 16.0. Different time steps are used
for the evolution laws.

can implicitly evolve the curve M(t) by solving this level set
equation [13]. To simultaneously evolve all level curves Mc

of a level set function φ, we can define a global energy

E
[
φ
] =

∫

R
e[Mc]dc =

∫

Ω

∥
∥∇φ∥∥ f dx, (1)

using the coarea formula. Thereby, we consider

e[Mc] =
∫

Mc

f ds (2)

with f a given energy density on the curve Mc and an
appropriate gradient flow with respect to a specific metric
g(Mc)

v = −gradg(Mc)e[Mc]. (3)

Following [14], we interpret φ as an element of the manifold
L of level set ensembles and identify a tangent vector s =
∂tφ on L with a motion velocity v of the corresponding level
curve Mc via the classical level set equation s + v‖∇φ‖ = 0.
This allows to define the corresponding metric on L which
reads for the L2 metric

gLφ(s1, s2) =
∫

R

∫

Mc

v1 · v2 ds dc

=
∫

Ω

s1∥
∥∇φ∥∥

s2∥
∥∇φ∥∥

∥
∥∇φ∥∥dx

=
∫

Ω
s1s2

∥
∥∇φ∥∥−1

dx

(4)

(a)

(b)

(c)

(d)

(e)

Figure 2: Superresolution of text (a) bicubic interpolation, (b)
Willmore flow, (c) mean curvature flow, (d) surfaces diffusion, (e)
zoom from left to right: bicubic interpolation, Willmore flowm
mean curvature flow, and surface diffusion. The evolution results
are shown after 10 time steps. The number of time steps used results
from our individual taste for the best result.

and for the H−1 metric

gH
−1

φ (s1, s2) =
∫

R

∫

Mc

v1 · v2 ds dc

=
∫

Ω
(ΔM)−1

(
s1∥

∥∇φ∥∥
)

s2∥
∥∇φ∥∥

∥∥∇φ∥∥dx

=
∫

Ω
s1s2

∥∥∇φ∥∥−1
dx.

(5)

For both cases, we are now able to rewrite the simultaneous
gradient flow of all level curves in terms of the level set
function φ

∂tφ = −gradgφE
[
φ
]
, (6)
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Table 1: Construction of geometric evolution laws in level set form,
with h the mean curvature.

Mean curvature flow f = 1 gφ = gL
2

φ

Surface diffusion f = 1 gφ = gH
−1

φ

Willmore flow f = h2 gφ = gL
2

φ

which is equivalent to

gφ
(
∂tφ,η

) = −(E′[φ],η) (7)

for all functions η ∈ C∞0 (Ω). From (7) the weak form can
be obtained for various geometric evolution laws in level set
form by choosing appropriate energy density f , see Table 1
(e.g., [14, 15]).

To define area preserving versions of these geometric
evolutions laws, we introduce a Lagrange multiplier λc and
define the Lagrangien

l[Mc, λc] = e[Mc]− λc(area(t)− area(0)) (8)

with

area(t) =
∫

Ωc(t)
dx (9)

the area of the interior domain Ωc inside of Mc. We thus
obtain

v = −gradg(Mc)l[Mc, λc] = −gradg(Mc)e[Mc] + λc (10)

with λc uniquely determined by the constraint
∫
Mc

∂tx ds = 0:

λc =
∫
Mc

gradg(Mc)e[Mc]ds∫
Mc

ds
. (11)

The corresponding evolution laws read as follows:

(i) area preserving mean curvature flow

v = h + λc,

λc =
∫
Mc

h ds
∫
Mc

ds
,

(12)

(ii) surface diffusion (which is already area preserving)

v = ΔMh, (13)

with ΔM the surface Laplacian;

(iii) area preserving Willmore flow

v = ΔMh + h
(
‖S‖2

2 −
1
2
h2
)

+ λc,

λc = −
∫
Mc

ΔMh + h
(
‖S‖2

2 − (1/2)h2
)
ds

∫
Mc

ds
,

(14)

thereby S denotes the shape operator on Mc and ‖·‖2

the Frobenius norm.

To construct a level set formulation to simultaneously
evolve all level curves Mc under the constraint, that their
enclosed area is preserved, we follow the same lines as for
the unconstraint problem and define

L
[
φ, λ

] =
∫

R
l[Mc, λc]dc (15)

to obtain

∂tφ = −gradgφL
[
φ, λ

]
(16)

or equivalently

gφ
(
∂tφ,η

) = −(L′[φ, λ
]
,η
)

(17)

for all functions η ∈ C∞0 (Ω) and L′ = Lφ. For area preserving

mean curvature flow ( f = 1 and gφ = gL
2

φ ), we thus obtain

∫

Ω

∂tφ∥
∥∇φ∥∥η dx =

∫

Ω
hη − λη dx,

∫

Ω
hη dx = −

∫

Ω

∇φ
∥∥∇φ∥∥ · ∇η dx,

λ(x) =
∫
Ω δ
(
φ(x′)− φ(x)

)
h(x′)

∥
∥∇φ(x′)

∥
∥dx′

∫
Ω δ
(
φ(x′)− φ(x)

)∥∥∇φ(x′)
∥
∥dx′

.

(18)

The same formulation can be obtained by rewriting the
formulation in [4] in weak form. For surface diffusion ( f = 1
and gφ = gH

−1

φ ), we obtain

∫

Ω
∂tφη dx =

∫

Ω
P∇h · ∇η∥∥∇φ∥∥dx,

∫

Ω
hη dx = −

∫

Ω

∇φ
∥∥∇φ∥∥ · ∇η dx,

(19)

with P = I − ∇φ/‖∇φ‖ ⊗ ∇φ/‖∇φ‖ the projection onto
the tangent space TxMc defined for every x on Mc. For area
preserving Willmore flow ( f = h2 and gφ = gL

2

φ ), we obtain

∫

Ω

∂tφ∥
∥∇φ∥∥η dx =

∫

Ω
μη − λη dx,

∫

Ω
μη dx = −

∫

Ω

ω2

2
∥
∥∇φ∥∥3∇φ · ∇η−

P∇ω
∥∥∇φ∥∥ · ∇η dx,

∫

Ω

ω
∥
∥∇φ∥∥η dx =

∫

Ω

∇φ
∥
∥∇φ∥∥ · ∇η dx,

λ(x) =
∫
Ω δ
(
φ(x′)− φ(x)

)
μ(x′)

∥∥∇φ(x′)
∥∥dx′

∫
Ω δ
(
φ(x′)− φ(x)

)∥∥∇φ(x′)
∥∥dx′

,

(20)

with ω = −‖∇φ‖h a weighted curvature.

3. Semi-Implicit Finite
Element Discretization

We discretize the constraint evolution problems first in space
using piecewise linear finite elements and then in time
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Figure 3: “Lena” image from left to right: (a) bicubic interpolation, (b) Willmore flow, (c) mean curvature flow, (d) surfaces diffusion. The
evolution results are shown after 20 time steps in the case of Willmore flow and surface diffusion and 8 time steps for mean curvature flow.
The number of time steps used results from our individual taste for the best result.

(a) (b) (c) (d)

Figure 4: “Monarch” image from left to right: (a) bicubic interpolation, (b) Willmore flow, (c) mean curvature flow, (d) surfaces diffusion.
The evolution results are shown after 16 time steps in the case of Willmore flow and surface diffusion and 6 time steps for mean curvature
flow. The number of time steps used results from our individual taste for the best result.

based on a semi-implicit backward Euler scheme. We thereby
follow the discretizations of the unconstrained problems [11,
14] and treat the Lagrange multiplier explicit by evaluating

λc =
∫
Ω δ
(
φ(x′)− c

)
α(x′)

∥
∥∇φ(x′)

∥
∥dx′

∫
Ω δ
(
φ(x′)− c

)∥∥∇φ(x′)
∥
∥dx′

(21)

(with α = h,μ) for different discrete values of c and
then interpolating to obtain λ, see [4]. The algorithms are
implemented in the adaptive finite element toolbox AMDiS
[16].

We first demonstrate the smoothing and area preserving
properties of the algorithms. We, therefore, evolve a per-
turbed circle. Thereby the radius of M0 is initially defined as
r = r0(1 + eps cos(freqθ)) with angle θ ∈ [0, 2π). Figure 1
shows the initial curve and the evolution of its averaged
curvature over time towards the constant value h = 1/r0. We
here only use the constraint for M0 and let all other level lines
evolve accordingly, thus only λ0 is computed and λ = λ0. For
all cases, the area remains constant; however, the smoothing
differes from which a different behaviour if applied to images
is expected.

4. Numerical Results

We start with a simple application, namely, the super-
resolution of text images. Therefor, we use the logo of
our university and apply area preserving Willmore flow,
mean curvature flow, and surface diffusion to smooth the

jagged parts of the text given at a low resolution. Figure 2
shows the results and the improvement if compared with
bicubic interpolation. The differences obtained with the
three evolution laws are minor.

The described algorithms can be extended to color
images by applying them separately to the individual color
planes. As already mentioned in [6], the possible separation
of such an approach, due to the independent evolution, is not
of significant for the obtained results.

We consider two images, the “Lena” image and the
“Monarch” image. For both images, originally given with a
resolution 256×256, the resolution is reduced to 75×75 and
bicubic interpolations is used to produce again a 256 × 256
image. We apply our three level set algorithms to the resulting
images. Figure 3 shows results on the “Lena” image.

Applying the same conserved evolution laws to the
“Monarch” image results in Figure 4.

In both cases, all area conserved evolution laws result in
smoother contours, which is directly visible at the shoulder
and the hat in the “Lena” image and along the white
stripes in the “Monarch” image. The jagged parts remaining
after bicubic interpolations are removed. Without the area
constraint, the evolution would oversmooth the images and
significant detail would be lost. The applied constraints
help to maintain these details. The difference in the three
evolution laws is most significant for mean curvature flow,
which reduces the sharpness of the edges. The results for
Willmore flow and surface diffusion are comparable.
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5. Conclusion

We consider PDE bases approaches to reconstruct geometric
properties of images by evolving their level curves. Applying
these level set reconstructions to obtain superresolution
images had already been shown to lead to improved results,
as jagged parts of the image can be smoothed. However,
unconstrained evolutions will lead to oversmoothing. The
goal thus is to constrain the evolution laws such that visually
significant properties remain. A simple attempt in this
direction, which does not require image-specific treatments
is to constrain the area of each level curve. We have shown
that such constrained geometric evolution laws can improve
results of other methods for image magnification. The result-
ing PDEs turn to become nonlocal which requires special
treatment. For all cases of area conserved mean curvature
flow, surface diffusion and area conserved Willmore flow
we use a semi-implicit discretization in which the Lagrange
multiplier is treated explicitly which drastically reduced the
complexity of the discretization scheme of the higher-order
PDEs. A comparison of the three evolution laws shows an
improvement if fourth-order PDEs are used. Small-scale
details seem to better remain than for the second-order
PDE. The difference between area conserved Willmore flow
and surface diffusion is only marginally in the considered
examples. As surface diffusion is already area conserving and
thus computationally less expensive, it should be the method
of choice.
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