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Structure and dynamics of interfaces between two coexisting liquid-crystalline phases
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A phase-field-crystal model is used to access the structure and thermodynamics of interfaces between two
coexisting liquid-crystalline phases in two spatial dimensions. Depending on the model parameters, there is
a variety of possible coexistences between two liquid-crystalline phases, including a plastic triangular crystal
(PTC). Here, we numerically calculate the profiles for the mean density and for the nematic order tensor across the
interface for isotropic-PTC and columnar-PTC (or equivalently smectic-A–PTC) phase coexistence. As a general
finding, the width of the interface with respect to the nematic order parameter characterizing the orientational
order is larger than the width of the mean-density interface. In approaching the interface from the PTC side, at first,
the mean density goes down, and then the nematic order parameter follows. The relative shift in the two profiles
can be larger than a full lattice constant of the plastic crystal. Finally, we also present numerical results for the
dynamic relaxation of an initial order-parameter profile towards its equilibrium interfacial profile. Our predictions
for the interfacial profiles can, in principle, be verified in real-space experiments of colloidal dispersions.
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I. INTRODUCTION

Liquid crystals, typically composed of anisometric
molecules or colloidal particles, form interesting mesophases,
which are neither completely liquid nor completely crystalline
[1]. The simultaneous presence of translational and rotational
degrees of freedom gives rise to phases which exhibit a differ-
ent degree of ordering for the translational and orientational
orders [2,3]. Rotator solids or plastic crystals, for instance, are
translationally ordered but orientationally disordered, whereas
nematics, on the other hand, possess orientational order in the
absence of translational order. Clearly, there also are the fully
disordered isotropic phase and the fully ordered crystalline
phase, but there are even more intermediate liquid-crystalline
phases (such as, for example, smectic-A and columnar phases)
with different degrees of translational and orientational orders
that are stable for appropriate thermodynamic conditions.

It is a formidable task of statistical physics to predict
the existence and stability of the different liquid-crystalline
phases for a given interaction as a function of mean density
and temperature. This has, for example, been performed
by computer simulations of simple model systems [4,5]
and by molecular density functional theory [6,7] and more
phenomenological approaches [8]. Typically, phase diagrams
of liquid crystals exhibit regions where two phases of different
kinds of ordering coexist. At equal pressure, chemical poten-
tial, and temperature, coexistence implies that there is a stable
interface between the two coexisting phases. In mean-field
theories (which neglect interfacial capillary wave undulations),
the interface has a characteristic width of typically several
particle sizes and exhibits profiles of the mean density and
of the degree of orientational order depending on the spatial
coordinate perpendicular to the interface. For the liquid-solid
interface, see, for example, Refs. [9–14].

Although there has been a large effort to explore the
gas-liquid [15] and liquid-solid [16] interfaces of spherical
particles (see also Refs. [17–23]), much less effort has
been devoted to the particle-resolved structure and thermo-

dynamics of the interface between two coexisting liquid-
crystalline phases. Extensive studies have been performed
for the isotropic-nematic interface, which has been accessed
by experiment, computer simulation, and theory (see, for
example, Refs. [24–32]), but there are fewer considerations
of the isotropic-smectic [33–36] and the nematic-smectic
interfaces [37]. Therefore, we investigate an interface where
one of the coexisting phases is plastic or fully crystalline
here. This is, of course, a nontrivial task since there is a
complex dependence of the interface structure on the (relative)
orientation of the two phases. Even for the isotropic-crystal
coexistence, there is a complex orientational dependence
culminating in Wulff’s construction for the equilibrium crystal
shape [23]. Nevertheless, it is important to have information
about the interface since nucleation and growth phenomena
of a metastable phase in a stable phase occur via interfaces
[36,38,39].

In this paper, we close this gap and study liquid-crystalline
interfaces for crystalline phases. We use a phase-field-crystal
(PFC) model, which is a minimal model to describe freezing
for isotropic particles on the molecular (i.e., interparticle)
scale [40–42] and can be justified from microscopic density
functional theory [42–44]. The traditional PFC model [40]
was later generalized to anisotropic particles in two [45] and
three [46] spatial dimensions allowing for liquid-crystalline
phases. The generalized theory is formulated in terms of
three order-parameter fields, namely, the reduced translational
density ψ(�r), the local nematic order parameter S(�r), and
the mean orientational direction n̂(�r) that is also called the
“nematic director.” Whereas the traditional PFC model [40]
has two free parameters, the liquid-crystalline PFC model in
two dimensions [45] has five independent couplings. This
widely opens the parameter space for the occurrence of
several liquid-crystalline phases including nematic, columnar,
smectic-A, plastic-crystalline, and orientationally ordered
crystalline phases. Recent numerical studies [47] of the liquid-
crystalline PFC model in two spatial dimensions have shown
that a variety of phase coexistences occur as a function of
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the model parameters. Therefore, the liquid-crystalline PFC
model [45] provides a simple and direct avenue to access the
interface structure, which still incorporates the correct physics.

As a result, we find that the width of the interface with
respect to the nematic order parameter is larger than the width
of the mean-density interface. In approaching the interface
from the plastic-crystalline side, at first, the mean density
goes down, and then the nematic order parameter follows.
The relative shift in these two profiles can be larger than a full
lattice constant of the plastic crystal. Finally, we also present
numerical results for the dynamic relaxation of an initial
order-parameter profile towards its equilibrium interfacial
profile. Our results can, in principle, be verified in real-space
experiments of colloidal dispersions, which can be confined
to monolayers [48–51]. A transient nonmonotonic behavior
of the conserved mean-density profiles occurs, which is much
more pronounced than nonmonotonicities in the nonconserved
orientational-order profile.

The paper is organized as follows: after the presentation
of a suitable PFC model for liquid crystals in Sec. II, we
discuss results obtained by numerical calculations in Sec. III.
We finally conclude in Sec. IV.

II. PFC MODEL FOR LIQUID CRYSTALS IN TWO
SPATIAL DIMENSIONS

A PFC model for apolar1 liquid crystals in two spatial di-
mensions was given in Refs. [42,45,47,52,53]. It describes the
static properties and dynamical behavior of a liquid-crystalline
system in terms of two dimensionless order-parameter fields:
the reduced translational density ψ(�r,t) and the symmetric and
traceless nematic tensor Qij (�r,t) with position �r = (x,y) and
time t . For liquid-crystalline particles with a symmetry axis,
the nematic tensor can be parametrized as

Qij (�r,t) = S(�r,t)(ni(�r,t)nj (�r,t) − 1
2δij

)
, (1)

with the nematic order parameter S(�r,t) and the (normalized)
nematic director n̂(�r,t) = (n1,n2) (see Refs. [45,47,52]).

A. Static free-energy functional

The static properties of a liquid-crystalline system are
described by a free-energy functional F[ψ,Qij ], which is
minimized with respect to ψ(�r) and Qij (�r) in thermodynamic
equilibrium. After an appropriate rescaling of the length
and energy scales, this free-energy functional obtains the
dimensionless form2 [53]

F[ψ,Qij ] =
∫

d2r

(
−ψ3

3
+ ψ4

6
+ (ψ − 1)

ψQ2
kl

4

+ Q2
klQ

2
mn

64
+ A1ψ

2 + A2ψ(� + �2)ψ

+B3(∂kψ)(∂lQkl) + D1Q
2
kl + D2(∂lQkl)

2

)
,

(2)

1We neglect a possible macroscopic polarization.
2Einstein’s sum convention is used throughout this paper. Notice

that powers of indexed quantities involve repeated indices and, thus,
summation, i.e., for example, Q2

ij ≡ QijQij ≡ ∑
i,j QijQij .

with the Laplace operator � ≡ ∂2
k and the five dimensionless

coupling parameters A1, A2, B3, D1, and D2.

B. Dynamical equations

The corresponding dynamical equations of ψ(�r,t) and
Qij (�r,t) can be derived from classical dynamical density
functional theory [54] and are given by [53]

ψ̇ + ∂iJ
ψ

i = 0, (3)

Q̇ij + �
Q
ij = 0, (4)

with the dimensionless current J
ψ

i (�r,t) and the dimensionless
quasicurrent �

Q
ij (�r,t). In constant-mobility approximation,

this current and quasicurrent are given by [42]

J
ψ

i = −2α1(∂iψ
�) − 2α3(∂jQ

�

ij ), (5)

�
Q
ij = −4α1(�Q

�

ij ) − 2α3[2(∂i∂jψ
�) − δij (�ψ�)] + 8α4Q

�

ij ,

(6)

with the three dimensionless mobility parameters α1, α3, and
α4 and the thermodynamic conjugates,

ψ� = δF
δψ

, Q
�

ij = δF
δQij

, (7)

of ψ(�r,t) and Qij (�r,t), respectively. The thermodynamic
conjugates follow directly from the free-energy functional (2)
by functional differentiation:

ψ� = −ψ2 + 2

3
ψ3 + (2ψ − 1)

Q2
ij

4
+ 2A1ψ

+ 2A2(� + �2)ψ − B3(∂i∂jQij ), (8)

Q
�

ij = ψ(ψ − 1)Qij + QijQ
2
kl

8
−B3[2(∂i∂jψ) − δij�ψ] + 4D1Qij

− 2D2∂k[∂iQkj + ∂jQki − δij (∂lQkl)]. (9)

For a comparison of the dimensionless rescaled parameters in
Eqs. (2), (5), and (6) with the corresponding parameters in the
notation of Refs. [42,47,53], see Appendix A. The numerical
procedure to solve the system of equations is briefly described
in Appendix B.

III. RESULTS

We first restrict ourselves to certain parameter combina-
tions, which allow for several liquid-crystalline coexistences.
In detail, we fix parameters A2 = 14, B3 = −0.4, D1 = 1,
and D2 = 0.8 but vary parameter A1 (which corresponds to
some formal temperature in the context of mean-field theories)
and the reduced mean density ψ̄ .3 The resulting equilibrium
bulk phase diagram is shown in Fig. 1 in consistency with
earlier data [47]. In the parameter range of A1 and ψ̄ shown, the
phase diagram exhibits three stable liquid-crystalline phases,

3The parameters in the dynamical equations (3)–(6) are always
chosen to be α1 = α3 = α4 = 1. Clearly, the stationary results do not
depend on their particular values.
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FIG. 1. (Color online) Phase diagram with coexistence re-
gions for the mean density ψ̄ ∈ [−1.6,0.4] and parameters A1 ∈
[1.3,3.5], A2 = 14, B3 = −0.4, D1 = 1, and D2 = 0.8. Three dif-
ferent liquid-crystalline phases are realized: isotropic, columnar or
smectic–A (CSA), and PTC. The coexistence regions (shaded areas)
are calculated using Maxwell’s double tangent construction. The
black dashed lines in the coexistence regions indicate the intersection
lines of the energy curves of the two adjacent phases. Six black
circles indicate certain parameter combinations for which detailed
calculations were performed (see Figs. 3–8).

namely, the isotropic phase, a PTC,4 and a columnar phase. As
we consider two spatial dimensions here, a columnar phase is
indistinguishable from a smectic-A phase, therefore, we call
the latter the CSA 5 phase. The coexistence regions, as obtained
by a Maxwell double tangent construction, are depicted by
the shaded area in Fig. 1. We selected, in total, six different
coexistence conditions as labeled by black circles in Fig. 1,
which correspond to three isotropic-PTC and three CSA-PTC
coexistence situations serving as basic reference situations for
our subsequent investigations.

A typical example for an isotropic-PTC interfacial profile
is presented in Fig. 2 for the (10) orientation of the hexagonal
crystal.6 In the bulk PTC phase, there are periodic peaks in
the full density profile ψ(x,y) at the crystal lattice positions,
shown as a contour plot in Fig. 2. The typical standard
deviation of these peaks (the so-called Lindemann parameter)
is pretty large with about 27% of the lattice constant. The
corresponding orientational ordering, as embodied in the
nematic tensor, is complicated and exhibits topological defects
in the Wigner-Seitz cell of the lattice, see Refs. [47,55] for
more detailed discussions. The mean orientational unit vector

4The plastic triangular crystal in Fig. 1 is called the “plastic
triangular crystal 2” in Ref. [47].

5This CSA phase is called the “C/SA phase” in Ref. [47].
6In our calculations, the one-mode approximation was used to

determine the lattice spacing in the y direction. In fact, we found,
for varied periodicity in the y direction, that the free-energy
density is minimal for a lattice spacing very close to the one-mode
approximation such that the system is practically not strained in the
y direction.
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FIG. 2. (Color online) Top: two contour plots for ψ(x,y) and
S(x,y) at an isotropic-PTC coexistence with A1 = 3.21 and ψ̄ =
−0.3 (the other parameters are the same as in Fig. 1). n̂(�r) is
represented by short black lines that are superimposed on the lower
contour plot. Bottom: left ordinate: averaged density 〈ψ〉(x) and
right ordinate: averaged nematic order parameter 〈S〉(x). The x

direction is chosen perpendicular to the interface, whereas, the y

axis is parallel to the interface. The averaged quantities are defined
by 〈f 〉(x) = ∫

dy ′ ∫ x+a

x−a
dx ′f (x ′,y ′) for f ∈ {ψ,S} with the width of

the stripes 2a = 4π/(k
√

3) and k = 1/
√

2.

field n̂(x,y), as obtained by the direction of the eigenvector of
the nematic tensor corresponding to the highest eigenvalue, is
sketched by short black lines in Fig. 2. The largest eigenvalue
itself multiplied by 2—the scalar nematic order-parameter field
S(x,y)—is also presented as a contour plot in Fig. 2. In the
isotropic phase, on the other hand, the density field is constant,
and the nematic order parameter vanishes. In between, there
is an interfacial region with laterally averaged profiles 〈ψ〉(x)
and 〈S〉(x) with x denoting the direction perpendicular to the
interface (see the caption for Fig. 2).

We define a typical interface width of an order-parameter
profile f (x,y) ∈ {ψ(x,y),S(x,y)} as the distance of the
positions where a hyperbolic-tangent approximation of
〈f 〉(x) attains the values 0.95〈f 〉(−∞) + 0.05〈f 〉(∞) and
0.05〈f 〉(−∞) + 0.95〈f 〉(∞), respectively. These widths for
ψ(x,y) and S(x,y) are indicated in Fig. 2. Remarkably, the
width of the density profile is significantly smaller than the
width of the orientational profile. The position where the
hyperbolic-tangent approximation of an averaged field 〈f 〉(x)
with f ∈ {ψ,S} attains the value [〈f 〉(−∞) + 〈f 〉(∞)]/2 can
be taken as a natural location ξ (f ) of the interface with respect
to this field. Interestingly, as revealed in Fig. 2, the location
of the averaged density profile 〈ψ〉(x) and the averaged
orientational profile 〈S〉(x) do not coincide. The location of the
orientational profile is more shifted towards the isotropic phase
than the location of the density profile. This means that, coming
from the isotropic side, at first, the nematic order builds up
and then the density follows. This finding is reminiscent of the
fluid-crystal interface of systems of spherical particles [23,56],
which can be described by a two-order-parameter description
involving the conserved mean density and a nonconserved
crystallinity [11,57]. Coming from the fluid side, also in this
case, the nonconserved crystallinity starts to grow first, and
the density follows.
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FIG. 3. (Color online) Widths of the (a), (b) isotropic-PTC,
and the (c) CSA-PTC interfaces of ψ(�r) and S(�r) in
dependence on A1 and B3, respectively. The parameters are
(a) (ψ̄,A1) ∈ {(−1.2,1.3),(−0.85,2.2),(−0.3,3.21)}, (b) B3 ∈
{−0.6,−0.4,−0.25,−0.05} with fixed (ψ̄,A1) = (−0.3,3.21), and
(c) (ψ̄,A1) ∈ {(−0.05,1.6),(0.05,2.4),(0.31,3.5)} where the remain-
ing parameters are as in Fig. 1. Notice that the presented data in
(a) and (c) correspond to the six points highlighted by the black circles
in Fig. 1 and that they are connected by polynomial fitting curves.
In (c), the stripes of the CSA phase are oriented perpendicular to the
interface (see Fig. 5).

We have further studied the dependence of the interface
widths on parameters A1 and B3. As A1 is increased, the
coexistence comes closer to a critical point where the inter-
facial widths diverge. This trend is documented in Fig. 3(a).
Figure 3(a) also shows that the width of the orientational-
order-parameter profile is larger than that of the density
interface over the full range of A1. All trends are the same
for different parameter combinations for the isotropic-PTC
interface as documented by Fig. 4. The dependence of the
interface width on parameter B3 as shown in Fig. 3(b) is
much less pronounced than the dependence on parameter A1.
Interestingly, the interface width of the orientational-order-
parameter profile is again larger than the width of the density

ψ(r) ψ(r)

ψ(r) ψ(r)

S(r) S(r)

S(r),
n̂(r)

S(r),
n̂(r)

ψ̄ = −1.2, A1 = 1.35 ψ̄ = −0.3, A1 = 3.21

FIG. 4. (Color online) Interface of the isotropic-PTC phase
coexistence for the same parameters as in Fig. 1. The plots show
the translational density ψ(�r) and the nematic order parameter S(�r)
both for a large area and for a closeup view of the interface where blue
(gray) and red (dark gray) indicate low and high values, respectively.
In addition, the director field n̂(�r) is represented by short black lines
that are superimposed on the lowest plots.

interface. The trend of the curves indicates that this behavior
also holds for a larger parameter interval of B3 than plotted in
Fig. 3(b). However, due to the huge parameter space and high
computational complexity of the calculations, we cannot rule
out the possibility that there is a certain combination of the
five parameters of the PFC model where the interface width
for the orientational-order-parameter profile is not larger than
for the density profile.

Next, we consider the coexistence between the PTC and
the CSA phases. In this case, the interface structure depends
on the relative orientations of the two phases. While we fix
the orientation of the PTC phase in the (10) direction, here,
we consider two different possibilities of the column direction
relative to the interface, namely, perpendicular and parallel. For
these two relative orientations, the order-parameter fields are
given in Figs.5 and 6 for two different parameter combinations
of coexistence.7 For the perpendicular column direction (see
Fig. 5), the density field reveals that the columns end at a lattice
density peak. This implies that the degeneracy of the column
positions is broken by the presence of the crystal, which pins
the transversal columnar order by the interface. Along the
columns away from the interface, there are still some density
undulations in the x direction. For the parallel column direction
(see Fig. 6), on the other hand, there is a nontrivial density field
across the interface insofar as the columns are significantly
bent in the presence of the crystalline peaks, i.e., the crystal
induces a systematic undulation of the neighboring columns.
The amplitude of this undulation decreases farther away from
the interface position. Likewise, along the columns, there is a

7It is important to note that, in Fig. 5, the interface connects
two phases which have, in principle, different periodicities in the
y direction. Therefore, care has to be taken in determining the box
size in the y direction, in particular, if these two periodicities are
incommensurate. We have checked that a doubled system size in the
y direction does not affect the results. Nevertheless, a much larger
system size could possibly lead to superstructures which are not
explored in the present paper.
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FIG. 5. (Color online) The same as in Fig. 4 but, now, for the CSA-
PTC interface. Note that the stripes of the CSA phase are oriented
perpendicular to the interface.

periodic density modulation in the y direction induced by the
crystalline peaks nearby.

Results for the interfacial widths, similarly defined as in the
previous case, are shown in Fig. 3(c) where the same trends are
observed as for the isotropic-PTC interface [see Fig. 3(a)]. The
width of the orientational interface is considerably larger than
that for the density profile, and there is a strong dependence on
parameter A1 with huge interfacial widths where the parameter
is close to criticality. Both for the isotropic-PTC coexistence
and for the CSA-PTC coexistence, the interface position of the
density profile is more shifted towards the PTC phase than the
interface position of the orientational profile, which is more in
the coexisting CSA phase (see Fig. 7). As shown in Fig. 7, the
distance of the two interface positions depends on parameters
A1 and B3.

Finally, we show some results on the dynamical evolution
of the interfacial profiles based on the physical dynamics
described by Eqs. (3) and (4). It is important to note that
the density is a conserved order parameter, whereas, the
nematic ordering is nonconserved. We plotted an example of
the interface relaxation towards equilibrium for a prescribed
starting profile in Fig. 8. The orientational-order-parameter
field is a smeared Heaviside step function, whereas, the density
is constant. Similar setups for interfacial kinetics have been
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S(r),
n̂(r)

S(r),
n̂(r)

ψ̄ = −0.05, A1 = 1.6 ψ̄ = 0.31, A1 = 3.5

FIG. 6. (Color online) The same as in Fig. 5 but, now, for a
CSA-PTC interface where the stripes of the CSA phase are oriented
parallel to the interface.
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FIG. 7. (Color online) Distance �ξ (ψ,S) = ξ (ψ) − ξ (S) of the
interfaces of ψ(�r) and S(�r) in dependence on (a) A1 and (b) B3

where we always consider the transition from the noncrystalline to
the crystalline phase. The parameters are the same as in Fig. 3, and
the stripes of the CSA phase are, again, oriented perpendicular to the
interface (see Fig. 5).

studied earlier [58]. The density field, subsequently, takes up
the orientational inhomogeneity, and both order parameters
relax to their equilibrium profiles. The density develops a
marked transient nonmonotonic profile and relaxes much
slower than the orientational order. It takes quite a long time
in units of the basic time scale of the dimensionless dynamical
equations (3)–(6) to end up in the final equilibrium state. These
findings show that our dynamical equations (3) and (4), which
reflect the diffusive dynamics of colloidal systems, can, in
principle, be applied to plenty of further growth phenomena in
the future, which are, however, beyond the scope of the present
paper.

IV. CONCLUSIONS

In conclusion, we have explored the equilibrium structure
of interfaces between various coexisting liquid-crystalline
phases using a PFC model for liquid crystals. In two spatial
dimensions, we have considered explicitly the isotropic-
plastic-crystalline and the smectic-A-plastic-crystalline inter-
faces, which are both anisotropic, i.e., they depend on the
relative orientation of the two coexisting phases. To determine
the equilibrium structures numerically, we calculated the
relaxation of the dissipative PFC dynamics towards equilib-
rium (i.e., the minimization of the PFC functional) under
the constant-mobility approximation using the finite element
method.

Basically, we have considered a two-order-parameter
description of the interfaces containing the conserved
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FIG. 8. (Color online) Time evolution of the averaged order
parameters (a) 〈ψ〉(x) and (b) 〈S〉(x) for an isotropic-PTC co-
existence. The parameters are α1 = α3 = α4 = 1, ψ̄ = −0.3, A1 =
3.21, and for the rest, as in Fig. 1. Snapshots are taken at times t =
100, 500, 3000, and 10 000. At time t = 0, the averaged translational
density is constant (〈ψ〉(x) = −0.3), and the averaged nematic order
parameter 〈S〉(x) is a smeared Heaviside step function.

(translational) density field and the nonconserved (orienta-
tional) nematic tensor. The phase diagram, the typical widths
of the interfaces, the order-parameter profiles, and their
dynamics were computed. For the isotropic-plastic-crystalline
interface, we found that, in approaching the interface from
the isotropic side, at first, the nematic order builds up and
then the density follows. The relative shift in the two profiles
is about half the lattice constant of the plastic crystal. This
finding is reminiscent of the fluid-crystal interface of systems
of spherical particles [23,56], which can be described by
a two-order-parameter description involving the conserved
mean density and a nonconserved crystallinity [11,57]. For
the fluid-crystal interface, a similar shift has been found: If the
interface is approached from the fluid side, first, the (noncon-
served) crystallinity increases, and then the (conserved) mean
density follows [11,59–61]. This has to do with the fact that
a fluid is more responsive to an oscillatory density wave than
to a global density change [59]. For the smectic-A-plastic-
crystalline interface, we found a similar behavior as for the
isotropic-plastic-crystalline interface with a shift in the density
interface towards the plastic-crystalline phase. Furthermore,
our results show that, in the whole parameter range we
explored, the width of the interface with respect to the nematic
order parameter is larger than the width of the mean-density
interface.

Our results can be verified either in particle-resolved
computer simulations [62] or in experiments. Particle-resolved
computer simulations for rodlike systems have been performed

both for structure [4,63–65] and for dynamics [66,67] in
various situations. So far as experiments are concerned, most
notably, colloidal liquid crystals [3,68,69] that are confined
to two spatial dimensions are the ideal realizations of our
model. One important example is a suspension of the tobacco
mosaic virus, which can be confined to monolayers [50] and
which shows a variety of liquid-crystalline phases [8], but there
are many other examples of liquid-crystalline rodlike particle
suspensions, which have been prepared in a controlled way
(see, e.g., Refs. [48,49,51]).

Future work should extend the present study to three spatial
dimensions [42,46], which would require more numerical
work but promises a richer equilibrium bulk phase diagram.
Also, the dynamics of a growing crystalline front, which
already has been studied in detail for spherical particles
[70–72], should be addressed for liquid crystals as well.
If a plastic-crystalline phase grows into an isotropic phase,
it would be interesting to follow the origin of topological
defects in the director field, which have to grow out of
nothing. Moreover, crystal-fluid interfaces in external fields,
such as gravity, already exhibit unusual effects for isotropic
particles [73,74], and it would be challenging to explore this
for liquid-crystalline interfaces [75]. Finally, our model should
be generalized towards liquid crystals on manifolds [76] to
describe nematic [77] or smectic bubbles [78].

ACKNOWLEDGMENTS

We thank R. Backofen for helpful discussions. R.W.
gratefully acknowledges financial support from a Postdoctoral
Research Fellowship (Grant No. WI 4170/1-1) of the German
Research Foundation (DFG). In addition, this work was
supported by the DFG within SPP 1296.

APPENDIX A: NOTATION

Since the PFC model presented in Sec. II is equivalent
to PFC models given in different notations in Refs. [42,47,
53], here, we clarify the relationship of our notation to the
notation used in the literature. This especially simplifies the
comparison of Fig. 1 to the corresponding phase diagrams in
Ref. [47].

If we denote the eight parameters in Eqs. (2), (5), and (6)
with a prime (i.e., A′

1, A′
2, B ′

3, D′
1, D′

2, α′
1, α′

3, and α′
4) to

avoid confusion with similar notations in Refs. [42,53], the
characteristic length l′c and the characteristic energy E′

c, which
have been chosen to make the PFC model in the present article
dimensionless, can be expressed by l′c = √−A3/A2 and E′

c =
−(πρ̄/β)(A3/A2) in terms of the reference particle number
density ρ̄, the inverse thermal energy β, and parameters A2

and A3 in Ref. [53]. In Ref. [42], the notation is analogous but
with ρref instead of ρ̄.

The parameters in the free-energy functional (2) can be
related to the parameters in Refs. [42,53] by

A′
1 = 1 − A1

2πρ̄
, A′

2 = − A2
2

2πρ̄A3
, B ′

3 = A2B3

2πρ̄A3
, (A1)

and

D′
1 = 1

4
− D1

2πρ̄
, D′

2 = A2D2

2πρ̄A3
. (A2)
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In the case of the current (5) and the quasicurrent (6), a
comparison with Refs. [42,53] leads to the relations

α′
1 = tcEc

l2
c

α1, α′
3 = tcEc

l2
c

α3, α′
4 = tcEcα4. (A3)

In Ref. [47], a different notation is used. A comparison of the
free-energy functional (2) with the corresponding free-energy
functional in Ref. [47] leads to

A′
1 = Bl, A′

2 = 4Bx, B ′
3 = −4F, (A4)

and

D′
1 = 2D, D′

2 = 8E. (A5)

Furthermore, the length and energy scales of these two
free-energy functionals are different. If l′c and E′

c denote the
characteristic length and energy in the present article and lc
and Ec denote the corresponding quantities in Ref. [47], they
can be related to each other by

l′c = 1√
2
lc, E′

c = 1

2
Ec. (A6)

APPENDIX B: NUMERICAL SOLUTION OF
THE PFC MODEL

By inserting Eqs. (8) and (9) into Eqs. (5) and (6), one
obtains for the dynamical equations (3) and (4) a system
of six coupled nonlinear partial differential equations. In
order to solve this system numerically, we decoupled and
linearized it. A simplification is possible due to the symmetry
and tracelessness of the nematic tensor. Defining variables
qi ≡ Qi,1 and q

�

i ≡ Q
�

i,1 allows us to write the system of
dynamical equations in the compact form

ψ̇ = 2α1�ψ� + 2α3�iq
�

i ,
(B1)

q̇i = 4α1�q
�

i + 2α3�iψ
� − 8α4q

�

i ,

with the operator � ≡ (∂1∂1 − ∂2∂2,2∂1∂2), that is related to
the Cauchy-Riemann operator. The thermodynamic conjugates

reformulated in the new variables read

ψ� = ωψ (ψ,�q) + 2A1ψ + 2A2(� + �2)ψ − B3�iqi,
(B2)

q
�

i = ωq(ψ,�q)i + 4D1qi − 2D2�qi − B3�iψ,

with the polynomials

ωψ (ψ,�q) = −ψ2 + 2
3ψ3 + 1

2 (2ψ − 1)q2
i ,

(B3)
ωq(ψ,�q)i = ψ(ψ − 1)qi + 1

4qiq
2
j .

To discretize the dynamical equations (B1) in time, let
t1,t2,t3, . . . be a sequence of time steps. Defining ψn ≡
ψ(�r,tn), qi,n ≡ qi(�r,tn), and τn = tn+1 − tn, we obtain (by an
operator-splitting approach) the decoupled systems

ψn+1

τn

− 2α1�ψ
�

n+1 = ψn

τn

+ 2α3�iq
�

i,n,

ψ
�

n+1 − 2[A1 − A2(� + �2)]ψn+1 (B4)

= ωψ (ψn+1,�qn) − B3�iqi,n

and
qi,n+1

τn

− 4(α1� − 2α4)q�

i,n+1 = qi,n

τn

+ 2α3�iψ
�
n,

(B5)
q

�

i,n+1 − 2(2D1 − D2�)qi,n+1 = ωq(ψn,�qn+1)i − B3�iψn.

Linearizing ωψ (ψ,�q) and ωq(ψ,�q)i around the old time step
tn, two linear systems can be solved one after the other for all
n. The linearizations of the polynomials (B3) read

ωψ (ψn+1,�qn) ≈ ψn+1(−2ψn + 2ψ2
n + q2

i,n)

+ψ2
n − 4

3
ψ3

n − q2
i,n

2
,

(B6)

ωq(ψn,�qn+1)i ≈ 1

4
qi,n+1[4ψn(ψn − 1) + q2

j,n]

+ 1

2
qi,nqj,nqj,n+1 − 1

2
qi,nq

2
j,n.

Instead of such a simple time-stepping scheme, we used a
higher-order embedded Rosenbrock scheme (see, for example,
Refs. [79,80]) with an adequate step-size control for the
time discretization. A detailed description of this scheme
concerning some numerical issues will be given elsewhere. For
the discretization in space, we used the finite element method.
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[12] R. Ohnesorge, H. Löwen, and H. Wagner, Phys. Rev. A 43, 2870

(1991).
[13] D. W. Marr and A. P. Gast, Phys. Rev. E 47, 1212

(1993).
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PRAETORIUS, VOIGT, WITTKOWSKI, AND LÖWEN PHYSICAL REVIEW E 87, 052406 (2013)

[16] D. P. Woodruff, The Solid-Liquid Interface, 1st ed., Cambridge
Solid State Science Series Vol. 1 (Cambridge University Press,
London, 1980).

[17] K. Binder and M. Müller, Int. J. Mod. Phys. C 11, 1093 (2000).
[18] J. J. Hoyt, M. Asta, and A. Karma, Phys. Rev. Lett. 86, 5530

(2001).
[19] R. L. Davidchack, J. R. Morris, and B. B. Laird, J. Chem. Phys.

125, 094710 (2006).
[20] T. Zykova-Timan, R. E. Rozas, J. Horbach, and K. Binder,

J. Phys.: Condens. Matter 21, 464102 (2009).
[21] T. Zykova-Timan, J. Horbach, and K. Binder, J. Chem. Phys.

133, 014705 (2010).
[22] R. E. Rozas and J. Horbach, Europhys. Lett. 93, 26006 (2011).
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and H. Löwen, Phys. Rev. Lett. 108, 226101 (2012).
[24] A. J. McDonald, M. P. Allen, and F. Schmid, Phys. Rev. E 63,

010701(R) (2000).
[25] E. Velasco, L. Mederos, and D. E. Sullivan, Phys. Rev. E 66,

021708 (2002).
[26] M. Bier, L. Harnau, and S. Dietrich, Phys. Rev. E 69, 021506

(2004).
[27] R. L. C. Vink and T. Schilling, Phys. Rev. E 71, 051716 (2005).
[28] D. van der Beek, H. Reich, P. van der Schoot, M. Dijkstra,

T. Schilling, R. Vink, M. Schmidt, R. van Roij, and
H. Lekkerkerker, Phys. Rev. Lett. 97, 087801 (2006).

[29] S. Wolfsheimer, C. Tanase, K. Shundyak, R. van Roij, and
T. Schilling, Phys. Rev. E 73, 061703 (2006).

[30] H. Reich, M. Dijkstra, R. van Roij, and M. Schmidt, J. Phys.
Chem. B 111, 7825 (2007).

[31] B. Ullrich, G. K. Auernhammer, E. M. Sam, and D. Vollmer,
Colloids Surf. A 354, 298 (2010).

[32] A. A. Verhoeff, R. H. J. Otten, P. van der Schoot, and H. N. W.
Lekkerkerker, J. Chem. Phys. 134, 044904 (2011).

[33] L. Mederos and D. E. Sullivan, Phys. Rev. A 46, 7700
(1992).

[34] A. M. Somoza, L. Mederos, and D. E. Sullivan, Phys. Rev. E 52,
5017 (1995).

[35] C. Blanc, Phys. Rev. E 64, 011702 (2001).
[36] Z. Dogic and S. Fraden, Philos. Trans. R. Soc. London, Ser. A

359, 997 (2001).
[37] M. A. Osipov, J. R. Sambles, and L. Ruan, Liq. Cryst. 30, 823

(2003).
[38] T. Schilling and D. Frenkel, Phys. Rev. Lett. 92, 085505 (2004).
[39] A. A. Verhoeff and H. N. W. Lekkerkerker, Soft Matter 8, 4865

(2012).
[40] K. R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys.

Rev. Lett. 88, 245701 (2002).
[41] A. Jaatinen and T. Ala-Nissila, J. Phys.: Condens. Matter 22,

205402 (2010).
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[52] R. Wittkowski, H. Löwen, and H. R. Brand, Phys. Rev. E 83,
061706 (2011).
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[62] A. V. Ivlev, H. Löwen, G. E. Morfill, and C. P. Royall, Complex

Plasmas and Colloidal Dispersions: Particle-Resolved Studies
of Classical Liquids and Solids, 1st ed., Series in Soft Condensed
Matter Vol. 5 (World Scientific, Singapore, 2012).

[63] D. J. Cleaver, C. M. Care, M. P. Allen, and M. P. Neal, Phys.
Rev. E 54, 559 (1996).

[64] N. Akino, F. Schmid, and M. P. Allen, Phys. Rev. E 63, 041706
(2001).

[65] M. Marechal and M. Dijkstra, Phys. Rev. E 77, 061405 (2008).
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