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ABSTRACT: We develop thermodynamically consistent continuum models for twocomponent vesicles. The models
are derived using energy dissipation and mass conservation and account for volume constraints, global area
constraints or local inextensibility constraints and can be coupled to fluid flow in- and outside of the membrane.
The resulting systems of equations are higher order geometric evolution problems of Willmore flow type, or in the
case of coupling with fluid flow, involving higher order generalized Laplace-Young jump conditions, which are
coupled to higher order convection-diffusion problems for a scalar concentration field of Cahn-Hilliard type on
the evolving surface; Constraints require solution of a non-local system which can be obtained explicitly for
global constraints and requires solving a non-local elliptic partial differential equation on the evolving surface for
the local constraints. Numerical examples for selected problems are provided.
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1. INTRODUCTION

Biological membranes are a mixture of many different types of lipids, cholesterol and protein components.
Their relative amounts and compositions may differ between functionally distinct domains. Irregularities
in lipid packing at domain interfaces may result in increased membrane permeability [12, 44, 35] which
has important consequences for drug delivery. The increasing interest in lipid membranes results from the
hypothesized coupling of lipid phase segregation in the membrane to fundamental cell biological processes,
such as membrane signaling and trafficking [52] and drug delivery. Sub-domains of distinct curvature may
have precise biological properties [41], thus an understanding how lipid components can dynamically
influence to membrane morphology is of utmost importance. Changes in lipid composition are assumed to
assist or antagonize the membrane curvature on one hand, but also may respond to the curvature by
concentrating in domains of a preferred curvature. Strong curvature variations have recently been observed
experimentally in giant liposomes, where different lipids segregate according to their chemical properties
and lead to the formation of buds (e.g., [6, 5, 51]).

In this paper we derive thermodynamically consistent continuum models to describe the dynamics of
vesicles. Such models provide a good modeling alternative to reach larger length and time scales that can
be accessed by discrete methods. The derived model is an extension of the classical Helfrich model [31] for
an elastic membrane. It results in coupled systems of higher order geometric evolution equations for the
membrane or higher order boundary conditions for a fluid flow problem inside and outside of the membrane
and convection-diffusion equations on the evolving membrane which are coupled to non-local problems to
enforce constraints on the evolution.
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Models and investigation of equilibrium configurations as the minima of a suitably defined surface free
energy for such a setting have been considered in various contributions, see e.g. [2, 36, 56, 49, 28, 33, 27,
29, 30, 5, 51, 54, 14, 13]. Recently, investigations on equilibrium equations and stability analysis for
multicomponent biological membranes have been made in [26]. Dynamical simulations until now have
been limited to small deformations or special shapes and simplified models, see e.g., [55, 32, 42, 40, 25].
Phase field models have also been used to simulate the equilibrium [57] and the dynamics [11,39] of
multicomponent vesicles. Very recently, a thermodynamically consistent model for the dynamics of
two-dimensional multicomponent membranes in Stokes flow was presented and solved using a boundary
integral and parametric method [53, 8]. Here, we present general models valid in two and three dimensions.
A similar derivation for some problems which are included in our general approach have been given in
[21], see also [43] for a related approach and further analytic results.

The outline of the paper is as follows: In Section 2 we specify notations and shortly introduce some
differential geometry needed to define derivatives on evolving surfaces. In Section 3 we define the membrane
energy, consisting of elastic bending, surface tension and line energies. In Section 4 we derive
thermodynamically consistent dynamics models, which include volume conservation, area conservation,
local inextensibility and coupling of the vesicle dynamics to viscous fluid flow. In Section 5 we briefly
discuss different numerical approaches and show numerical results. In Section 6 we draw conclusions and
in the Appendix we give a motivation for approximations for the Gaussian bending energy and the line
energy and compute the variational derivatives of the energies.

2. NOTATION

We introduce some differential geometric notations and recall some basic identities. A more detailed account
is given in Appendix A, see also [19, 16, 58].

We consider a time intervall [0, T] � , T > 0. �(t) be a compact smooth connected and oriented
hypersurface in 3 without boundary. Furthermore, we assume the hypersurfaces �(t) are given as
�(t) = X(�, t)(M), where M is a suitable reference manifold, e.g., M = S 2 the unit sphere and X : M � [0, T] � 3

with (z, t) � X(z, t) = X(z
1
, z

2
, t) and z = (z

1
, z

2
) � M and t � [0, T]. We define the velocity

v(�, t) : �(t) � [0, T] � 3 of a point X(z, t) � �(t) by

( ( , ), ) : ( , )
d

z t t z t
dt

�v X X .

Denoting with n(�, t) : �(t) � [0, T] � 3 the (inner) normal to �(t), the velocity v may be decomposed
into normal and tangential components through

v = Vn + T

with V = v � n the (scalar) normal velocity and T := v – Vn the tangential velocity.

The material derivative
 f�  

of a function f = f
 
(X(z, t), t) defined on �(t) � [0, T] is given by

( ( , ), ) : ( ( , ), )
d

f z t t f z t t
dt

�X X� .

If f
 
(�, t) is defined on a neighborhood of �(t), defined as an open subset N(t) � 3 containing �(t), the

material derivative may be expressed as

tf f f� � � ��v� , (1)
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where � denotes the Euclidean scalar product in 3 and � denotes the usual gradient on 3, acting on the
spatial variables. We point out, that here and in the following, we use the same symbol f for the function
f = f

 
(�, t) on �(t) � [0, T] and an extension to a neighborhood on N(t) � [0, T].

The tangential gradient of a function f = f
 
(�, t) : �(t) � [0, T] �  is given by

2

, 1

( ( , ), ) : ( ( , ), ) ( ( , ), ) ( , )ij
i j

i j

f z t t g z t t f z t t z t�
�

� � �� �X X X X ,

where (gij) denotes the inverse of the (induced Riemannian) metric tensor given by g
ij
 = �

i 
X

 
�
 
�

j 
X

(see Appendix A for more details). The tangential derivative of a (not necessarily tangential) vector field
f = f(�, t) : �(t) � [0, T] � 3 is given by

2

, 1

( ( , ), ) : ( ( , ), )ij
i j

i j

z t t g z t t�
�

� � � � �� �f X X f X .

Moreover, the mean curvature H of �(t) is given by H = �
1
 + �

2
, with �

1
 and �

2
 the principle curvatures

of �(t), and H may be expressed in terms of the normal vector field n as H = –
 
�� � n, which leads to the

following identity

�� � v = �� (Vn + T) = –
 
VH + �� � T. (2)

3. ENERGY

We now define the surface energy for a vesicle and discuss the various terms corresponding to elastic
bending, surface tension and phase separation. Vesicles are closed biomembranes consisting of different
types of lipid and cholesterol and serve as important, but simplified models of more complex cell-membranes.

3.1 Single-Component Vesicles

The spontaneous-curvature model [31] is based on the assumption that the surface energy associated with
bending of the membrane can be expanded in the mean curvature H = �

1
 + �

2
 and the Gaussian curvature

K = �
1 
�

2
. The energy E consists of the following parts:

• the normal bending energy

E
B
 = 2

0

1
( )

2 Nb H H d A
�

��
• the Gaussian bending energy

E
G
 = Gb KdA

��
• the excess energy associated with the presence of the membrane

E
S
 = dA

�
��

with H
0
 the spontaneous curvature, which reflects a possible asymmetry of the membrane, justified by a

different chemical environment on both sides of the membrane. H
0
 is usually assumed to be spatially

homogeneous. b
N
 is the normal bending stiffness, b

G
 is the Gaussian bending stiffness and � is the

surface tension. For constant b
G
 the Gaussian bending energy is proportional to the Euler characteristic of

the membrane (Gauss-Bonnet theorem) and so changes in shape, which preserve the topology do not
contribute to the energy. Hence E

G
 can be dropped for such cases. For a review of models based on this

energy we refer to [50].
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Summarizing, we obtain the following membrane energy E of a single component vesicle without
topological changes.

2
0

1
[ ] [ ] [ ] ( )

2B S NE E E b H H dA dA
� �

� � � � � �� � � � � . (3)

3.2 Two-Component Vesicles

For a two-component vesicle the specified energies depend on the component and in addition a line energy
has to be defined along the phase boundary separating the different components. Such an energy reads
E

T
 = �C

 �
 
ds, with C being the separating curve along the surface and � being the line tension. Equilibrium

shapes of a two-component lipid bilayer membrane were first obtained using such an extended model via
constrained energy minimization in [33]. With different values for the Gaussian bending stiffness for the
different phases the Gaussian bending energy can no longer be neglected. However, for different constant
values of b

G
 in the different phases the Gaussian bending energy contributes an energy proportional to the

geodesic curvature �g of the curve C. Thus, by the Gauss-Bonnet theorem, the Gaussian bending energy
becomes E

G
 = �C

 [b
G
]

 
�g 

ds and is even present without topological changes where [b
G
] �  denotes the

jump of b
G
 accross C. Through a comparison of experimental vesicle geometries and numerical results the

importance of the Gaussian bending energy in multicomponent vesicles has recently been verified in [5].

In [55] an order parameter u was introduced to characterize the different components. Since u is defined
as the non-dimensional difference of the concentrations of the two types of lipid molecules, one has
u � [–

 
1, 1], where the two components are characterized as the pure phases with u = 1 and u = –

 
1,

respectively. The line energy E
T
 is now approximated within a phase-field representation as follows:

2 1
|| || ( )

2TE u W u dA��

� ��
� � � �� ��� �
�

with � a small parameter and W(u) a double-well potential with minima for u = –
 
1 and u = 1. Furthermore

now the parameters in E
B
, E

G
 and E

S
 do depend on the composition u. We have b

N
 = b

N
(u), H

0
 = H

0
(u),

b
G
 = b

G
(u) and � = �(u), with an appropriate interpolation of the parameters within the diffuse interface

region.

Various models also introduce an ad-hoc additional coupling term of the form E
coupling

 = �� 
uH dA,

see [55, 32, 42] or E
coupling

 = �� 
uH 2dA, see [3]. Such coupling is of limited applicability. The more general

case involves concentrationdependent membrane properties which may induce morphological transitions
of the membrane. Note that the ad-hoc coupling above can be viewed as a special case of this more general
case.

Finally, assuming the Gaussian bending stiffness b
G
 to be constant in each phase, a phase-field

representation of the Gaussian bending energy E
G
 (without the constant term describing the Euler

characteristic) can be introduced as

,

1 1
[ ] ( ) 2 ( )G GE b u W u W u dA� ��

� ��� ��� �� �� �� �
� ,

with [b
G
] = b

G
(1) – b

G
(–

 
1) denoting the difference of the Gaussian bending stiffness in the two phases. The

energy is derived in analogy to a phase field approximation for Willmore flow [15, 38, 47, 17]. A heuristic
derivation for the phase-field approximation of the line energy and the Gaussian bending energy is given in
Appendix B.
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Summarizing, we obtain the following membrane energy E of a two component vesicle, which will be
used in the following.

E
 
[�, u] = E

B
[�, u] + E

G, � [�, u] + E
S 
[�, u] + E

T 
[�, u]

= 2
0

1
( ) ( ))

2 Nb u H H dA
�

��

1 1
[ ] ( ) 2 ( )Gb u W u W u dA��

� ��� ��� �� �� �� �
�

2 1
( ) || || ( )

2
u dA u W u dA�� �

�
� � � � �

�� � . (4)

4. DYNAMIC MODEL

Based on the membrane energy given in (4) we will derive thermodynamically consistent dynamic models.
The basic ingredients thereby are energy dissipation and mass conservation. We first recall the dynamics
for a single-component vesicle. For more complicated problems where the local properties of the membrane
depend on the lipid and cholesterol concentrations (i.e., surface phase) and there may be geometric constraints,
it is less straightforward to formulate dissipative dynamics laws. We present a class of model equations for
multicomponent vesicles using a variational approach together with mass conservation of the surface phase.

4.1 Classical Helfrich Model for Single-Component Vesicle

To begin, we review how a dynamic law for a membrane may be obtained from Newton’s law in the case
of the classical Helfrich model for a homogeneous membrane. Assuming that the normal bending stiffness
coefficient b

N
 is constant, the elastic bending energy E of the membrane is proportional to the integral of

the square of the mean curvature H of the membrane surface �, namely

21
[ ]

2B NE b H dA
�

�� � .

The corresponding elastic force is obtained as the variational derivative �E
B 

/�� of the elastic energy
with respect to variations of the interface. Assuming, that the inertia force of the membrane may be neglected
(i.e., the membrane is assumed to be massless), the following two cases may be distinguished:

(i) Local dynamics: the fluid inside and outside of the membrane is highly viscous and the dynamics
of the fluid may be neglected. In this case, the fluid establishes a local friction force F

v
 in opposite

direction of the local velocity v of the membrane, which is usually assumed to be of the form
F

v
 = –

 
kv, with a positive coefficient k > 0. Thus, Newton’s law yields the local evolution equation

BE
k

�
� �

��
v . (5)

This is a geometric evolution equation, which is known as the Willmore flow (e.g., [37]).

(ii) If the dynamics of the fluid is taken into account, a kinematic force balance at the membrane � is
posed between the membrane and the hydrodynamic forces

[ ] BE
�

�
� � �

��
v , (6)

where � is the fluid stress tensor. In addition, equation (6) has to be supplemented by an equation
for the viscous fluid, e.g., the Navier-Stokes or Stokes equation.
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In both cases, it can be seen that the total free energy is decreasing, i.e., the dynamics is dissipative.
This is consistent with the second law of thermodynamics since we implicitly assume that the temperature
is constant. In case (i) the time derivative of the total free energy E

B 
[�] is

1
0B

B

d E
E dA dA

dt k� �

�
� � � � �

��� �v v v .

In case (ii), the energy decreases due solely to viscous dissipation. That is, in the case of the Navier-Stokes
system, the total energy E = E

K
 + E

B
 where E

K
 = 1

2 � 
�

 
|
 
v

 
|2 d� is the kinetic energy with � the fluid density..

In the Stokes system, the total energy E = E
B
. In both cases,

:
d

E d
dt

� � � �� D D ,

where � is the viscosity, D = �v + �vT is the deformation tensor and D : D = �i j 
D

i j 
D

i j
 is the tensor product.

4.2 ENERGY DISSIPATION AND MASS CONSERVATION FOR TWO-COMPONENT VESICLES

As mentioned above, the two basic requirements for a consistent dynamic model are mass conservation
and energy dissipation. Mass conservation may be expressed as a global conservation law for the extensive
quantity u, i.e.,

0
d

udA
dt �

�� , (7)

whereas energy dissipation reads

[ , ] 0
d

E u
dt

� � , (8)

with E = E
 
[�, u] is given in (4). Assuming the phase field u to be extended as a constant in the normal

direction off the surface �, the time derivative of E is given by

t

d E E
E u dA dA

dt u� �

� �
� � � �

� ��� � v , (9)

with
 

E
u

�
�  

the variational derivative of E with respect to variations in u and
 

E�
��  

the variational derivative of E
with respect to variations in �. A careful derivation of these derivatives is given in Appendix C. We note,
that the partial time derivative �

t 
u is only well defined, if u is extended off the surface, see (1). Moreover,

also for the definition and calculation of the variational derivative
 

E�
�� , an extension of u is needed.

Starting with (9), a dynamic model has to give equations for the unknowns �
t 
u and v such that (7) and

(8) are satisfied. To achieve this, we will express �
t 
u in terms of the (also unknown) surface flux q. Then,

we will choose the velocity v and the flux q such, that the time derivative of the energy is a negative
definite quadratic form in v and q thus ensuring maximal dissipation. This approach is analogous to the
well-known gradient flow formulations.

For a given tangential surface flux q, we assume the local continuity equation (see [19])

u u � �� � � � �� �v q� , (10)

which guarantees the global conservation law (7). Furthermore, using (2) and the assumption that u is
extended off the surface as a constant in the normal direction, equation (10) may as well be written as

( )t u u uVH� �� � � � � � �� �T q . (11)



THERMODYNAMICALLY CONSISTENT MODELS FOR TWO-COMPONENT VESICLES 25

We now use Eq. (11) as a definition for �
t 
u in Eq. (9) and obtain

d
E

dt
 = ( ( ) )

E E
u uVH dA dA

u� �� �

� �
� � � � � � � � �

� ��� �T q v

=
E E E E E

V uH u dA
u u u� ��

� �� � � �� � � � �
� � � � � � � � �� �� � � �� �� � �� �� � � �� �

� q n T (12)

= ( )
E E E E

u V uH dA
u u��

� �� �� � � �
� �� � � � � �� �� �� �� � ��� �� �

� q T n T . (13)

Here we have used the integration by parts. Note, that in Eq. (13) we have grouped together the diffusion
flux q and the convective flux uT, whereas in (12), we assume the dissipative diffusion flux q and the
convective flux uT to be independent.

Following the splitting in (12), we may take

q = u

E

u�

�
�� �

�

V = V

E E
uH

u

� �� �
�� � �� ��� �� �

n

T = ( – )T

E E
u

u�

� �� �
�� � � �� ��� �� �

I n n ,

for some positive kinetic coefficients �
u
, �

V
 and �

T 
, which in general can be arbitrary positive functions

depending on the local composition u. Here I denotes the identity matrix. With these definitions of the
unknowns q, V, T, the energy dissipation is indeed a negative definite quadratic form, being diagonal in
q, V, T:

2 2 21 1 1
0

u V T

d
E dA V dA dA

dt � � �
� � � � �

� � �� � �q T ,

and thus energy dissipation, and with it consistency with the 2nd law of thermodynamics is fulfilled. Together
with Eq. (11) we obtain the following evolution laws:

Problem 1: (unconstrained dynamics)

( )t u u uVH�� � � � �T  = u

E

u� �

� ��
� � � �� ��� �

(14)

V = V

E E
uH

u

� �� �
�� � �� ��� �� �

n (15)

T = ( – )T

E E
u

u�

� �� �
�� � � �� ��� �� �

I n n . (16)
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Eq. (14) is a convective Cahn-Hilliard type equation for u on an evolving surface. Resulting from the
way the equation is derived, u is a conserved quantity, which may also be directly verified since

( ) 0t u

d E
udA u u uVHdA dA

dt u� � �� � �

� ��
� � � � � � � � � � � �� ��� �

� � �T .

Eq. (15) generalizes the evolution law for the membrane (5). The latter is driven by purely geometric
forces whereas in (15) the second term yields a driving force being associated with the presence of different
lipid components. Eq. (16) determines the tangential velocity, which is not arbitrary, as in classical interface
problems.

Remark 1: An alternative way to derive evolution laws would be to use the splitting (13) and define
q + uT = – �

u 
�� 

E
u

�
�  

leading to

t u uVH� �  = u

E

u� �

� ��
� � � �� ��� �

V = V

E E
uH

u

� �� �
� � � �� ��� �� �

n

T = ( – )T

E�
� � �

��
I n n ,

with positive coefficients �
u
, �

V
 and �

T 
. The evolution for u in this case is independent of T. As for Problem 1,

one immediately verifies, that the energy is dissipative, and that u is a conserved quantity. For the special
case that E�

��  is in normal direction, i.e., (I – n � n) E�
��  = 0, these Eqs. coincide with Problem 1, if one

choses �
u
 = �

u
 + �

T 
u2 and �

V
 = �

V 
.

4.3 Constraints

The discussion so far has been for unconstrained evolution, which corresponds to a fully permeable vesicle
and flexible bonds between lipids, which allow for spatial variations. We now introduce various constraints
on volume and area. We will use Lagrange multipliers to enforce the constraints in the dynamical laws.

4.3.1 Volume Constraint

To ensure a constant volume

int ( )
Vol ( ) :

t
t dx

�
� � ,

of the interior domain �
int

(t) inside �(t), we introduce a Lagrange multiplier �
Vol

 = �
Vol

(t) and add the
volume constraint to the free energy to get the Lagrangian

L
 
[u, �, �

Vol
] = E

 
[u, �] – �

Vol
(t) (Vol(t) – Vol(0))

This leads to

Vol Vol ( ) (Vol( ) Vol (0))t

d d
L E VdA t t

dt dt �
� � � � � � �� .

Comparing with (12), dissipative dynamics are obtained along the same lines as above by defining the
normal velocity V as

V =V u + �
v 
�

Vol
,
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where V u denotes the unconstrained normal velocity as given by the rhs of (15). Moreover, the equations
for the tangential velocity and the conservation law for u are not affected, in particular we have T = T u. The
Lagrange multiplier �

Vol
 is uniquely determined by the constraint �� 

V
 
dA = 0 as

Vol

u

V

V dA

dA

�

�

� �
�

�
�

.

We thus obtain the following evolution equations:

Problem 2: (dynamics with volume constraint)

( )t u u uVH�� � � � �T  = u

E

u� �

� ��
� � � �� ��� �

(17)

V = VolV

E E
uH

u �

� �� �
�� � � � � �� ��� �� �

n (18)

T = ( – )T

E E
u

u�

� �� �
�� � � �� ��� �� �

I n n . (19)

�
Vol

 =
V

V

E E
uH dA

u

dA

�

�

� �� �
� � �� ��� �� �

�

�

�

n

(20)

Note that the Lagrange multiplier equation (20) makes the system of equations nonlocal.

Remark 2: A different approach to enforce volume conservations is to modify the evolution equation
for the normal velocity V and instead of Eq. (18) define

V = –
 
�� 

j (21)

j = V

E E
uH

u�

� �� �
�� � � �� ��� �� �

n . (22)

This naturally ensures volume conservation, as

0V

E E
VdA uH dA

u� �� �

� �� �� �
� � � � � � � �� �� ��� �� �� �

� � n . (23)

Eq. (21) is related to a conserved Willmore flow and will thus turn out to be a 6th order equation.
Besides this additional complication the dynamics will be different than the previously discussed approach
and a derivation from elastic theories seems not possible. However, the approach has the advantage to
remain local and has been used in a similar way in [10] in a diffuse interface context.

4.3.2 Area Constraint

To ensure a constant global area

( )
Area ( ) :

t
t dA

�
� � ,
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we need

Area ( ) 0
d

t dA HV dA HV dA
dt � �� � �

� � � � � � � � � � �� � �v T .

One may proceed along the same lines as with the global volume constraint by introducing a Lagrange
multiplier �

Area
(t) and adding the area constraint to the free energy to obtain the Lagrangian

L
 
[u, �, �

Area
] = E

 
[u, ��] – �

Area
(t)

 
(Area

 
(t) – Area

 
(0)).

We then have

Area Area( ) ( ) (Area ( ) Area (0))t

d d
L E t HV dA t t

dt dt �
� � � � � � ��

Thus instead of Eq. (15) we define

V =V u – �
v 
�

Area 
H,

in order to get maximal energy dissipation (provided the constraint is satisfied). Here, as above, V u denotes
the unconstrained normal velocity as given by the rhs of (15). Moreover, the equations for the tangential
velocity and the conservation law for u are not affected, in particular we have T = T u.

The equation for the Lagrange multiplier now follows from �� 
HV

 
dA = 0, which gives

Area

u

V

HV dA

H dA

�

�

� �
�

�
�

.

We thus obtain the following evolution equations:

Problem 3: (dynamics with area constraint)

( )t u u uVH�� � � � �T  = u

E

u� �

� ��
� � � �� ��� �

(24)

V = AreaV

E E
uH H

u

� �� �
�� � � � �� ��� �� �

n (25)

T = ( – )T

E E
u

u�

� �� �
�� � � �� ��� �� �

I n n . (26)

�
Area

 =
V

V

E E
H uH dA

u

H dA

�

�

� �� �
� � �� ��� �� �

�

�

�

n

(27)

As in Problem 2, the Lagrange multiplier equation (27) makes the system of equations nonlocal.

4.3.3 Local Inextensibility

A stronger constraint than area conservation is local inextensibility. Here we need to ensure for an arbitrary
portion � of �
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0
d

dA dA VH dA
dt � �� � �

� � � � � � � � �� � �v T .

We thus find that the velocity has to be divergence free

�� � v = – VH + �� 
T = 0. (28)

To incorporate this local constraint, we introduce a local Lagrange multiplier �
Inex

 = �
Inex

(X, t), which is
a function on �(t) and add the corresponding constraint to the free energy to get the Lagrangian

Inex Inex[ , , ] [ , ] ( ( ) (0))L u E u g t g dA
�

� � � � � � �� .

with g = (g
i j
) the induced metric, see Appendix A for a description. This leads to

Inex Inex Inex ( ( ) (0))t

d d
L E HV dA dA g t g dA

dt dt �� � �
� � � � � � � � � � �� � �T

Thus instead of Eqs. (15) and (16) we define

V = V u – �
V 
�

Inex 
H (29)

T = Tu – �
T 
�� 
�

Inex
(30)

in order to get maximal energy dissipation (provided the constraint is satisfied). Here, as above, V u and Tu

denote the unconstrained normal velocity and the unconstraint tangential velocity as given by the rhs of
(15) and (16), respectively. The equation for the Lagrange multiplier �

Inex
 is obtained by plugging Eq. (29)

and Eq. (30) into the constraint equation (28) as

�� � (�T 
�� 

�
Inex

) – �
V 
�

Inex 
H 2 = –

 
V uH + �� 

Tu.

We thus obtain the following evolution equations:

Problem 4: (dynamics with local inextensibility constraint)

t u u�� � ��T  = u

E

u� �

� ��
� � � �� ��� �

(31)

V = InexV

E E
uH H

u

� �� �
�� � � � �� ��� �� �

n (32)

T = Inex( – )T

E E
u

u� �

� �� �
�� � � � � � �� ��� �� �

I n n . (33)

�� � (�T 
�� 

�
Inex

) – �
V 
�

Inex 
H 2 = ( – )T V

E E E E
u uH H

u u� �

� � � �� � � �
�� � � � � � � � � �� � � ��� � �� �� � � �

I n n n (34)

In Eq. (31) we have used, that the velocity is divergence free. Note that the local Lagrange multiplier
�

Inex
 fullfills an elliptic partial differential equation on an evolving surface.

4.3.4 Volume and Area Constraint

The dynamics in the case of a global area and volume constraint is now simply obtained by using both
Lagrange multipliers �

Area
 and �

Vol
 of Problem 2 and Problem 3 and adding both constraints to the energy to

obtain the Lagrangian

L
 
[u, �, �

Area
] = E

 
[u, �] – �

Area 
(t) (Area(t) – Area

 
(0)) – �

Vol 
(t)

 
(Vol

 
(t) – Vol

 
(0)).
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leading to

V = V u + �
V 
(�

Vol
 + �

Area 
H)

T = Tu

Using �� 
V

 
dA = 0 and �� 

HV
 
dA = 0, the multipliers have to be determined from the linear system

Vol Area

2
Vol Area .

u
V V V

u
V V V

dA dA V dA

H dA H dA V H dA

� � �

� � �

� � � � � � �

� � � � � � �

� � �

� � �

We note, that in the case of constant �
V 
, the first of the two above equations may be used to eliminate

�
Vol

 by expressing �
Vol

 in terms of �
Area

.

We thus obtain the following evolution equations:

Problem 5: (dynamics with volume and area constraint)

( )t u u uVH�� � � � �T  = u

E

u� �

� ��
� � � �� ��� �

(35)

V = Vol AreaV

E E
uH H

u

� �� �
�� � � � � � �� ��� �� �

n (36)

T = ( – )T

E E
u

u�

� �� �
�� � � �� ��� �� �

I n n (37)

Vol AreaV VdA H dA
� �

� � � � �� �  = V

E E
uH dA

u�

� �� �
� � �� ��� �� �
� n (38)

2
Vol AreaV VH dA H dA

� �
� � � � �� �  = V

E E
H uH dA

u�

� �� �
� � �� ��� �� �

� n (39)

The Lagrange multiplier equations make the system of equations again nonlocal.

4.3.5 Volume and Local Inextensibility Constraint

Following the same lines as in the derivation of Problem 5, combining the two constraints of volume and
local inextensibility leads to

V = V u + �
V 
(�

Vol
 – �

Ines 
H)

T = Tu – �
V 
�� 
�

Ines

The Lagrange multipliers are then obtained by plugging these equations into the constraint equations

�� 
V

 
dA = 0 and –

 
VH + �� � T = 0. This leads to
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Problem 6: (dynamics with volume and local inextensibility constraint)

t u u�� � ��T  = u

E

u� �

� ��
� � � �� ��� �

(40)

V = Vol InexV

E E
uH H

u

� �� �
�� � � � � � �� ��� �� �

n (41)

T = Inex( – )T

E E
u

u� �

� �� �
�� � � � � � �� ��� �� �

I n n . (42)

�
Vol

 =
InexV

V

E E
uH H dA

u

dA

�

�

� �� �
� � � � �� ��� �� �

�

�

�

n

(43)

�� 
�
 
(�

T 
�� 

�
Inex

)
 
–

 
�

V 
�

Inex 
H 2

 
–

 
�

V 
�

Vol
 = ( – )T V

E E E E
u uH H

u u� �

� � � �� � � �
� � �� � � � �� � �� � � ��� � �� �� � � �

I n n n (44)

We thus have to deal with a nonlocal elliptic partial differential equation on an evolving surface in order
to determine the Lagrange multipliers.

4.3.6 Further Formulations

All constraints can be incorporated along the same lines also within the alternative formulation based on
the splitting (13) introduced in Remark 1. In a similar way combinations of area and volume constraints
can also be formulated based on the model introduced in Remark 2.

4.4 Coupling with Fluid Flow

The interaction of the vesicle with a viscous fluid in- and outside of the vesicle is of interest. It is
experimentally known that e.g., red blood cells may align under shear flow at moderate shear rates, however
if the blood is diluted with plasma the same cells undergo a tumbling process. A similar influence is observed
also for vesicles [34]. We therefore incorporate a viscous fluid flow in the dynamical description of
two-component vesicles. Instead of the evolution law (15) and (16) or its constraint counterparts we have
to solve a Navier-Stokes or Stokes problem in the time-dependent domain inside and outside of the
vesicle with a jump condition for the stress tensor � = – pI + �D, with pressure p, deformation tensor
D = (�v + �vT ), fluid velocity v and viscosity �, and a continuity condition for the velocity. The jump
condition is a generalized Laplace-Young condition of the form

[� � n]� = –
 
F,

where the force F is obtained by energy variation and thermodynamic consistency. The fluid flow inside
and outside of the vesicle

�
 
(�

t 
v + (v � �)

 
v) – � � � = b (45)

� � v = 0. (46)

with a density � and a body force b. Eqs. (45), (46) are supplemented by a farfield boundary condition
v = v�. The volume is now conserved as a result of the incompressibility condition of the fluid.

We thus obtain the following conditions on �.



32 INTERNATIONAL JOURNAL OF BIOMATHEMATICS AND BIOSTATISTICS (IJBB)

Problem 7: (unconstrained evolution with fluid flow)

( )t u u uVH�� � � � �T  = u

E

u� �

� ��
� � � �� ��� �

[� � n]� = ( )
E E E E

uH u
u u�

� �� � � �
� � � � � � �� ��� � �� �� �
n n I n n

[v]� = 0.

If we in addition incorporate area conservation we obtain

Problem 8: (area constrained evolution with fluid flow)

( )t u u uVH�� � � � �T  = u

E

u� �

� ��
� � � �� ��� �

[� � n]� = Area ( )
E E E E

uH H u
u u�

� �� � � �
� � � � � � � � �� ��� � �� �� �
n n I n n

[v]� = 0.

The Lagrange multiplier �
Area

 is now a functional of the fluid velocity v and is obtained by requiring

���Hv � n
 
dA = 0 where v is the full solution of the Navier-Stokes equation.

If we consider the local inextensibility constraint the problem reads

Problem 9: (local inextensibility constraint evolution with fluid flow)

t u u�� � ��T  = u

E

u� �

� ��
� � � �� ��� �

[� � n]� = Inex Inex( )
E E E E

uH H u
u u� �

� �� � � �
� � � � � � � � � � � �� ��� � �� �� �
n n I n n

[v]� = 0.

The Lagrange multiplier �
Inex

 is again a functional of the fluid velocity v and is obtained by requiring
–

 
v � nH + �� 

((I – n � n)
 
v) = 0.

5. EXAMPLES

5.1 Single-Component Vesicle with Volume and Local Inextensibility Constraint

As a first example we consider the case of a one component vesicle (i.e., u = 1), with volume and local
inextensibility constraint, as in Problem 6. Moreover, we restrict to the normal bending energy, i.e.

2
0

1
[ ] ( )

2 NE b H H dA
�

� �� � .
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In this case, the functional derivative of E is given by (see Appendix C, (64))

2 2
0 0 0

1
( (( )) ( )|| || ( ) )

2N

E
b H H H H S H H H�

�
� � � � � � �

��
n n n .

In particular E�
��  is in normal direction. Assuming also, that �

V
 and �

T
 are constant, Problem 6 simplifies to

V = Vol InexV

E
H

� ��
�� � � � � �� ���� �

n

T = – �
T 
�� 

�
Inex

�
Vol

 =
Inex

E
H dA

dA

�

�

� ��
� � �� ���� �

�

�

n

�
T 
�� 

�
Inex

 – �
V 
�

Inex 
H 2 – �

V 
�

Vol
 = V

E
H
� ��

�� �� ���� �
n ,

which is a highly nonlinear geometric evolution equation of 4th order for the normal velocity (related to
Willmore flow), which is coupled to a non-local elliptic partial differential equation of 2nd order for the
Lagrange multiplier �

Inex
 on the evolving surface and a 1st order equation for the tangential velocity T.

A parametric finite element front tracking approach is used to solve the above equations. The
discretization is obtained from the numerical approach for Willmore flow in [48], which is extended to deal
with the spontaneous curvature and the non-local elliptic PDE on the evolving surface to compute the
Lagrange multiplier. Briefely the numerical approach consists of (1) solve geometric evolution equation
for V u, (2) solve elliptic equation on the surface for �

Inex
 using V u, (3) calculate �

Vol
 using V u and �

Inex
, (4)

solve geometric evolution equation for V using �
Vol

 and �
Inex

, (5) solve for T using �
Inex

 and (6) update the
interface. The tangential velocity allows to maintain a regular mesh without further artificial mesh
modifications. Fig. 1 shows the evolution to a discocyte shape for H

0
 = 0, b

N
 = 1, �

V
 = 1 and �

T
 = 1.

Figure 1: Evolution of a Vesicle with Constant Lipid Concentration Under Volume and Local Inextensibility Constraint
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5.3 Two-Component Vesicle with Volume and Global Area Constraint

For recent numerical results for Problem 5 we refer to [57] using a phase-field approach and to [21] using
front tracking and parametric finite elements. We are not aware of simulation results for Problem 6.

5.4 Single-Component Vesicles with Global Area Constraint and Fluid Flow

Also fluid flow interactions have been considered for single-component vesicles. Under the same assumptions
as above Problem 8 reduces to

[� � n]� = Area

E
H

� ��
� � �� ���� �
n n

[v]� = 0.

Figure 2: Evolution of a Vesicle with Constant Lipid Concentration Under Volume and Global Area Constraint

5.2 Single-Component Vesicle with Volume and Global Area Constraint

With the same assumptions as before Problem 5 simplifies to

V = Vol AreaV

E
H

� ��
�� � � � � �� ���� �

n

Vol AreaV VdA H dA
� �

� � � � �� �  = V

E
dA

�

� ��
� �� ���� �

� n

2
Vol AreaV VH dA H dA

� �
� � � � �� �  = V

E
H dA

�

� ��
� �� ���� �

� n

which is again a highly nonlinear geometric evolution equation of 4th order for the normal velocity (related
to Willmore flow), which is coupled to a non-local algebraic system for the Lagrange multipliers. We e.g.,
refer the reader to [4] for a parametric approach for this problem and [57] for a phase field approximation
using a penalty approach instead of the Lagrange multipliers. We also consider a phase-field approximation
but with the Lagrange multipliers. The system is solved iteratively with a semi-implicit time stepping
scheme, treating all non-local components explicitly. Fig. 2 shows the evolution to a discocyte shape for H

0

= 0, b
N
 = 1 and �

V
 = 1.
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which serve as boundary conditions for the Navier-Stokes equation. For recent numerical results with flow
only in the interior we refer to [8]. Two dimensional simulations have also been considered within a phase
field approach, see e.g., [7].

5.5 Two-Component Vesicle with Local Inextensibility Constraint and Fluid Flow

We now consider Problem 9 with a stationary Stokes flow instead of the Navier-Stokes equations. The
problem reads in the two fluid phases

� � � = 0

� � v = 0

with a far-field boundary condition v = v�. We further assume that �
u
 is constant and use �� � T – VH = 0 to

regroup terms in (12) such that

( ) .

d E E E E E
E V uH u dA

dt u u u

E E E E E
V u u VH dA

u u u

� ��

� � ��

� �� � � �� � � � �
� �� � � � � � � �� �� � � �� �� � �� �� � � �� �

� �� � � � �
� � � � � � � � � � � � �� �� �� �� � �� �

�

�

q n T

q n T T T

This allows us to define (by considering in addition the Lagrange multipliers)

t u u�� � ��T  = u

E

u�

�
� �

�

[� � n]� = Inex Inex( )
E E E

H u
u� �

� �� � �
� � � � � � � � � � �� ��� �� �� �
n n I n n

[v]� = 0.

which differs from the formulation used in Problem 9. To determine the Lagrange multiplier the constraint
�� � T – VH = 0 is used with T and V the tangential and normal components of the Stokes velocity on the
membrane. We consider the normal bending and line energy, i.e.

E
 
[�, u] = 2 2

0

1 1
( ) ( ( )) || || ( )

2 2Nb u H H u dA u W u dA�� �

�
� � � � �

�� � ,

for which the variational derivatives are given in Appendix C, (64), (65), (68) and (69).

E�
��

 = 2
0 0( ( ) ( ( ))) ( ) ( ( ))|| ||b u H H u b u H H u S�� � � �n n

2
0

1
( ) ( ( )) , (Hess )

2
b u H H u H u u� � �� � � �� �� � �n X

2 1
|| || ( )

2
u H W u H� �

�
� � � � �

�
n n (47)
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2
0 0 0

1 1
( ) ( ( )) ( ) ( ) ( ( )) ( )

2

E
b u H H u H u b u H H u u W u

u �

� � � �� � � � � ��� � �
� �

. (48)

A pseudo-spectral boundary integral method is used to solve the highly nonlinear problem in 2d, see
[53] for details.We note that in 2d the variational derivative simplifies and especially the term with Hess

 
X

vanishes.

Briefely the nonlocal functional dependency of the fluid velocity on �
Inex

 is solved using an iterative
solver. Each iteration thereby requires the solution of the Stokes problem. The preconditioner used is based
on a small scale decomposition of the Stokes integral operators.

To compute �
Inex

 exploit the linearity of Stokes flow and decompose v = vArea + u with vArea = vu + �
Area

 w
the globally area preserving velocity field as in Problem 8 (with Stokes flow), u the correction to make this
velocity field locally inextensible, vu the unconstrained fluid velocity as obtained in Problem 7 (with Stokes
flow), w the solution of eqs. (45) and (46) with jump conditions [� � n]� = Hn and [w]� = 0. As the last
problem is independent of u it can be computed first and the obtained velocity w can be used to solve
Problem 8 (with Stokes flow) with vArea = vu + �

Area 
w in the evolution equation for u, with �

Area
 obtain form

�� 
H

 
(vu + �

Area 
w) � n

 
dA = 0

Area

uH dA

H dA

�

�

�
� � �

�

�
�

v n

w n
.

To obtain the correction u we solve Eqs. (45) and (46) with jump conditions [� � n]� = �� 
(�

Inex
 – �

Area
)

and [u]� = 0. Together with the constraint written as –
 
u � nH + �� 

((I – n � n)u) = vArea � nH – �� � ((I – n � n)
 
vArea)

we obtain a nonlocal system for �
Inex

.

Figure 3 Shows the influence of the surface phases on the tumbling of a two-component vesicle with
30-70 mixture under an extensional flow using b

N
 = (1 – u) + 0.5u, H

0
 = 5(1 – u) + 0.1u, b

G
 = 0, � = 0, �

u
 = 1,

� = 1 and v = (–
 
5x, 5y). The initial vesicle is defined by x

 
(�, 0) = 0.1 cos (�) and y

 
(�, 0) = sin (�), with an

initial concentration u
 
(�, 0) = 0.3 + 0.001 (cos (�) + cos (3�) + cos (4�)) for � � [0, 2�]. We further define

v� = (25y, 0), diffuse interface width � = 0.1 and line tension � = 100.

6. CONCLUSIONS

We have derived thermodynamically consistent models for two-component vesicles from a free energy
which accounts for bending, surface tension and phase separation. The basic ingredients were mass
conservation and energy dissipation. The resulting system of equations couples higher order convection-
diffusion equations of Cahn-Hilliard type on an evolving surface to the geometric evolution of the surface,
which is related to Willmore flow. The incorporation of constraints on volume and area or local inextensibility
couple the system of equations to additional non-local relations. Instead of the geometric evolution the
evolution of the vesicle can also be described through an interaction with a viscous flow field inside and
outside of the surface. This requires the solution of a Navier-Stokes or Stokes equation with higher order
jump conditions for the stress tensor. The model derivation is supplemented with numerical simulations.
The derived models can easily be extended to the case of multiple (more than two) components. Further
extensions might consider the effect of surface viscosity to account for the fluid like properties of the
membrane [22, 9, 45]. The applicability of the approach for cell membranes can only be qualitatively. A
quantitative treatment would require to consider additional effects, such as thermal fluctuations, membrane
bound protein or interactions with the cytoskeleton. For discussions on modeling differences between
vesicles and cell membranes we refer to [23, 24, 20, 59].
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Figure 3: Evolution of a Vesicle with an Initially Mixed Lipid Concentration Under the Influence
of an Extensional Flow and Local Inextensibility Constraint
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A. Differential Geometry

Although our object of interest is a moving surface � = �(t) � 3, we will neglect the time dependence of
� in the following, where we first introduce some basic differential geometric notations and recall some
basic identities, before we compute variational derivatves of the energies introduced in section 3.2,
equation (4). Although all notations and results in Appendix A and Appendix C are valid for arbitrary
dimensions, we restrict ourselves to the case of twodimensional surfaces.

We assume that � is a smooth, closed two-dimensional surface without boundary and the boundary
� = ��

int
 of a bounded, connected, open domain �

int
 � 3. Furthermore, we assume that � is given by a

smooth mapping

X : � � 2 � 3, X = X(z
1
, z

2
).

The Euclidean scalar product on 3 will be denoted by x � y = �i 
x

i 
y

i
. Derivatives (with respect to the

parametrization) are denoted by X
i
 := 

iz
�
�

X . The tangent space T
p 
� of the surface � at the point p = X(z

1
, z

2
) � �

is spanned by the tangent vectors X
1
, X

2
. Moreover, the inner normal of � is denoted by n.

Next we recall the definition of the first and the second fundamental form on �. The first fundamental
form g, also called the metric on �, defines a scalar produkt on each tangent space T

p
� and is taken to be the

restriction of the standard scalar produkt on 3

g
p 
(u, v) = u � v, u, v � T

p
�.

Here and in the following, the subscript p will be suppressed and we will use the following notation: for
u = u

i 
X

i
, v = v

i 
X

i
, where here and in the following the summation over repeated indices is understood, we

write

g(u, v) = �u, v�� = g
i j 
u

i 
v

j
, where g

i j
 = g(X

i
, X

j
).

Moreover, upper indices denote the inverse (gij)
– 1 = (gij). The norm on � is thus defined through the

following norm in each tangent space : || || : ,p u u u� �� � ��T . For X, Y � (T
p
�)3 we define

3

3

,
1

, : ,i i

i

X Y X Y ��
�

� � � �� � .

In a similar way, the second fundamental form is given by h
ij
 = I

 
I

 
(X

i
, X

j
) = –

 
n

i
 � X

j
 with I

 
I

 
(u, v) = h

ij 
u

i 
v

j 
.

This may also be expressed in terms of the shape operator S : T
p
� � T

p
� as I

 
I

 
(u, v) = g(Su, v), and therefore

S is given by S
ij
 = gik h

kj 
. This immidiately implies the Weingarten equations n

i
 = –

 
S

ij 
X

i
. The norm of S is

defined through || || ( )T
ij jiS tr SS S S� � .

The mean curvature we define through H = trS = �2
i = 1 

�
i
, with �

i
 the principal curvatures. Note that

||
 
S

 
||2 = H 2 – 2K, where K is the Gaussian curvature. The Christoffel symbols are given by �k

ij
 = 1

2  
gkl(�

i 
g

jl
 +

�
j 
g

il
 – �

l 
g

ij
).

We use the surface Laplacian �� = gij �
ij
 – gij �

ij
k
 
�

k
 and the surface gradient �� = gij X

i 
�

j
 and the following

identities see [58] and [48]

�� 
X = Hn, (49)

��� 
X, �� 

u�� = �� 
u = gij �

i 
u

 
X

j
(50)

and

�� 
n = – ||

 
S

 
||2 n – �� 

H, (51)

respectively.
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Furthermore, we denote the Riemannian connection by D. The Hessian Hess f : T� � T� of a function
f : G �  is defined as the covariant derivative of the gradient of f

(Hess f )Y := D
Y 
�� f (52)

for a vector field Y � T�. Then one obtains

��� ��� f, �� u��, �� 
w�� = �(Hess f )

 
�� 

w, �� u�� + ��� f, (Hess u)
 
�� 

w�� (53)

for functions f, u, w : � � . In addition, the Hessian is symmetric

�(Hess f )
 
X, Y �� = �X, (Hess f )Y ��. (54)

B. Motivation for Diffuse Interface Approximations

Here we give a motivation for the used diffuse interface approximations of the line energy and the Gaussian
bending energy. We start with

• the line energy

2 1
|| || ( )

2TE u W u dA��

� ��
� � � �� ��� �
� .

The energy can be viewed as a Ginzburg-Landau type energy defined on a surface. Used within a
conserved evolution for u on a stationary surface the equation reads

�
t 
u = �� 

�

� =
1

( )u W u�

� ��� � �� �� ��� �

which is a Cahn-Hilliard equation on a stationary surface. Its counterpart in 2 is known to reduce
for � � 0 to the Mullins-Sekerka problem, see [46]. If we assume that this limit also holds on a
surface, we obtain the surface Mullins-Sekerka problem

DG m = 0 on ��\ 
C

� = ��
g

on C

v
g
 =

1

2

� ���
� ��� �m

on C,

with �
g
 the geodesic curvature of the curve C, v

g
 the intrinsic normal velocity of the curve C and m

the conormal to the curve C. The equations can also be derived directly from the line energy E
T
 = �C 

�
 
ds

introduced in [33], which is the motivation for using the line energy above.

The Gaussian bending energy has not been analyzed before using a diffuse interface approximation.
The motivation for

• the Gaussian bending energy

,

1 1
[ ] ( ) 2 ( )G GE b u W u W u dA� ��

� ��� ��� �� �� �� �
�

results by analogy from a phase-field approximation for theWillmore energy. In [38, 17, 47] it is
shown that E

Willmore
 = 1

2 �C 
H2dA can be approximated by
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2

Willmore, diffuse

1 1 1
( )

2
E u W u dx

�

� ��� ��� �� �� �� �
� �

with a phase-field variable u, a double well potential W(u) ~ (1 + u)2 (1 – u)2 and a domain �
~
 � 3

including �. This result was extended in [18] to approximate E
Helfrich

 = 1
2 �� 

(H – H
0
)2dA by

2

Helfrich, diffuse 0

1 1 1
( ) 2 ( )

2
E u W u W u H dx

�

� ��� ��� � �� �� �� �
� � .

With H
0
 = –

 
1, the Helfrich-energy contains the term � � 

H
 
dA. Using the known diffuse interface

approximations from the remaining terms 1
2 �� 

H2dA and 1
2 �� 

1
 
dA the diffuse interface approximation for

�� 
H

 
dA must read

curvature, diffuse

1
( ) 2 ( )E u W u W u dx

�

� ��� ��� �� ��� �
� �

Assuming that this result can be carried over to curves on surfaces, E
G, � gives a diffuse interface

approximation for the Gaussian bending energy E
G
 = �C 

[b
G
]

 
�

g 
ds.

Neither formal nor rigorous results for the convergence of these diffuse interface energies on surface to
their sharp interface counterparts for curves on surfaces are known. So the model is based on the assumption
that results known in 2 can be carried over to surfaces by simply replacing the operators by their geometric
counterparts.

C. Variational Derivative

We provide the variational derivatives of E with respect to � and u. The calculations closely follow the
approach in [58]. Similar results can be found in [21, 1]. The variation with respect to � we denote by
X
—

 
(z

1
, z

2
, �) := X

 
(z

1
, z

2
) + ���(z1

, z
2
) with a vector valued function � : � � 3 and � � I for some open

interval I �  with 0 � I. Furthermore we will use the operator 0
: |d

d � ��� � . For variations with respect to u
we use � : � �  and u– = u + ��. Accordingly, all quantities depending on one of the previous variations are
denoted in the same way.

In order to compute the variation of the energy we need the following variations, where we use the
general assumption that u is extended as a constant in the normal direction.

Lemma 1:

�
 
(d

 
A
—

) = ��� 
�, �� X��, 3 

dA, (55)

�
 
(g— ij) = –

 
gki (�

k 
� � �

l 
X + �

l 
� � �

k 
X)

 
glj, (56)

�
 
H
—

 = 2��� 
�, �� 

n��, 3 + �� 
� � n = �� 

(� � n) – � � �� 
n, (57)

�
 
u— = � � ��� 

u, �� 
X�� = � � �� 

u. (58)

Proof: We only sketch the proof and follow the calculations in [58]. We use the summation convention
and write

� = gij � � X
i 
X

j
 + � � nn.  (59)

One essential result that is needed is the variation of the metric

� g— ij = �
i 
� � �

j 
X + �

j 
� � �

i 
X. (60)
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For a differentiable matrix A = A
 
(�) � d � d with some dimension d �  one has

1

0 0

det ( ) det (0) (0) ( )
d d

A A tr A A
d d

�

� � � �

� �
� � �� �� �� �� �

.

Because det ( )ijdA g dz�  we get

3,

2 ( ) (det ) det ( ) ( )

2 , ,

ij ij
ij ij ij i j j idA d A g dz g g g dz g dA

dA� � �

� � � � � � � � � � � � � � �

� �� � � ��

X X

which yields (55). The proof of (56) easily follows from (60). In order to obtain

( ) ( ) ( ) ( )ij ij ij
ij ij ijH g h g h g h� � � � � � �

one needs to compute

( ) ( ) ( )ij ij ij ijh� � � � � � � � � � � � �X n X n X n .

After some calculations one obtains

( )ij ij
ij ijg g� � � � � � �X n n

as well as

( )ij ij l
ij ij lg g� � � � � � � � �X n n .

Form this we get

ij
ijg h �� � � � �n . (61)

From (56) one gets

3,
( ) 2 2 ,ij lj

ij kj l kg h g S � � �
� � � � � � � � �� � � �X X ,

and finally we arrive at (57). The proof of (58) easily follows from (59).

In the following section we compute the variational derivatives of E separately for each contribution
E

B
, E

G, �, ES
 and E

T 
. Thereby, we consider variations

0
:( , ; ) ( , )

d
E u E u

d� � �
� � � � ��

�
X X (62)

and

0
:( , ; ) ( , )u

d
E u E u

d � �
� � � � ��

�
X X . (63)
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C.1 Normal Bending Energy

The functional derivative of E
B
 with respect to � reads:

�� 
E

B 
(X, u; �) = 0 0 0( ) ( ( )) ( ) ( ( )) ( )b u H H u H dA b u H H u H u u dA

� �
�� � � � �� �

2 2
0 0

1 1
( ) ( ( )) ( ) ( ) ( ( ))

2 2
b u H H u d A b u u H H u dA

� �
�� � � � � �� �

= 0( ) ( ( )) ( ( ) )b u H H u dA� ��
� � � � � � ��� n n

0 0( ) ( ( )) ( )b u H H u H u u dA��
�� � � ���

3

2
0 ,

1
( ) ( ( )) ,

2
b u H H u dA� � ��

� � �� � � �� X

2
0

1
( ) ( ( ))

2
b u H H u u dA��
�� � � ���

= 0 0( ( ) ( ( ))) ( ) ( ( ))b u H H u dA b u H H u dA� �� �
� � � � � � � � �� �n n

0 0( ) ( ( )) ( )b u H H u H u udA��
�� � � ���

2 2
0 0

1 1
( ) ( ( )) ( ) ( ( ))

2 2
b u H H u dA b u H H u u dA� �� �

�� � � �� � � � ��� �X

0 0 0( ) ( ( )) ( ) ( ( )) ( )b u H H u H dA b u H H u H u u dA� �� �
�� � � �� � � � ��� �

2
0

1
( ) ( ( ))

2
b u H H u u dA��
�� � � ���

= 2
0 0( ( ) ( ( ))) ( ) ( ( )) || ||b u H H u dA b u H H u S dA�� �

� � � � � � � �� �n n

2
0

1
( ) ( ( ))

2
b u H H u H dA

�
� � � �� n .

where integration by parts and the identities in Eq. (49)-(51) have been used. Thus we obtain

2 2
0 0 0

1
( ( ) ( ( ))) ( ) ( ( )) || || ( ) ( ( ))

2
BE

b u H H u b u H H u S b u H H u H�

�
� � � � � � �

��
n n n . (64)

For b
 
(u) = 1 and H

0
(u) = 0 we obtain the well known variational derivative for the Willmore functional.

The functional derivative of E
B
 with respect to u reads:

0 0 0

1
( , ; ) ( ) ( ( )) ( ) ( ( )) ( )

2u BE u b u H H u dA b u H H u H u dA
� �

� �� � � � � � � � �� � .
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We thus obtain

0 0 0

1
( ) ( ( )) ( ) ( ( )) ( )

2
BE

b u H H u b u H H u H u
u

� � �� � � �
�

. (65)

C.2 Surface Energy

The functional derivative of E
S
 with respect to � reads

�� 
E

S 
(X, u; �) = ( ) ( ) ( )u u dA u d A

� �
�� � � � �� �

= 3,
( ) ( ) ,u u dA u dA� � � �� �
�� � � � � � �� � � �� � X

= ( ) ( ) ( )u u dA u dA u u dA� � �� � �
� �� � � � � � � �� � � � � �� � �X

= ( )u H dA
�

� � � �� n ,

which yields

( )SE
u H

�
� � �

��
n . (66)

The functional derivative of E
S
 with respect to u reads

( , ; ) ( )u SE u u dA
�
�� � � � � �� .

We thus obtain

( )SE
u

u

� �� �
�

. (67)

C.3 Line Energy

We now compute the functional derivative of E
T
 with respect to �, where we assume � = 1, for simplicity.

The energy can be rewritten as

21
( )

2
ij

T i jE g u u W u dA
�

�
� � � �
� �

and we obtain

�� 
E

T 
(X, u; �) = 2( ) ( ) || || ( )

2 2
ij ij

i j i jg u udA g u udA u dA� �� � �

� �
� � � � � � � � � � �� � �

1 1
( ) ( ) ( )W u u dA W u dA

� �
�� � � �

� �� �
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= ( )
2

ki lj
k l l k i jg g u udA

�

�
� � � � � � � � � � � �� X X

3

2

,
( , ) || || ,

2
ij

i jg u udA u dA� � � � � � � �� �

�
� � � � � �� � � � � � �� � � �� �X X

3,

1 1
( ) , ( ) ,W u u dA W u dA� � � � � �� �
�� � � �� � � � �� � � �

� �� �X X

= , ,u u dA� � � � � ��
� � �� � � � � �� � �� X

( , ),u u dA� � � � � ��
� � �� � � �� � � � �� X

3
2

,

1
|| || , ( )

2
u dA W u dA� � � � ��� �

�
� � �� � � � � � � �

�� �X X

= , ,u u dA� � � � � ��
�� � �� �� � � � �� X

2|| || ,
2

u dA� � � � ��

�
� � � �� � � �� X

2 1
|| || ( )

2
u H dA W u H dA� �� �

�
� � � � � � �

�� �n n .

From this one gets by (53)

2 2

2

1
, , || , || ( )

2 2

(Hess ) , , (Hess ) (Hess ) ,

1
|| ( ) .

2

TE
u u u u H W u H

u u u u u u

u H W u H

� � � � � � � � � � � � �

� � � � � � � � �

� �

� � �
� ��� �� � � � � � �� ��� � � � ��� �

�� �

� � � � � � � ��� � � � � � � � �

�
� ��� �

�

X X n n

X X X

n n

Therefore, by (54), we obtain the result

2 1
, ( ) || ( )

2
TE

u Hess u u H W u H� � � � �

� �
� ��� � � � ��� �

�� �
X n n . (68)

The functional derivative of E
T
 with respect to u reads

1
( , ; ) , ( )u TE u u W u dA� � ��

�� � � � � �� � �� � �
�� .

We thus obtain

1
( )TE

u W u
u �

� �� ��� �
� �

. (69)
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C.4 Gaussian Bending Energy

The Gaussian bending energy can be rewritten as

E
G, � 

[�, u] =
[ ] 1

( ) 2 ( )Gb
u W u W u dA��

� ����� �� �� �� �
�

= 2[ ] 2 ( ) [ ] ( ) 2 ( )G Gb u W u dA b W u W u dA�
�� �

�� � � �� �

= 2 2( )
[ ] || || [ ] ( ) 2 ( )

2 ( )
G G

W u
b u dA b W u W u dA

W u
�

� �� �

�
�� � �� � .

We define

2( )
( ) : [ ] , ( ) : [ ] ( ) 2 ( )

2 ( )
G G

W u
f u b g u b W u W u

W u
��

��� � (70)

and obtain

2
, [ ] || || ( ) ( ),GE u u f u dA g u dA� � �� �

� � �� � � . (71)

Analogously to the previous section, the functional derivative of E
G, � with respect to � reads:

�� 
E

G, � 
(X, u; �) = 2 2 2(|| || ) ( ) || || ( ( )) || || ( ) ( )u f u dA u f u dA u f u dA� � � �� � �

� � � � � �� � �

( ( ) ( ) ( )g u dA g u dA
� �

� � � �� �

= 2 , , ( ) 2 ( , , ( )u u f u dA u u f u dA� � � � � � � � � � � �� �
� �� � � � � �� � � � �� � � �� � � � �� �X X

3
2 2

,
|| || ( ) , || || ( ) ,u f u u dA u f u dA� � � � � � � � � �� �

�� � � � �� � � � � � �� � � �� �X X

3,
( ) , ( ) ,g u u dA g u dA� � � � � �� �
�� � � �� � � � �� � � �� �X X

= 22 , , ( ) || || ( )u u u f u dA u f u dA� � � � � � � � �� �
� � �� �� � � � � � � � � �� � X

2( ) || , ( )f u u dA g u dA� � � � � �� �
� � � �� ���� � � � � � �� �X X

= 22 , , ( ) || || ( )u u u f u dA u f u H dA� � � � � � � �� �
� � �� �� � � � � � � � �� � n

2( ) || , ( )f u u dA g u H dA� � � � �� �
� � � �� ���� � � � � �� �X n .

We thus obtain

, 2

2

2 ( ) , , ( ) || || ,

( ) || || ( ) ,

GE
f u u u f u u

f u u H g u H

�
� � � � � � � � � � �

� �

�
� �� �� � � � � � �� � � �

��

� � �

X X

n n
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and again, by (53) and (54), one gets

, 2( ) , (Hess ) ( )|| || ( )GE
f u u u f u u H g u H�

� � � � �

�
� �� � � � � �

��
X n n . (72)

The variation with respect to u reads

2
, ( , ; ) ( ) , ( ) || ( )u GE u f u u dA f u u dA g u dA� � � � � �� � �

� �� � � � �� � �� � ��� � � �� � � .

We thus obtain

, 2( ( ) ) ( )|| || ( )GE
f u u f u u g u

u
�

� � � �

�
� �� �� � � � � �

�
. (73)

C.5 Summary

Now, we can collect all results in order to obtain

E�
��

 = �� 
(b(u)

 
(H – H

0
(u)))

 
n + b(u)

 
(H – H

0
(u))

 
||

 
S

 
||2 n

– 
1

2
b(u)

 
(H – H

0
(u))2 Hn – �(u)

 
Hn + �

 
�

 
�� 

u, (Hess
 
X)

 
�� 

u
 
��

– 
2

�
||

 
�� 

u
 
||2� 

Hn – 
1

�
W

 
(u)

 
Hn + f

 
(u)

 
�

 
�� 

u, (Hess
 
X)

 
�� 

u
 
���

– f
 
(u)

 
||

 
�� 

u
 
||2� 

Hn – g(u)
 
Hn

E

u

�
�

 = b(u)
 
(H – H

0
(u))

 
H

0
�(u) + 

1

2
b�(u)(H – H

0
(u))2 + ��(u)

– ��� 
u + 

1

�
W �(u) – �� � ( 

f
 
(u)

 
�� 

u)+ f �(u)
 
||

 
�� 

u||2� +g�(u).
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