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ABSTRACT: Springtails (Collembola) are wingless arthro-
pods adapted to cutaneous respiration in temporarily rain-
flooded habitats. They immediately form a plastron, protecting
them against suffocation upon immersion into water and even
low-surface-tension liquids such as alkanes. Recent exper-
imental studies revealed a high-pressure resistance of such
plastrons against collapse. In this work, skin sections of
Orthonychiurus stachianus are studied by transmission electron
microscopy. The micrographs reveal cavity side-wall profiles
with characteristic overhangs. These were fitted by poly-
nomials to allow access for analytical and numerical
calculations of the breakthrough pressure, that is, the barrier
against plastron collapse. Furthermore, model profiles with well-defined geometries were used to set the obtained results into
context and to develop a general design principle for the most robust surface structures. Our results indicate the decisive role of
the sectional profile of overhanging structures to form a robust heterogeneous wetting state for low-surface-tension liquids that
enables the omniphobicity. Furthermore, the design principles of mushroom and serif T structures pave the way for omniphobic
surfaces with a high-pressure resistance irrespective of solid surface chemistry.

1. INTRODUCTION

Omniphobic surfaces have become a focus of interest due to
their maintenance of a heterogeneous wetting state, even with
very low-surface-tension liquids such as alkanes.1−9 In a
heterogeneous wetting state, the asperities of a rough surface
topography sustain trapped air inside the grooves underneath a
continuous liquid phase. This results in a composite interface
consisting of a liquid−air and a solid−liquid interface.10 A
thermodynamically stable heterogeneous wetting state for water
is usually achievable by means of a sufficiently high intrinsic
contact angle, θY, that should preferably be higher than 90°, and
an appropriately chosen roughness.11 Liquids with lower
surface tensions than water typically have an intrinsic contact
angle that is lower than 90° even on low energy surfaces such as
Teflon. Here, a heterogeneous wetting state is feasible by
inhibition of the liquid penetration into the grooves by
implementation of surface topography elements with overhangs
that were first mentioned by Herminghaus.12 Thermodynamic
analysis of wetting equilibrium states, dealing with the
minimization of the Gibbs energy of a system, have already
confirmed that rough surfaces with overhanging cross-sectional

profiles can maintain a heterogeneous state, even for a low
θY.

13−17 However, the heterogeneous wetting state is energeti-
cally metastable and can be transferred into a homogeneous
wetting state by means of applied energy.18 Thus, beyond
predicting the existence of the heterogeneous wetting state, the
stability against an enforced wetting transition and the
dynamics of this process are of great interest, in particular, in
technological applications.
The geometrical concept of omniphobic surfaces, which

bases on overhanging cross-sectional profiles, has already been
translated into different types of engineered rough surfaces such
as porous gold surfaces,19 certain polymer20 or silicon oxide5

structures, fiber mats,2,9,21 fabrics,4,6 pillar structures,1−3,7,8,22,23

or hierarchical structures.14,24 However, omniphobicity in
natural surfaces is rare. Many plant surfaces show a high
repellency against water droplets and a wetting resistance upon
immersion into water by the formation of an air layer (called

Received: October 22, 2012
Revised: December 17, 2012
Published: January 2, 2013

Article

pubs.acs.org/Langmuir

© 2013 American Chemical Society 1100 dx.doi.org/10.1021/la304179b | Langmuir 2013, 29, 1100−1112

pubs.acs.org/Langmuir


physical gill or plastron),25−27 but most of them are easily
wetted by low-surface-tension liquids. Some attention should
be drawn to springtails (Collembola) that are mainly soil-
dwelling wingless arthropods (Figure 1A). The skin of these

animals exhibits omniphobicity that enables the formation of
stable plastrons upon immersion into water (Figure 1B) and
even into many low-surface-tension liquids such as oil (Figure
1C) or ethanol.28 The plastron formation protects these skin
breathing animals against suffocation in their often rain-flooded
habitat. Furthermore, it was found that these plastrons show a
resistance against collapse at elevated pressures. For instance,
the plastron sustains more than 3500 hPa in water and more
than 1000 hPa in olive oil. The origin of this exceptional
wetting resistance is based on the hierarchically aligned micro-
and nanostructures of the skin surface,28 although a quantitative
theoretical elaboration is still missing.
The objective of the present work is to understand the

experimentally found wetting resistance of the springtail
skins28,29 and is organized in the following sections. In section
2, we develop an analytical approach for the determination of
the breakthrough pressure that a priori affords an evidence of
the wetting resistance. Furthermore, the breakthrough
phenomena canthotaxis and the Laplace breakthrough are
defined. In section 3, we present a numerical finite element
method for computing the dynamics of an enforced wetting
transition process. In subsection 4.1, we analytically calculate
and discuss the wetting resistance of the springtail skin based
on transmission electron micrographs of Orthonychiurus
stachianus using polynomial fits for detailed representation of
the sectional surface profiles. In subsection 4.2, we analyze the
wetting resistance of model profiles that basically consist of
straight lines and sharp edges. In subsection 4.3, we compare
and discuss the numerical results for all considered sectional
profiles with the analytical results of subsection 4.1 and 4.2 for
consolidation of the presented concept.

2. ANALYTICAL THEORY
Different concepts are currently being used to describe wetting
phenomena on solid surfaces. One common approach is
referred to as “energy concept” that is mainly used to predict
the existence of heterogeneous wetting states on rough surfaces.
The free enthalpy (Gibbs energy) of the three-phase system is
analyzed for minima in the energy function that correspond to
possible heterogeneous and homogeneous wetting states on a
certain rough surface.17,30 Supposing a liquid droplet, these
distinctive wetting states are associated to several macroscopic
contact angles and contact angle hysteresis.31,32 This means
that the same droplet can have different shapes on the same
solid surface in both wetting states. In this work another
approach is used, which is referred to as “pressure concept”.33

This concept allows for analytical determination of the wetting
resistance, that is, the robustness of the heterogeneous wetting
state. Herein, the penetration of an expanding fluid into the
micro- and nanoscopic grooves of rough surfaces is taken into
account, until the homogeneous wetting state is achieved. Note
that, both the pressure and the energy approach allow for the
estimation of the wetting transition barrier. However, while the
pressure concept commonly allows for analytical access in cases
of solid surfaces with complex shaped geometries the energy
concept essentially requires numerical models.34

Experimentally, the expansion of the liquid front can be
initiated by a continuously increasing hydrostatic pressure
inside the applied liquid phase. The resistance against a
pressure-induced wetting transition can be analytically
described by the Laplace’s law:

γΔ =p
R
2

(1)

supported by the Young’s equation:

θ
γ γ

γ
=

−
cos Y

sg sl

(2)

where γsg, γsl, and γ are the interfacial energies of the solid−gas,
the solid−liquid, and the liquid−gas phase boundary,
respectively, which are related to each other by the intrinsic
contact angle, θY. Throughout this work, θY was analytically and
numerically considered in the range between 0° and 120°,
which approximately corresponds to common natural surfaces
and liquids.18 The Laplace’s law describes the pressure
difference, Δp, across the liquid−gas interface for a certain
interface curvature radius, R, that is also connected to θY as will
be shown below.
Figure 2 illustrates two distinctive pressure-induced wetting

transition phenomena. In the initial situation (Figure 2A), a
liquid phase is applied atop a circular cavity with the radius, x,
and geometrical edge angle, Ψ, of the conical cross-sectional
profile. Immediately after application, the liquid is sustained
atop the cavity when Ψ < θY. We assume that the volume of the
liquid phase is sufficiently large compared to the cavity radius.
The curvature of the liquid−air interface inside the cavity has to
be equal to the curvature of the liquid phase itself, which is very
small. Consequently, the initial liquid−air interface inside the
cavity is assumed to be planar and can be represented by Δp =
0.
In formulating the wetting transition conditions and the

breakthrough pressure, we consider solid surfaces to be ideal
(rigid, insoluble, homogeneous, non-reactive) so that any
contact angle hysteresis can be neglected and the intrinsic

Figure 1. (A) Springtail colony of Orthonychiurus stachianus. (B, C)
Plastron surrounding the entire animal upon immersion into (B) water
and (C) olive oil. Scale bars: 1 mm.
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contact angle is the only independent variable. Throughout this
work, the edge angle, Ψ, is considered on the right-hand side of
the cavities. Furthermore, deformations of the liquid−air
interface caused by gravitational forces can be ignored due to
considerably small dimensions of the cavity (cf. Figure 4) in
comparison to the capillary length of the liquid phase, λcap = (γ/
ρg)1/2, which is ∼2.7 mm for water and ∼1.7 mm for hexane (ρ
is the mass density and g is the gravitational constant).
A continuously increasing hydrostatic pressure, ph, inside the

liquid phase induces a sagging of the liquid−air interphase into
the cavity due to the sustained pinning of the three-phase
contact line at the solid edge. The sagging interface has the
shape of a spherical cap with a curvature radius, R, that is given
by

θ π
=

−
R

x
sin( )app (3)

where x is the distance between the three-phase contact line
and the symmetry center of the cavity and θapp is the apparent
angle between the fluid interface and the horizon. For further
simplicity, we assume that the expanding liquid front does not
result in a compressed air reservoir inside the cavity (p0 =

const). This can be justified by the highly permeable cuticle of
the skin breathing springtails.35 The pinning of the three-phase
contact line at the edge is maintained until θapp achieves a
maximal value that can be described by the following
geometrical boundary condition:36,37

θ θ π= + + Ψ( )app,max Y (4)

A further increase of the hydrostatic pressure results in a
downward directed sliding of the three-phase contact line along
the cavity side-wall, that is, the breakthrough scenario that
finally results in a homogeneous wetting state.
With regard to the critical pressure difference that induces

the breakthrough scenario, two phenomena have to be
distinguished. The first phenomenon is referred to as
canthotaxis effect.38 Here, the critical pressure difference
directly corresponds to the geometrical boundary condition
(eq 4) as illustrated in Figure 2B and C. The critical pressure
difference can be calculated using eqs 1,3, and 4 and is denoted
as breakthrough pressure, Δpbreak:

γ θ
Δ = − =

+ Ψ
p p p

x
2 sin( )

break h 0
Y

(5)

Figure 2. Illustration of two distinctive pressure-induced wetting transition phenomena. (A) Liquid phase sustained atop a circular cavity with the
radius, x, and geometrical edge angle, Ψ, of a conical cross-sectional profile with intrinsic contact angle, θY. (B−E) In both considered phenomena,
the liquid−air interface sags into the cavity due to continuously increasing hydrostatic pressure, ph, whereas the air pressure, p0, is kept constant. (B)
In the canthotaxis case, the critical pressure difference is achieved when the apparent contact angle, θapp, of the sagging liquid−air interface becomes
θY + (π + Ψ) (eq 4). (C) The three-phase contact line immediately slides downward the cavity side-wall (symbolized by arrows). (D) The critical
pressure difference in the Laplace breakthrough phenomenon is achieved when the sagging liquid−air interface forms a semicircular profile that
corresponds to the minimal curvature radius, Rmin, which corresponds to the maximal Laplace pressure across the interface. (E) The liquid front
inevitably breaks through (symbolized by arrows) by further increasing hydrostatic pressure.
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The other phenomenon is referred to as Laplace breakthrough
and is illustrated in Figure 2D and E. Here, the sagged liquid−
air interface forms a semicircular shape before the geometrical
boundary condition (eq 4) is fulfilled. Thus, the semicircular
shape corresponds to the minimal achievable curvature radius
as well as the maximal Laplace pressure across the interface.
When the hydrostatic pressure inside the liquid phase still
increases, the liquid front inevitably breaks through. The
breakthrough pressure is determined by the Laplace law (eq 1)
with R = x:

γΔ = − =p p p
x

2
break h 0 (6)

and consequently depends only on the surface tension of the
applied liquid and the cavity radius. In sum, the robustness of a
heterogeneous wetting state can be determined either by the
canthotaxis effect (eq 5) or the Laplace breakthrough (eq 6).
The transition between both phenomena is given by the
relation between θY, the intrinsic contact angle and Ψ, the edge
angle:38

θ π≤ − ΨCanthotaxis effect:
2Y (7)

θ π> − ΨLaplace breakthrough:
2Y (8)

The previous approach illustrates the wetting transition for a
conical-shaped cavity using the edge angle, Ψ. In addition, this
angle describes the slope of the cavity side-wall that was
constant (Ψ := const) in our first considerations. Note, that for
more complex shaped cavities, such as discussed in the section
4, the slope along the cavity side-wall may change, so Ψ := f(x).
In general, the slope is given by the arctangent of the first
derivative of the function that describes the side-wall profile.

3. NUMERICAL SIMULATIONS
In addition to the analytical methods, we performed numerical
finite element method (FEM) simulations to gain insight into
the dynamics of the wetting transition process with respect to
all cross-sectional profiles, which are analytically discussed in
this work. In contrast to the analytical studies, the numerical
simulations were carried out using a two-phase flow model. To
remove singularities at the three-phase contact line, a diffuse
interface (phase-field) model was employed. It is based on a
phase field variable, ϕ, that ranges between ±1 in the bulk of
the two fluids and varies continuously across the interface with
finite thickness, d (Figure 3). Thus, the interface is not sharp,
but diffuse, which is a realistic assumption in nanoscopic
systems.39 The diffuse interface model for mixtures of two
immiscible and incompressible fluids leads to the following
Navier−Stokes−Cahn−Hilliard equations that have been
considered by several authors:40−43

ρ ϕ ν σ
ε

μ ϕ∂ + ·∇ = −∇ + ∇· + ∇pu u u D( )( ) ( )t (9)

∇· =u 0 (10)

ϕ ϕ ε ϕ μ∂ + ∇· = ∇· ∇−c Bu( ) ( ( ) )t CH
1

(11)

μ ϕ ε ϕ= ′ − ΔB ( ) 2
(12)

Here u, p, and μ are the velocity, pressure, and chemical
potential, respectively. The function B(ϕ) = 1/4(ϕ2 − 1)2 is a
double well potential, D = (∇u + ∇uT), cCH = 0.0002 is a

mobility constant, and σ = 250 a scaled surface tension.
Furthermore, we set the density of the upper fluid ρ(ϕ = 1) = 5
and the lower fluid ρ(ϕ = −1) = 0.1 with a linear interpolation
in between. The viscosity is ν = 1, and the interface thickness is
ε = 0.005. The capillary and Reynolds number can be calculated
by the given: Re = ρ/υ that 5 and 0.1 for the upper and lower
fluid, respectively, and Ca = υε/σ = 2 × 10−5. Note that these
numbers result in a laminar flow regime dominated by surface
tension. The dominating forces of our system are hydrostatic
pressure and interfacial tension. As boundary conditions, we
imposed a pressure difference Δp = ptop − pbottom between the
top and bottom boundary, which pushed the fluids downward
for Δp > 0. The pressure, ptop, is described and increased
linearly and slowly over time. Before the breakthrough, contact
lines slide across surfaces at fixed contact angle conditions: The
contact line movement is only driven by the increase in
pressure; if we stop increasing the pressure the contact line
stops moving as well. Thus, we are working in a quasi-static
regime as long as no breakthrough occurs. At the remaining
solid boundaries, we used the no slip condition u = 0.
Furthermore, we specified a contact angle condition, n·∇ϕ =
|∇ϕ|cos(θY), to enforce the prescribed contact angle, where n is
the surface normal.
The system of equations was solved by an FEM with a semi-

implicit Euler time stepping algorithm. The adaptive finite
element toolbox AMDiS44,45 is used for discretization. The
numerical results were compared to the analytical results using
the determined curvature of the fluid interface and the position
of the three-phase contact line for each time step. Thereby, the
curvature was calculated by integrating (3/(2√2ε))μ|∇ϕ|
across the interface.46

4. RESULTS AND DISCUSSION
4.1. Surface Topography and Wetting Resistance of

Springtails. Animal collection, in vitro cultivation, and sample
preparation for scanning and transmission electron microscopy
studies were similar as described by Helbig et al.28 In Figure 4A,
the characteristic nanoscopic skin morphology of Orthonychiu-
rus stachianus is depicted. The entire skin of the animal is
covered by a comb structure with hexagonally arranged cavities.
Furthermore, granules are located at the intersections of the
structure that finally results in a regularly arranged, but

Figure 3. Dynamic contact line in a diffuse-interface framework. The
phase-field variable, ϕ, represents the two fluid bulks by ϕ = ±1 and
the fluid−fluid interface by ϕ = 0 (solid line). The thickness of this
interface is d. The advancing of the three-phase contact line is
characterized by n the surface normal, u the velocity, and θY the
intrinsic contact angle.
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complex-shaped surface structure, which is typical for spring-
tails.28,29,35,47 Cross-sectional images of this surface topography,
taken by transmission electron microscopy, show different
shapes of cavities but all exhibit overhangs at their top edges
(Figure 4B−E). We suggest that the different shapes originate
from different sections through the cavities. We analytically
studied two distinctive cavity shapes (Figure 4B and E) to get a
first impression of their wetting performance, in particular, the
pressure resistance against the wetting transition from the
heterogeneous to the homogeneous wetting state, that is, the
plastron collapse. The overhanging part of the side-wall profiles
of these cavities were fitted with polynomials Fn(x) = Σi = 0

n aix
i

by measuring points using the open-source software ImageJ, v.
1.43,48 to get access to the distinctive shapes. The polynomial
fits with the highest coefficient of correlation have been chosen
for further analysis (applied with Origin, OriginLab, v. 8.6). The
origin of the coordinate system was set to be at the bottom
center of each cavity. The first cavity side-wall (Figure 4B) was
fitted using a fourth degree polynomial where a4 = 1.60 × 10−4,
a3 = −0.12, a2 = 32.895, a1 = −4035.09, and a0 = 185 224. The
polynomial is displayed as green line in Figure 5A and reflects
the characteristic overhang of the cavity in the range 156 nm <
x < 190 nm with a point of inflection at xinf = 175 nm in a
height of yinf = 17 nm. The second cavity side-wall (Figure 4E)
was fitted using a third degree polynomial where a3 = −3.14 ×

10−4, a2 = 0.19, a1 = −37.77, and a0 = 2674.80. Here, the
characteristic overhang is located in the range 140 nm < x <
260 nm with a minimum at xmin = 180 nm, a maximum at xmax
= 220 nm, and the point of inflection at xinf = 201 nm in a
height of yinf = 196 nm (Figure 5D). The local slope along the
side-wall of the cavity, Ψ, can be determined by the first
derivative of the polynomial:

Ψ = F xarctan(d /d )n (13)

The maximal slope along the fitted profiles are situated in the
point of inflections that gives a negative slope Ψ(xinf) = −20°
for the first (Figure 5A) and a positive slope Ψ(xinf) = 23° for
the second profile (Figure 5D).
Considering an applied liquid phase atop the cavity, the

Laplace pressures, Δp, across the liquid−air interface in a
heterogeneous wetting regime can be calculated by eqs 1, 3,
and 13, which gives:

θ
γ θ

Δ =
+

p x
F x

x
( , )

2 sin( arctan(d /d ))n
Y

Y
(14)

The calculations can be visualized in three-dimensional surface
plots (Figure 5B and E) depending on the current x-value of
the three-phase contact point and the intrinsic contact angle,
θY, where the characteristic shape of the plot depends on the
profile polynomial. The plots are divided into a bright blue
surface area for Δp(θY,x) > 0 and a dark blue surface area for
Δp(θY,x) < 0. The positive and negative Laplace pressures are
related to convex and concave interface curvatures with an
upward- and downward-directed capillary net force, respec-
tively. Between both areas, the contour line Δp(θY,x) = 0
represents equilibrium states with a planar liquid−air interface,
when the derivative of the pressure is positive (for further
details, see Appendix A). The surface plot of the first profile
(Figure 5B) shows that Δp(θY,x) > 0 is only achievable for
intrinsic contact angles higher than 20° due to the maximum
slope Ψ(xinf) = −20° along the profile in the inflection point,
according to eq 5. This means that applied liquids with θY < 20°
concerning the solid surface immediately soak the cavity
without any pinning along the cavity side-wall due to a
continuously downward-directed capillary net force. On the
other hand, a heterogeneous wetting state is achievable for all
θY > 20°. The yellow line in the surface plot represents the
maximum Laplace pressures, that is, the breakthrough
pressures, which represent the breakthrough barrier for Δpbreak
> 0. The low height of the cavity restricts the maximal
achievable breakthrough pressure in the real system due to a
contact of the sagging liquid−air interface with the bottom of
the cavity before the theoretical maximum occurs (see scenario
(a) in Figure 5A and the red shaded region in Figure 5B). The
contact with the bottom of the cavity would immediately result
in a homogeneous wetting state. The condition for a sagged
liquid−air interface that does not contact the bottom can be
given by Fn(x) + R(cos(θY + Ψ(x)) −1) > 0. This means that
the sagging height of the liquid−air interface with the curvature
radius, R, is smaller than the y-value of the three-phase contact
point. However, assuming water as applied liquid with a surface
tension of about 72 mJ/m2 and an intrinsic contact angle of θY
= 110° gives a pressure barrier of about 4300 hPa (Figure 5C).
The surface plot of the second and more pronounced

mushroom-like profile in Figure 5E shows that a pressure
barrier against homogeneous wetting, that is, a positive Laplace
pressure maximum, exists for all intrinsic contact angles. There

Figure 4. Skin surface topography of the springtail Orthonychiurus
stachianus. (A) Scanning electron micrograph reveals the nanoscopic
skin ornamentation with granules at the intersections of the underlying
comb structure. (B−E) Different sections through the skin, taken by
transmission electron microscopy, show cavities with characteristic
overhanging cross-sectional profiles (scale bars: 300 nm).
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even exist two positive maxima for θY > 67°, but the value of
the first maximum (that is located before the point of
inflection) is always higher than the second maximum (that
is located after the point of inflection) due to the higher
interface curvature in the first maximum. Therefore, the first
Laplace pressure maximum can be considered as the actual

breakthrough pressure. In contrast to the first considered
profile above, the red shaded area (scenario (a) in Figure 5D),
which represents the contact of the sagged liquid−air interface
with the bottom of the cavity, does not cut out any values of the
maximum Laplace pressure (yellow line in Figure 5E). On the
other hand, the area that is enclosed by a dashed red line also

Figure 5. Analytical calculations of the Laplace pressure across the liquid−air interface for certain positions of the three-phase contact point. (A, D)
Polynomial fits (green line) of two cavity profiles of Orthonychiurus stachianus, taken by transmission electron microscopy ((A) cf. Figure 4B; (D) cf.
Figure 4E). The blue curved lines schematically represent the advancing liquid front with different Laplace pressures, Δp, across the interface. The
scenarios (a) and (b) illustrate limitations given by the real system, for instance, (a) contact of the liquid−air interface with the cavity bottom and
(b) physically invalid solutions. (B, E) Surface plot of the calculated Laplace pressure (eq 14) depending on the x-value of the three-phase contact
point and the intrinsic contact angle, θY. The bright blue surface area represents the solutions Δp(θY,x) > 0, and dark blue surface areas the solution
Δp(θY,x) < 0. The yellow and the black line represent the maximal possible Laplace pressure and the position of the polynomial inflection point,
respectively. The red shaded areas (a) and the area that is encased with a dotted red line (b) represent physically invalid solutions. (C, F) Curves for
different intrinsic contact angles that represent calculated Laplace pressures for hexane and water with surface tensions of ∼18 and ∼72 mJ/m2,
respectively. The thick solid part of the curves represents the physically valid and relevant positive segments of the solutions.
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represents physically invalid values. Here, for considered three-
phase contact points x > xinf, the polynomial profile was
touched or crossed by the corresponding virtual liquid−air
interface more than one time, which typically occurs for a low
θY as shown in scenario (b) in Figure 5D. For explanation, each
pressure value corresponds to a certain curvature radius that is
related with a certain virtual circle (x′ − xm)

2 + (y′ − ym)
2 = R2,

with xm = 0 and ym as the coordinates of the circle center.
Therefore, the invalid values can be found numerically in (x′)2
+ (Fn(x′) − ym(θY, x))

2 = (R(θY, x))
2, by searching for x′ ≠ x

that solve the equation in the here considered profile range for
x > xinf. The array of curves in Figure 5F represents the
calculated Δp for certain values of θY, in particular, for hexane
and water with surface tensions of ∼18 and ∼72 mJ/m2,
respectively. To give some representative values, for an intrinsic

contact angle of about 20° in case of hexane or 100° in case of
water the maximal Laplace pressures are about 1000 hPa and
9000 hPa, respectively. Note, that the surface tension scales the
value of the Laplace pressure but does not change either the
shape of the surface plot nor the zero-crossing line for Δp(θY,x)
= 0 in the equilibrium state.

4.2. Wetting Resistance on Model Profiles. Three
distinctive model profiles, which are illustrated in Figure 6, were
studied in order to elucidate the wetting resistance of
overhanging structures more clearly. The developed geo-
metrical model is based on a transition from straight side-
walls to an abstract mushroom-like serif T-shape cross-sectional
profile. This transition enabled a stepwise increase of the profile
complexity. The maximum occurring slope (regarding the right
part of the cavity) is −90° for straight walls (Figure 6B), 0° for

Figure 6. Geometrical models based on nanoscopic surfaces structures of Orthonychiurus stachianus. (A) Simplified model surface: a comb structure
consisting of hexagonally arranged cavities that is based on a scanning electron micrograph showing the nanoscopic springtail skin morphology (cf.
Figure 4A); scale bar: 500 nm. In the sectional view, a complex shaped profile with overhangs at the top edges suggests the shape of small granules.
The maximum slope of the profile is depicted by Ψmax that is higher than 0°. The current diameter of the applied liquid front inside the cavity is given
by 2x. (B−D) Geometrical abstraction of the complex shaped profile into cavities with (B) straight walls where Ψmax = −90° and the diameter is 2a,
(C) T-shaped profiles where Ψmax = 0° and the diameter is 2a, and (D) T-shaped profiles with serifs where Ψmax = 90°, the diameter is 2a, and the
width of the serif is b.

Figure 7. Contour plot of calculated breakthrough pressures, pbreak, displaying the resistance against wetting transition for three distinctive types of
model structures (cf. Figure 6B−D). Calculations were performed for water (γ ∼ 72 mJ/m2) and depend on cavity diameter, 2a, and intrinsic contact
angle, θY. (A) Cavity with straight side-walls. The wetting transition occurs as canthotaxis breakthrough (eqs 5 and 7). (B) Cavity with T-shaped
sectional profile. The wetting transition occurs for θY ≤ 90° as canthotaxis breakthrough (eqs 5 and 7) and for θY > 90° as Laplace breakthrough (eqs
6 and 8). (C) Cavity with serif T-shaped sectional profile under consideration that the serif width is much smaller than the diameter of the cavity.
The wetting transition occurs as Laplace breakthrough (eqs 6 and 8).
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T-shaped profiles (Figure 6C), and +90° for T-shaped profiles
with serifs (Figure 6D). The qualitative principles of the model
profiles and their increased resistance against wetting are
illustrated in Figure 7. The values were calculated using the
surface tension of water, but the general trend is qualitatively
similar for all liquids. A heterogeneous wetting state in the case
of straight walls is only achievable for intrinsic contact angles
higher than 90° (Figure 7A). T-shape profiles with a maximal

slope of 0° can already resist a full wetting against liquids that
adopt intrinsic contact angles close to 0° (Figure 7B). There
exists a transition at θY = 90° between the canthotaxis and the
Laplace breakthrough according to eqs 7 and 8. For θY > 90°,
the breakthrough pressure scales only with the surface tension,
γ, of the applied liquid and inversely proportional with the
cavity radius, a, regardless of the intrinsic contact angle. On the
other hand, the pressure resistance sinks for θY < 90° with
decreasing θY. In a real system, which exhibits a maximal slope
of 0°, it may occur that for very small intrinsic contact angles
the breakthrough barrier is small enough to be overcome by
pressure fluctuations such as acoustical or mechanical
vibrations, which would result in an insufficient resistance
against wetting. Consequently, the resistance of T-shaped
profiles is less robust for very small intrinsic contact angles. A
further extension of pressure resistant sectional profiles are serif
T structures (cf. Figure 6D) that exhibit a maximal slope of 90°.
In a first consideration, we assume that the width of the serif, b,
is small compared to the radius of the cavity, a, that gives a ≈ a
+ b. The breakthrough pressure has the same value for all θY
due to the effect that the maximum Laplace pressure will always
occur when the liquid interface forms a semicircular shape
corresponding to the Laplace breakthrough (Figure 7C). Thus,
the T-shaped profiles with serifs provide a stable heterogeneous
wetting state irrespective of the solid and liquid chemistries for
small cavity dimensions.
We performed further analysis to gain a closer look into this

type of profile. We chose spatial dimension of such a T-shaped
profile with serifs similar to what has been found on the
springtail skin. Thus, the distance a + b was chosen to be
200 nm (Figure 8A). The height of the serif inside the cavity is
considered to be higher than a + b to inhibit the contact
between the sagged liquid−air interface and the bottom of the
cavity before the maximal Laplace pressure occurs. The surface
plot in Figure 8B does not display any negative values of the
Laplace pressure that indicate a pressure barrier against
homogeneous wetting for all θY, according to the displayed
results in Figure 7C. However, the surface plot exhibits a
discontinuity along the profile at the first and the second
pinning position of the three-phase contact line, that is, the
front and rear edge of the serif, respectively . After depinning at
the front edge, the three-phase contact line is sliding between
both edges with decreasing liquid−air interface curvature.
Consequently, the maximal Laplace pressure for each θY is

Figure 8. Analytical calculations of the Laplace pressure across liquid−
air interface for a serif T-shaped profile with b/a ratio of 0.5. (A)
Sectional profile of the serif T-shaped structure. The blue curved lines
schematically represent the advancing liquid front with different
Laplace pressures, Δp, across the interface. The scenario (c) illustrates
a physical limitation given by the contact of the liquid−air interface
with the inner cavity side wall. (B) Surface plot of the calculated
Laplace pressure (eq 14) depending on x-value of the three-phase
contact point and the intrinsic contact angle. The yellow and the black
line represent the breakthrough pressure and the position of the rear
edge of the serif, respectively. (C) Curves for different intrinsic contact
angles that represent calculated Laplace pressures for hexane and water
with surface tensions of ∼18 and ∼72 mJ/m2, respectively.

Figure 9. Ratio of serif width to cavity radius that determines at which
serif edge the breakthrough for different intrinsic contact angles
occurs. For contact angles higher than 90°, the breakthrough occurs
always on the front edge.
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located either on the front or on the rear edge. The array of
curves in Figure 8C for certain θY shows that the maximal
Laplace pressure for 50°, 80°, and 110° is already achieved at
the front edge whereas for 20° the maximal Laplace pressure is
achieved in the second pinning position on the rear edge. The
condition (Figure 9) that defines the position of the global
pressure barrier for each θY depends on the ratio of serif width,
b, and cavity diameter, a, and can be calculated by θ* =
arcsin(a/(a + b)) = arcsin(1/(1 + (b/a))). This condition
evolves for θY < 90° from the comparison of the minimal
curvature radius on the front edge, which is a/sin(θY), and on
the rear edge, which is a + b. For θY ≥ 90°, the maximum

pressure occurs always on the front edge. Consequently, for θY
< 90°, the maximal Laplace pressure occurs at the front edge for
θY > θ* and at the rear edge for θY < θ*. In sum, T-shaped
profiles with serifs enable a heterogeneous wetting state
irrespective of the solid surface chemistry and even of the
liquid surface tension. Varying lateral dimensions of the serif
structure, represented by different ratios b/a, will not change its
overall behavior due to the remaining qualitative shape of the
surface plot in Figure 8B. For instance, a T-shaped profile that
is given in Figure 8A can resist a homogeneous wetting up to
1800 hPa for hexane (γ ≈ 18 mJ/m2) and an arbitrary chosen
intrinsic contact angle of only 10°.

Figure 10. Numerical simulations displaying the pressure-induced wetting transition dynamics inside cavities with different cross-sectional profiles
and an intrinsic contact angle of 40°. Each panel consists of a scheme on the left-hand side, which illustrates the advancing of the sagging liquid−air
interface, and certain characteristic intermediate steps (that do not necessarily correspond to the same time steps in the simulations) on the right-
hand side. Step 1 shows the initial partial filling of the cavities by the applied liquid. Step 2 reveals the planar interface in equilibrium state inside the
cavity. Step 3 represents the maximal achievable curvature of the fluid interface corresponding to the maximal Laplace pressure, that is, the
breakthrough pressure. Step 4 shows the advanced wetting that finally results in a filled cavity. (A) Natural mushroom profile that corresponds to
polynomial in Figure 5D. (B) Cavity with straight side-wall profile that was immediately wetted without any applied pressure. (C) Cavity with T-
shaped sectional profile. (D) Cavity with serif T-shaped sectional profile with ratio of serif width to cavity radius of 0.5.
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4.3. FEM-Simulation of Wetting Dynamics. Numerical
simulations were performed to consolidate our analytical results
using the diffuse interface approach for two phase flow. In
addition, these simulations give an insight into the actual
dynamics of the wetting transition process concerning the
different profiles, which were analytically analyzed in the
sections 4.1 and 4.2. In Figure 10, the pressure-induced wetting
transition is illustrated for an intrinsic contact angle of 40° by
certain characteristic intermediate steps (that do not necessarily
correspond to the same time steps in the different simulations;
for supplementary movies M1−M4, see the Supporting
Information). Step 1 is characterized by a concave fluid
interface with a downward-directed capillary net force that leads
to an initial partial filling of the cavities by the applied liquid.
Step 2 shows the planar interface in equilibrium state inside the
cavity. Step 3 represents the maximal achievable curvature of
the fluid interface corresponding to the maximal Laplace
pressure, that is, the breakthrough pressure. Step 4 shows the
advanced wetting that would finally result in a filled cavity, that
is, the homogeneous wetting state. Obviously, all considered
profiles with overhangs can sustain a heterogeneous wetting
state on hydrophilic solid surfaces. Only the cavity with straight
walls without any overhang was immediately soaked by the
applied liquid phase.
Furthermore, the dynamics for intrinsic contact angles

between 10° and 120° in steps of 10° were computed
concerning the presented profiles. The breakthrough scenario
was again defined as the moment where the highest positive
curvature of the sagged fluid interface was achieved. The
determined normalized curvatures are plotted along with the
analytical results in Figure 11. The pressure-induced resistance
against a wetting transition significantly depends on the type of
profile. The highest resistance, particularly in the case of a low
θY, is achievable using T-shaped profiles featuring serifs, which
is in line with our analytical results. Structures with straight
walls afford a heterogeneous wetting state for intrinsic contact
angles higher than 90°. The robustness of such type of structure
increases with increasing θY, but is always lower than the
robustness of structures with overhangs such as the mushroom
structures and the sans-serif and the serif T structures. In
particular, sans-serif and serif T structures exhibit the same

robustness for θY > 90°, which is determined by the Laplace
breakthrough.
The overall trend is similar for both the numerical and the

analytical approach with the exception of some minor
differences due to distinctive assumptions of the fluid interface
dimensions. The interface in the numerical approach is not
sharp, but has a certain thickness in contrast to the analytical
approach. This suggests that the pinning of the three-phase
contact point is not located at a certain point of the edge on the
profile but is rather advancing around the edge during the
“pinning event” (for further details, see Appendix B).
Consequently, the local position of the three-phase contact
point varies close to the edge and has a direct influence on the
maximal achievable interface curvature. This effect becomes, in
a qualitative manner, realistic for real nano- and microscopic
structures that do not have ideally sharp edges38 (Figure B1D).

5. CONCLUSIONS

The robustness of plastrons formed upon immersion of
springtails into water or even low-surface tension liquids is
elucidated. A clear depiction of the origin of the wetting
resistance has been given by analytical calculations and
numerical finite element computations. The results show
good consistency with experimentally determined pressure
values28 and expand the understanding in field of wetting
robustness of overhanging surface structures. In principle,
mushroom-shaped profiles, which were proven on springtail
skin, often exhibit positive slopes along the profile as structural
requirement for high-pressure resistance even for low intrinsic
contact angles. Further analysis of three model profiles
supported this finding. It was found that the Laplace
breakthrough is irrespective to the intrinsic contact angle,
that is, the solid material parameter, and depends only on the
lateral cavity dimensions and the surface tension of the applied
liquid. In particular, the T-shaped profile with slim serifs
exhibited a robust wetting resistance even for low intrinsic
contact angles in contrast to often discussed T-shaped
profiles.1−3,7,17 There is no sense to increase the maximal
slope higher than 90°, which may lead to a snail profile at the
cavity edge, due to the already obtained robust heterogeneous
wetting state of serif T structures for all intrinsic contact angles
that can be only overcome by Laplace breakthrough.
Consequently, from the topographical point of view, a further
improvement of the profile shape for a higher wetting resistance
may not be achievable. On the other hand, the smooth
mushroom-shaped profile probably enables a better dewetting
process compared to the serif T structure with sharp edges for
low contact angles.
In reality, microfabricated surface structures do not have

perfect sharp edges, but always show some smoothness that
influences the pinning behavior.38 Thus, the numerical FEM-
simulations based on a diffuse liquid−gas interface may afford
the correction of the analytically calculated breakthrough
pressure due to blurring edge effects.

■ APPENDIX A. EQUILIBRIUM STATES INSIDE
CIRCULAR CAVITIES WITH OVERHANGS
DESCRIBED BY POLYNOMIALS

The three-phase contact line position of an equilibrium state,
which is characterized by a planar liquid−air interface, inside a
circular cavity with a sectional profile that can be described by a
polynomial of the type Fn(x) = Σi = 0

n aix
i, can be determined by

Figure 11. Maximally determined interface curvature (normalized) by
numerical simulations (scatters) and analytical calculations (lines) for
different cross-sectional profiles (cf. Figure 10) depending on the
intrinsic contact angle. These curvatures directly correspond to the
maximal achievable Laplace pressure, i.e., the breakthrough pressure.
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■ APPENDIX B. ADVANCEMENT OF A DIFFUSE
INTERFACE AROUND A SHARP EDGE IN
NUMERICAL SIMULATIONS

At sharp edges on a solid substrate, the surface normal, n,
discontinuously changes, which leads to pinning effects of a
three-phase contact line. Considering a sharp water−air
interface with thickness approaching zero, the three-phase
contact line is sustained at the edge until eq 4 is fulfilled. On
the other hand, a diffuse interface between two phase fields, ϕ,
with bulk values of ±1 that has a finite thickness, d, and a phase
field gradient, ∇ϕ, does not stay in a certain point during
pinning at the edges, but is rather advancing around this edge
while the phase field gradient passes by the edge. In other
words, the pinning of such an interface starts when the front
side of the interface reaches the edge and comes to an end
when the backside of the interface leaves the edge.
Consequently, the spatial position of the fluid−fluid interface
(ϕ = 0) varies during the pinning and depends on the interface
curvature and the interface thickness (Figure B1A−C). In
particular, this results in a broadening of the bases diameter of
the maximal sagging interface before breakthrough by the term
Δxbreak:

θ θ

ϕ

Δ = ≤ °

− +

x d /2sin , 90 , and

from 0.95 to 0.95
break 0.95 Y Y

(B1)

with the finite thickness of the interface, d0.95 = √2ε arctanh
0.95,46 and the intrinsic contact angle, θY. Thus, the broadening
effect has a direct influence on the maximal achievable interface
curvature that leads to lower pressure resistance compared to
the analytically determined values (Figure 11). Furthermore,
the diffuse interface model behaves similar to a sharp interface
model advancing along a rounded edge (Figure B1D) that is
more realistic for real applications.38
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Figure B1. Advancement of diffuse interface around sharp edge. (A)
In the diffuse interface model, the advancing fluid interface with the
finite thickness, d0.95, is moving around a sharp edge. In the
breakthrough scenario, the base diameter of the sagged fluid interface
is broadened by the term Δxbreak compared to the diameter at the
edge. The intermediate steps 1 and 2 represent the start and the end of
the “pinning event”, respectively. (B,C) The contour plots of the
interface (range of ϕ: −0.95, −0.75, −0.5, −0.25, 0 (blue solid line),
0.25, 0.5, 0.75, 0.95) are given for both intermediate steps in the
numerical simulations and the intrinsic contact angles, θY, of (B) 50°
and (C) 120°. (D) The diffuse interface model in combination with
sharp edges behaves like a sharp interface model advancing along a
rounded edge.
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