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Adaptive diffuse domain approach for calculating mechanically induced deformation
of trabecular bone

S. Alanda, C. Landsberga, R. Müllerb, F. Stengera, M. Bobethb, A.C. Langheinrichc and A. Voigta*
aInstitut für Wissenschaftliches Rechnen, TU Dresden, 01062 Dresden, Germany; bInstitut für Werkstoffwissenschaft, TU Dresden, 01062

Dresden, Germany; cDiagnostische Radiologie, Universitätsklinikum Giessen/Marburg, 35385 Giessen, Germany

(Received 22 September 2011; final version received 29 December 2011)

Remodelling of trabecular bone is essentially affected by the mechanical load of the trabeculae. Mathematical modelling
and simulation of the remodelling process have to include time-consuming calculations of the displacement field within the
complex trabecular structure under loading. We present an adaptive diffuse domain approach for calculating the elastic bone
deformation based on micro computer tomogram data of real trabecular bone structures and compared it with a conventional
voxel-based finite element method. In addition to allowing for higher computational efficiency, the adaptive approach is
characterised by a very smooth representation of the bone surface, which suggests that this approach would be suitable as a
basis for future simulations of bone resorption and formation processes within the trabecular structure.

Keywords: adaptive finite elements; diffuse domain approach; trabecular bone; mechanical loading

1. Introduction

The development and therapy of osteoporosis are the

subject of continuing intensive investigations. Mathemat-

ical modelling and simulation of bone growth can

contribute to the understanding of the underlying

mechanisms of bone-mass loss and of the characteristic

change of the bone mesoscopic architecture. As is well

known, bone remodelling is essentially affected by the

mechanical loading of the bone. The special pathway of

the transduction of mechanical signals to the bone cells is

not yet fully understood. Deformation of bone due to

external mechanical loading influences the complex

interplay between osteocytes, osteoblasts and osteoclasts,

where the osteocytes are thought to act as mechanosensors

(see e.g. Burger and Klein-Nulend 1999; van der Meulen

and Huiskes 2002; Robling et al. 2006; Huang and Ogawa

2010; Jacobs et al. 2010). Numerous studies have been

devoted to the modelling of the effect of mechanical

loading on bone remodelling, in particular on the evolution

of the trabecular bone architecture (e.g. Huiskes et al.

2000; Weinkamer et al. 2004; Ruimerman, Hilbers et al.

2005; Tezuka et al. 2005; Dunlop et al. 2009). Those

growth models include bone resorption by osteoclasts and

bone formation by osteoblasts, where the bone formation

rate depends on the mechanical load in the vicinity of the

osteoblasts. In such growth simulations, the calculation of

the mechanical load within the trabecular bone structure is

rather time consuming. A comparatively fast approximate

method (‘two-way painting’ algorithm) for estimating the

mechanical loading within the bone trabeculae has been

used in Weinkamer et al. (2004) and Dunlop et al. (2009).

For a more accurate calculation of the mechanical bone

deformation, the finite element method (FEM) has been

applied in Huiskes et al. (2000), Ruimerman, Hilbers et al.

(2005) and Tezuka et al. (2005). The base of numerous

finite element calculations is the description of the bone

morphology by means of a voxel model, which can,

for example, easily be derived from a micro computer

tomogram (mCT) of the trabecular bone structure.

The voxels of the mCT can directly be converted to

hexahedral finite elements. This leads to an artificial

voxel-roughness of the bone surface. To achieve high

resolution of the bone surface, a large number of

sufficiently small voxels are necessary. Finite element

calculations of the bone deformation on the base of such a

hexahedral mesh, naturally given from the mCT, are rather

time consuming because of the large number of degrees of

freedom. In particular, this slows down simulations of

bone growth where the mechanical bone deformation has

to be newly calculated all the time due to the permanently

changing bone structure. In addition to the computational

demand, the approach leads to non-smooth surfaces.

Subsequent smoothing might lead to distorted elements

and thus possibly to a corruption of the results. As an

alternative, unstructured tetrahedral meshes can be used to

resolve the trabecular bone structure. This, however,

remains a non-trivial task for complicated domains.

In this paper, we will present an alternative method for

calculating the mechanical loading of trabecular bone

structures by constructing an appropriate adaptive finite

element mesh of a domain in which the bone is embedded.
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A resolution on a voxel scale is no longer needed over the

whole sample. Instead the geometry is described implicitly

using a phase-field function, which allows an efficient

meshing of the trabecular bone structure. Such a diffuse

domain approach has been introduced in Li et al. (2009)

and applied to various fields, as, for example, chemotaxis

in scaffolds (Landsberg et al. 2011), heat transfer in foams

and fluid flow in microfluidic applications (Aland et al.

2010).

The aim of the present investigation is to demonstrate

the feasibility of the adaptive diffuse domain method for

calculating the mechanical loading of trabecular bone

structures. This will be done for specimens obtained as

sections of real trabecular bone. Representative parts of

these specimens will be subjected to artificial overall

deformations, which are thought to roughly resemble

typical loading situations of the trabecular bone.

This paper is outlined as follows. First, the origin and

imaging of the special bone specimens considered here are

briefly described. For completeness, we present then the

basic equations of elastostatics for isotropic material

properties together with the special boundary conditions

posed on the bone specimens. After describing the adaptive

diffuse domain finite element approach, the results and the

computational efficiency of the method are analysed.

2. Pre-processing

2.1. Micro-computed tomography

Two human bone specimens obtained for diagnostic

purposes from two different patients were obtained from

the Giessen Institute of Pathology, see Figure 1. Samples

were scanned en bloc by a mCT system (SkyScan1072

80 kV, Belgium) described recently (Langheinrich et al.

2004). The specimens were rotated at angular increments

of 0.458 and scanned 1808 around the vertical axis at

60 kVp. Acquisition time for each view was 2.4 s. The

relative position of the object to the source determines

geometric magnification and thus the pixel size explained

by the cone-beam geometry of the system. Maximum

possible magnification is limited by the specimen size,

which has to be within the cone-beam in its horizontal

diameter. We used high geometric magnification up to

80 £ . The volume images were reconstructed from the

angular views using a modified Feldkamps filtered back

projection (Feldkamp et al. 1989). The radiopacity of each

voxel used for image analysis and display was represented

by an 8-bit greyscale value. For this study, the mCT

scanner was configured so that the side dimension of the

cubic voxels was 8.0mm for specimen BS-IC and 9.8mm

for BS-VB (8-bit greyscale, see Figure 1). Next, the

resulting volume data-sets were binarised as reported

previously (Litzlbauer et al. 2010).

2.2. Implicit representation of volume data

Starting from the tomographic image of the bone structure,

we cut out a cuboid V ¼ ½0; a� £ ½0; a� £ ½0; c� where the

integers a and c define the size of the 3D image in voxels.

The region containing the solid bone V1 within the cuboid

V is then defined by white voxels in the binarised data-set.

Instead of explicitly defining the complicated domain

prescribing the bone material V1, we follow the ideas of Li

et al. (2009) using the so-called diffuse domain approach.

This allows to solve the governing equations in the regular

cuboidal domain V by using a phase-field describing the

interior domain V1 implicitly. We introduce the phase-

field function f to smoothly approximate the geometry of

V1: f < 1 in V1 and f < 0 in VnV1. Here, we use

fðxÞ ¼ 0:5ð1 2 tanhð3rðxÞ=1ÞÞ; ð1Þ

where rðxÞ is the signed distance from a point x [ V to the

interior boundary G1 :¼ ›V1n›V, see Figure 2 (left) for an

illustration. The thickness of the boundary transition layer is

given by 1. Accordingly, the sharp boundary of the original

domain is replaced by a narrow diffuse interface layer.

We generate the signed distance function from the

given voxel data. For details see Landsberg et al. (2011).

The regular cuboidal domain V is triangulated using

tetrahedral elements which are locally refined according to

the phase-field function f. Figure 2 (right) shows an

example of the adaptively refined mesh.

Figure 1. Bone specimen (BS-VB) from a vertebral body demonstrates regular bone architecture (left), whereas bone specimen (BS-IC)
from iliac crest shows severe osteoporosis (right). Both are confirmed by histopathology.

S. Aland et al.2
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3. Mathematical model

In this work, we assume that the mechanical stimulation

of trabecular bone growth occurs via the elastic

deformation of the trabeculae. The effect of the bone

marrow between the trabeculae on the bone deformation

is completely neglected. For the following calculations,

the mechanical material properties of the trabeculae are

supposed to be isotropic with Young’s modulus

E ¼ 10 GPa and Poisson’s ratio n ¼ 0:17, see Heinemann

(2010). The bone deformation is described by the

displacement vector u obeying the partial differential

equation

7�s ¼ 0 in V1; ð2Þ

with the stress tensor

s ¼ mð7uþ 7uT Þ þ lI7�u; ð3Þ

where I is the identity matrix, and m and l are the Lamé

coefficients

m ¼
E

2ð1 þ nÞ
; l ¼

En

ð1 þ nÞð1 2 2nÞ
:

The overall mechanical loading of a trabecular bone

structure depends on its special location within the whole

bone and on the external loading of the bone under

consideration. The trabecular architecture naturally

adapts to the typical loading situation. For demonstrating

our numerical method, we disregard here the actual

loading of the bone specimen and consider a simple

artificial loading, corresponding to a compression of the

trabecular bone. From the cylindrical bone specimens

shown in Figure 1, we had cut prismatic sections.

The coordinate system is chosen parallel to the edges

of the quadratic prism with side lengths a £ a £ c.

The trabeculae are cut along the prism faces. On all

surfaces of the cut trabeculae within the six faces of the

quadratic prism, we set all components of the displace-

ment vector as if it was a homogenous block of material.

Introducing the components u; v;w of the displacement

vector uT ¼ ðu; v;wÞ, this means

uj›V ¼ �1xx; vj›V ¼ �1yy; wj›V ¼ �1zz;

where �1x, �1y and �1z are the mean strains in the

corresponding directions. These mean strains are differ-

ently chosen for the two specimens under consideration. In

the case of the specimen from a vertebral body (BS-VB),

the values �1x ¼ �1z ¼ 21800 mstrain and �1y ¼ 22000

mstrain are adopted. Such a compressive deformation in all

directions is thought to be caused by the special form of

vertebral bodies (cf. Weinkamer et al. 2004). For the

specimen from iliac crest (BS-IC), a mean deformation

with �1z ¼ 22000 mstrain and �1x ¼ �1y ¼ 340 mstrain is

considered, which resembles a uniaxial compression with

an effective Poisson’s ratio of trabecular bone of n ¼ 0:17

(van Rietbergen et al. 1998; Park et al. 2007). A similar

specimen deformation (compressive in vertical and tensile

in horizontal directions) has been considered, for example,

in Ruimerman, Hilbers et al. (2005), in which, however,

the loads instead of displacements were imposed. As

further boundary condition we require vanishing traction

forces on the bone surfaces within the prism.

Using the diffuse domain approach, the governing

equations can be rewritten as

7�ðfsÞ ¼ 0: ð4Þ

This equation is now valid in the domain V. Using finite

elements, we end up with the discrete weak formulation

ð
V

fmð7uh þ7uTh Þ�7hdxþ

ð
V

fl7�uh7h dx ¼ 0; ð5Þ

where the Dirichlet boundary conditions have to be

incorporated into the discrete solution uh and the test

functions h. Using matched asymptotic expansion, the

reformulated equation can be shown to converge to the

original model and boundary conditions as the width of

the diffuse interface layer tends to zero (see Li et al. 2009).

To discretise the system, we use piecewise linear finite

elements within the adaptive finite element toolbox AMDiS

Figure 2. (Left) Schematic representation of the domains. The cuboid V is divided into the two regions V0 and V1 and the interior
boundary G1. (Right) The 0.5-level set contour of the phase-field f (upper region) and finite element mesh coloured by the value of f
(lower region) of the phase-field f. Colour online.
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(Vey and Voigt 2007). As numerical value for the interface

width we use 1 ¼ 85mm for specimen BS-VB and

1 ¼ 32mm for BS-IC. The different values result from

different geometric structures and are chosen such that the

smallest features can be resolved. Numerical tests on

benchmark problems show the independency of the solution

on 1, see Li et al. (2009). The mesh is refined along the

boundary G such that approximately five grid points are

across the diffuse interface. In the case of the voxel-based

calculations, piecewise linear hexahedral elements are used

which correspond to the voxels of the mCT.

4. Calculated bone deformation

As already mentioned in the introduction, the mechanisms

of mechanosensing and signal transduction to bone cells

are not precisely known. In particular, it is not clear which

mechanical quantity is sensed by the cells, especially by

the osteocytes. In previous studies the strain energy

density (Ruimerman, Hilbers et al. 2005; van Rietbergen,

Weinans et al. 1995) and the relative volume change (trace

of the strain tensor or volumetric strain; van Rietbergen,

Weinans et al. 1995; Dunlop et al. 2009) have been

considered as relevant mechanical quantities. For brevity,

we use in the following term volumetric strain (Ruimer-

man, van Rietbergen et al. 2005) for the trace of the strain

tensor. A comprehensive comparative analysis of different

mechanical quantities has been carried out in van

Rietbergen, Weinans et al. (1995) in which the strain

energy density, maximal principle strain and the

volumetric strain were used in simulations of bone

modelling and remodelling. In addition, also the spatial

gradients of these quantities were considered as relevant

mechanical variables. One of the unclear points of the

mechanosensory transduction in bone is to what extent the

osteocytes respond directly to bone deformation in their

immediate vicinity or whether they respond also to fluid

flow within the canalicular network connecting theosteo-

cytes in the bone (Burger and Klein-Nulend 1999; van der

Meulen and Huiskes 2002; Robling et al. 2006; Huang and

Ogawa 2010; Jacobs et al. 2010). In the latter case, the

spatial gradient of the volumetric strain would be more

relevant for driving fluid flow to trigger bone growth. Near

the bone surface, the flow from canaliculi to the bone

marrow (or vice versa) is also directly driven by the

volumetric strain within the trabeculae. For demonstration

purposes, we consider here the volumetric strain as a

relevant quantity for mechanosensing. All other mechan-

ical quantities mentioned above can easily be derived from

the calculated displacement field.

Figures 3 and 4 show comparisons of the displacement

fields for the two examples of human bone specimens,

calculated by the two numerical approaches. Figure 3

displays all three displacement components for the case of

the regular bone structure (BS-VB). For the osteoporotic

specimen (BS-IC), only the z-component of the displace-

ment is shown (Figure 4). The coloured images are in good

agreement. Note that the representation of the bone

morphology within the diffuse domain approach exhibits

very smooth surfaces, whereas for the other approach a

certain voxel-roughness is visible. All images are

generated by means of the software Paraview (www.

paraview.org). Figure 5 shows line plots of the z-

component of the displacement fields along the body

diagonal of the specimen for the more complex structure

BS-IC. The diagram generally reveals differences of less

than 1% between the two methods. The single spot with

larger differences corresponds to a very small piece of

bone, which is not sufficiently resolved by the used

meshes.

To summarise, the adaptive diffuse domain approach

and the voxel-based FEM show good agreement. The

geometries of the considered domains in the two

approaches differ only within the scale of one voxel and

differences in the displacements are mostly less than 1%,

at isolated spots less than 5%. However, the computational

effort for calculating the displacement field is reduced

within the diffuse domain approach compared to the

voxel-based FEM (see Table 1). In case of the bone

specimen BS-IC, the use of an adaptive mesh leads to the

reduction in the number of degrees of freedom by a factor

of 2. For specimen BS-VB, by using a coarser mesh, the

number of degrees of freedom decreases by a factor of 18,

while still yielding reasonable results.

As an example for a derived mechanical quantity,

which is thought to be related to the sensing of the

mechanical load by the osteocytes, the volumetric strain,

computed with both methods, is shown in Figure 6 for the

case of the osteoporotic bone specimen (BS-IC) with very

thin trabeculae. The coloured images are again in good

agreement. The image reveals localised regions of highly

strained trabeculae where a comparatively large mechan-

ical signal should trigger enhanced bone growth. Also a

line plot of the volumetric strain along a body diagonal of

the specimens generally shows good quantitative agree-

ment of the methods within few percents, except for very

thin trabeculae (Figure 7).

5. Conclusions

The described diffuse domain approach provides an

efficient alternative to voxel-based finite element calcu-

lations with the advantage to deal with smooth surfaces.

Furthermore, the approach only requires standard

numerical techniques. Starting from volume data-sets of

a mCT scanner, an implicit representation of the geometry

can be computed and used to represent the domain of

interest within the computational model. Combined with

S. Aland et al.4
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Figure 3. Bone specimen BS-VB: the three components of the displacement field u from top to bottom. (Left) Results obtained with
adaptive diffuse domain approach; (right) results obtained using voxel FEM. Colour online.

Figure 4. Bone specimen BS-IC: comparison of the z-component of the displacement fields u, calculated with the adaptive diffuse
domain approach (left) and the voxel-based FEM (right). Colour online.

Computer Methods in Biomechanics and Biomedical Engineering 5
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an adaptive mesh refinement algorithm, the method also

allows for fast multilevel solvers and thus scales on

parallel systems. With the available computing power of

high performance computers, this will allow to resolve

large bone specimens. The accuracy and efficiency of the

approach which is demonstrated here only for a linear

elasticity problem with isotropic material are expected to

remain for non-isotropic and nonlinear behaviour.

Due to the potential computational efficiency and the

smooth representation of the trabecular bone surface, the

presented phase-field approach seems to be suited as base

Table 1. Comparison of the number of degrees of freedom
between the adaptive diffuse domain approach and the voxel-
based FEM (MDOFs – million degrees of freedom).

Specimen Method MDOFs

BS-VB Diffuse domain 0.9
voxel-based FEM 16.7

BS-IC Diffuse domain 6.4
voxel-based FEM 14.3

Note: For the calculation on specimen BS-VB a coarse mesh was used,
demonstrating the capability of the phase-field method to adapt computational effort
to desired accuracy.

Figure 6. Comparison of the volumetric strain for the deformation of the osteoporotic bone specimen BS-IC calculated with the adaptive
diffuse domain approach (left) and the voxel-based FEM (right). The picture reveals localised regions of highly strained trabeculae. The
colour bar is cut to the shown range. Colour online.

Figure 5. Bone specimen BS-IC: comparison of line plots of the z-component of the displacement fields u, calculated with the adaptive
diffuse domain approach and the voxel-based FEM. The diagram reveals good quantitative agreement.

S. Aland et al.6
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for future simulations of the remodelling of trabecular

bone. The evolution of the bone surface of the trabeculae

due to bone resorption and formation processes could

favourably be described within a phase-field theory.
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