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Abstract Regions in the phase space of a dynamical system that resist mixing over a
finite-time duration are known as almost-invariant sets (for autonomous dynamics)
or coherent sets (for nonautonomous or time-dependent dynamics). These regions
provide valuable information for transport and mixing processes; almost invariant
sets mitigate transport between their interior and the rest of phase space, and co-
herent sets are good transporters of “mass” precisely because they move about with
minimal dispersion (for example, oceanic eddies are good transporters of water that
is warmer/cooler/saltier than the surrounding water). The most efficient approach to
date for the identification of almost-invariant and coherent sets is via transfer op-
erators. In this chapter we describe a unified setting for optimal almost-invariant
and coherent set constructions and introduce a new coherent set construction that
is suited to tracking coherent sets over several finite-time intervals. Under this uni-
fied treatment we are able to clearly explain the fundamental differences in the aims
of the techniques, and describe the differences and similarities in the mathematical
and numerical constructions. We explore the role of diffusion, the influence of the
finite-time duration, and discuss the relationship of time-directionality with hyper-
bolic dynamics. All of these issues are elucidated in detailed case studies of two
well-known systems.
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1 Introduction

The mathematical description of transport and mixing processes in dynamical sys-
tems has been the subject of intense research over the last two decades. Relevant
applications include astrodynamics, molecular dynamics, geophysical flows, and
biological systems, see e.g. [32, 46, 1, 47] for discussions and reviews of transport
and mixing phenomena.

Much research has focussed on the detection, approximation and analysis of the
geometrical structures that may explain transport barriers and the underlying trans-
port mechanisms in autonomous and nonautonomous dynamical systems, see e.g.
[39, 40, 46, 21, 22, 43, 47, 23] and references therein.

Probabilistic approaches provide a macroscopic view of the dynamics, studying
the global evolution of densities. These techniques can be used to detect regions
in phase space that remain coherent under the action of the dynamical system. In
autonomous systems such regions are termed almost-invariant or metastable sets,
introduced in the past 15 years in the context of dynamical systems [8, 9] and
time-symmetric Markov processes [10, 42, 24]. These concepts rely on the Perron-
Frobenius (or transfer) operator, a linear Markov operator. Subdominant eigenfunc-
tions of this operator are heuristically used to estimate almost-invariant sets; see
[14, 11, 12] for further extensions to this approach. Studies on the connections be-
tween eigenmodes of evolution operators and slow mixing in fluid flow can be found
in [31, 37, 38, 44], numerical investigations of stochastically perturbed transfer oper-
ators include [4, 2], and a related series of work beginning with [33, 34] decomposes
the phase space into ergodic components.

Building on the transfer operator framework, a mathematical definition and the
corresponding numerical treatment of coherent sets in nonautonomous systems has
only recently been proposed in the time-asymptotic [16, 17] and finite-time [19, 13]
settings. The mathematical concepts introduced in [11] for the autonomous case
and [19] for the finite-time case deal with finite-state Markov chains, i.e. discretized
transfer operators, and are thus purely finitary. Froyland [13] recently proposed a
transfer operator-based framework for identifying finite-time coherent sets, gen-
eralising the matrix-based approach of [19]. A transfer operator is defined via an
appropriately chosen stochastic kernel and is shown to be a compact L2-operator
with suitable spectral properties. Of particular focus in [13] is a Perron-Frobenius
operator pre- and post-composed with ε-diffusion; the influence of noise on the
spectrum and singular vectors is studied. While [13] focusses on developing an an-
alytic framework for the matrix setup used in [19], we will show in this paper that
the construction of [13] is rather generally applicable. We will adapt it to verify the
assumptions underlying the finitary almost-invariant sets framework in [11], and to
make further theoretical extensions to finite-time coherent sets concepts. We also
demonstrate how the duration of the finite-time interval under consideration and
the strength of diffusion influence the structure of the regions in phase space that
most resist mixing. Furthermore, we show how different concepts give rise to, or
suppress, the impact of time-directionality on almost-invariant sets and finite-time
coherent sets in strongly hyperbolic conditions.
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The paper is organized as follows. Section 2 begins by giving brief background
information on the Perron-Frobenius operator and is followed by three introductory
sections that describe the three dynamical settings considered in this chapter and set
up the associated problems of finding optimal almost-invariant and coherent sets.
Section 3 introduces the two key tools we will use: firstly, a variant of the Perron-
Frobenius operator developed in [13] that is adapted to the finite-time setting, and
secondly, some background on the minimax properties of eigenvectors of compact,
self-adjoint operators on Hilbert space. Section 4 contains the mathematical setups
to handle the three problems described in Section 2. Section 5 discusses the dif-
ferences and similarities of single- and bi-directional coherence, describes how one
can create a sequence of finite-time coherent sets, and summarises some further
mathematical properties of the framework. Section 6 details how one can numer-
ically implement the theory in Section 4 in each of the three dynamical settings,
and Section 7 contains the two main case studies, in which we explain the similari-
ties and differences of the three dynamical setups, and demonstrate the influence of
finite-time duration, diffusion amplitude, and connections with time-directions.

2 Transfer operators and three transport problems

Let X ,Y ⊂ Rd be compact, let ` denote Lebesgue (or volume) measure on X and Y ,
and consider a map T : X→Y , which is non-singular1. The map T may describe dis-
crete time dynamics, or may be a time-t map of a continuous time flow. The Perron-
Frobenius operator for T , denoted P : L1(X , `)→ L1(Y, `), describes the evolution of
densities under T . Its action on an f ∈ L1(X , `) is defined by insisting that

∫
A P f d` =∫

T−1A f d` for all (Borel-)measurable A ⊂ Y . In the situation where T is differen-
tiable, one has the equivalent definition of P: P f (y) = ∑x∈T−1y f (x)/|detDT (x)|,
where DT (x) is the spatial linearisation of T at x ∈ X . If T is differentiable and in-
vertible, as in the situation where T arises as a time-t map of a smooth flow, then the
expression above simplifies to P: P f (y) = f (T−1y)/|detDT (T−1y)|. The operator
P is bounded; in fact ‖P‖1 = 1, and preserves nonnegative functions; that is, P f ≥ 0
if f ≥ 0. A density is invariant under T iff the density is a fixed point of P. Further
details on the Perron-Frobenius operator may be found in [28].

In the following, we will introduce linear operators that are built around the
Perron-Frobenius operator. We will introduce some noise or diffusion to the purely
deterministic action of T , perform some “change of measure space” transforma-
tions, and combine these constructions with their duals in order to solve specific
dynamical transport problems. Before getting into details, we briefly describe the
problems we are interested in solving and prototype operator constructions for solv-
ing them.

1 A map T is non-singular if `(T−1A) = 0 when `(A) = 0; thus volume cannot be created from
nothing by pulling back with T , or alternatively cannot be completely destroyed by pushing for-
ward with T .
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An overarching goal is to detect and locate slow mixing dynamical structures.
These structures should be macroscopic in size and by “slow mixing” we have in
mind a geometric mixing rate that is slower than 1/Λ , where Λ is the largest2 pos-
itive Lyapunov multiplier. Thus, such “slow mixing” cannot be explained by local
stretching, but is instead due to the way in which the dynamics acts globally.

2.1 Autonomous, time-independent, or periodically forced
dynamics

In this setting we have a single map T : X → X and repeated iteration of T defines
the dynamics. The map T may arise as a time-t map of an autonomous ODE ẋ =
F(x). Alternatively, if the dynamics is periodic with period p, then in discrete time
one may study T = Tp ◦ · · · ◦T2 ◦T1 (or cyclic permutations) as a single map, or in
continuous time, ẋ = F(x, t), where F(x, t) = F(x, t + p) for all x ∈ X , t ∈ R, one
may set T to the time-p map of the ODE.

We assume that there is some T -invariant3 probability measure µ , and that one
is interested in tracking the transport with respect to this measure. For example, if
T is volume-preserving, then a natural choice for µ is Lebesgue measure.

As the dynamics is fixed in time, the global slow-mixing structures we seek are
also fixed sets. If a set A ⊂ X satisfies A ≈ T−1A, then the set of points that are
currently in A and will remain in A after one time step, namely A∩T−1A, is large
relative to A in the sense of µ-measure, i.e. µ(A∩T−1A)

µ(A) ≈ 1. Thus, the probability to
leave the set A in one time step is low; because of this property and the approximate
invariance4 property, these structures are known in the literature as almost-invariant
sets or metastable sets. We will be interested in optimal almost-invariant sets; opti-
mal in the sense that the conditional probability to leave the set in one time step is
minimal.

In terms of operators, in the following sections we will work with an operator L
that is dynamically similar to P, but with the property that L1X = 1X . The invari-
ance condition A ≈ T−1A can be translated into the operator equation L1A ≈ 1A.
For technical reasons discussed later (in addition to a formal definition of L), solv-
ing the problem of finding optimal almost-invariant sets is helped by forming a
symmetrised operator (L + L∗)/2, where L∗ is the dual of L. While the action of
L can be interpreted as a push-forward under the dynamics T , the action of L∗ can
be interpreted as a pull-back (applying T−1). Thus, our symmetrised operator is ef-
fectively checking how mass in transported in forward and backward time. Because
our measure µ is T -invariant, it does not matter in which time direction we check

2 As we are considering structures of full dimension, these structures will be stretched and mixed
according to the largest positive Lyapunov exponent.
3 A probability measure µ is called T -invariant if µ ◦T−1 = µ .
4 A set A is called invariant if A = T−1A.
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for mass loss from a set A; we do however benefit from optimality properties of
self-adjoint operators, so the symmetrisation construction is important.

2.2 Nonautonomous, time-dependent, or aperiodically forced
dynamics: single time direction

In contrast to the single-map setting above, we now have a sequence of maps Tt+τ ◦
· · · ◦Tt+1 ◦Tt over a duration of τ time steps. Alternatively, in continuous time, one
studies the flow of an ODE ẋ = F(x, t) from some initial time t to some final time
t + τ . In both cases, we construct a single map T : X → T (X), which in the discrete
time setting is simply T = Tt+τ ◦ · · · ◦Tt+1 ◦Tt , and in the continuous time setting is
the flow map of the ODE from time t to time t + τ .

Superficially, we may now appear to be back in the autonomous setting dis-
cussed in Section 2.1, however, there are two crucial differences. Firstly, in the
autonomous setting, our symmetrisation construction implicitly assumed that the
dynamics in backward time is T−1. However, in a general nonautonomous set-
ting, the backward time dynamics is T−1

t−τ ◦ · · · ◦ T−1
t−2 ◦ T−1

t−1, which is different to
T−1 = T−1

t ◦T−1
t+τ−1 ◦T−1

t+τ . Secondly, because of the general time-dependence, the
slowly mixing structures we are interested in may be time-varying, rather than fixed;
for example, consider oceanic eddies or atmospheric vortices, both of which move
over time. Because of this general time-dependence, we do not insist on tracking
the finite-time transport with respect to an invariant measure, but rather begin with
a user-specified probability measure µ at time t. This measure describes a mass dis-
tribution that we are interesting in transporting; by the final time t + τ , µ will have
transformed into another probability measure ν via the transformation5 ν = µ ◦T−1.

As our slowly mixing structures are time-varying, we call them coherent sets, to
distinguish them from the temporally fixed almost-invariant sets. If the sets At ,At+τ

satisfy At ≈ T−1At+τ then the set of points that are currently in At and will be
carried to At+τ after τ time steps, namely At ∩T−1At+τ , is large relative to At , i.e.
µ(At∩T−1At+τ )

µ(At )
≈ 1. Thus, the conditional probability to not be carried from At to

At+τ is low, and we say that such At ,At+τ constitute a pair of coherent sets. We
will be interested in optimal coherent sets; optimal in the sense that the conditional
probability to not be carried from At to At+τ is minimal.

In terms of operators, we again make use of an operator L that is dynamically
similar to P, where P is the Perron-Frobenius operator for the map T which governs
the dynamics from time t to t + τ; roughly speaking, L will have the property that
L1X = 1T (X). The equivariance condition At ≈ T−1At+τ can be translated into the
operator equation L1At ≈ 1At+τ

. Clearly, this operator equation cannot be directly
solved as an eigenequation as 1At and 1At+τ

may be very different functions. Instead,
our approach will be to push forward 1At with L, to obtain something close to 1At+τ

,

5 Note that ν = µ ◦T−1 is the natural push-forward of µ under T . For example if µ is supported
on a set A⊂ X , then ν(T (A)) = µ ◦T−1T (A)≥ µ(A) shows that ν is supported on T (A).
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and then pull back with L∗ to return to something close to 1At . The operator L and
L∗ will include a small amount of diffusive dynamics, and at the operator level,
the way in which mass is not carried from At to At+τ is by mass diffusing from
both At and At+τ . Leaving technical details for later, we consider eigenfunctions6

of L∗L (push forward from t to t + τ , then pull back from t + τ to t) to determine
the set At and eigenfunctions of LL∗ (pull back from t + τ to t then push forward
from t to t + τ) to determine the set At+τ . Both L∗L and L∗L are self-adjoint in
appropriate Hilbert spaces and we make use of associated optimality properties to
find the optimal pair of coherent sets.

2.3 Nonautonomous, time-dependent, or aperiodically forced
dynamics: both time directions

The dynamical setting is almost the same as in Section 2.2, except that we consider
two segments of time. Firstly, we consider dynamics from time t to t−τ1, governed
by a map T− and secondly from t to t + τ2, governed by a map T+. The maps T−
and T+ are generated in the same way as in Section 2.2. Our focus is on finding a
coherent set at the intermediate time t; one that is coherent in both7 forward and
backward time. Thus, we wish to select a triple of sets At−τ1 ,At ,At+τ2 with the
property that At−τ1 ≈ T−At and At+τ2 ≈ T+At . As in Section 2.2, the user prescribes a
probability measure µ at time t that represents a mass distribution we are interesting
in transporting.

In terms of operators, we again make use of operators L− and L+ that are dy-
namically similar to PT− and PT+ , where PT± is the Perron-Frobenius operator for
the map T±. The equivariance conditions At−τ1 ≈ T−At and At ≈ T−1

+ At+τ2 can be
translated into the operator equations L−1At ≈ 1At−τ1

and L+1At ≈ 1At+τ2
, respec-

tively. As in Section 2.2, these operator equations cannot be directly solved as an
eigenequation. In analogy to the single-direction case, our approach will be to push
forward 1At with L+, to obtain something close to 1At+τ2

, and then pull back with
L∗+ to return to something close to 1At ; this utilises the dynamics on the interval
[t, t +τ2]. Similarly, we also push forward 1At (under backward-time dynamics) with
L−, and then pull back with L∗− to again return to something close to 1At , however,
this time utilising the dynamics from t to t − τ1. Both L∗+L+ and L∗−L− are self-
adjoint in the same Hilbert space (anchored at time t). We may now average the
effect of the dynamics over the intervals [t− τ1] and [t, t + τ2] by averaging the op-
erators to form (L∗−L−+ L∗+L+)/2, again obtaining a self-adjoint operator, which
has the necessary optimality properties to find the optimal triple of coherent sets.

6 In numerical computations it is cheaper to compute singular vectors of L, than to form L∗L and
compute eigenvectors.
7 A similar result could also be achieved by a more direct application of the construction in the
previous section; we discuss this further in Section 5.2.
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3 Two key tools

In this section we introduce two key objects for the analysis that follows. The first is
the operator L, which acts as a building block for purpose-built operators for each
of the three dynamical settings we consider. The second is a class of self-adjoint
operators, which we use heavily to obtain optimality results.

3.1 A building block operator

Our dynamical system is acting on a subset M of Rd and our transport analysis will
be confined to a compact subset X of M and neighbourhoods of X and T (X). We
construct our basic building block operator L from the Perron-Frobenius operator
for T . The constructions here are common to the three settings we consider and may
be found in greater detail in [13]. Specialisations for the autonomous case will be
pointed out after the main construction. We endow X with a probability measure µ ,
which we assume is absolutely continuous with positive density hµ .

We begin building the operator L by pre- and post- applying diffusion to P.
We define a diffusion operator on X , DX ,ε : L1(X , `)→ L1(Xε , `) by DX ,ε f (y) =∫

X αX ,ε(y− x) f (x)dx, where αX ,ε : Xε → R+ is bounded and satisfies
∫

Xε
αX ,ε(y−

x) dy = 1 for all x ∈ X . Similarly we define DY ′ε ,ε : L1(Y ′ε , `) → L1(Yε , `) by
DY ′ε ,ε f (y) =

∫
Y ′ε

αY,ε(y− x) f (x)dx, where αY,ε is bounded and satisfies
∫

Yε
αY,ε(y−

x) dy = 1 for x ∈ Y ′ε . We think of Xε = supp(DX ,ε 1X ), Y ′ε = T (Xε) and Yε =
supp(DY ′ε ,ε 1Y′ε ). In terms of function spaces we have

L1(X , `)
DX ,ε−→L1(Xε , `)

P−→L1(Y ′ε , `)
DY ′ε ,ε−→L1(Yε , `) (1)

As an intermediate operator, we define Pε = DY ′ε ,ε PDX ,ε , our pre- and post- dif-
fused Perron-Frobenius operator. In general Pε 1X 6= 1Yε

; to obtain this property, we
perform a “change of measure” transformation, and define

Lε f = Pε( f ·hµ)/Pε(hµ); (2)

it is now obvious that Lε 1X = 1Yε
and in fact L∗ε 1Yε

= 1X ; see [13].
The setup described above covers both time-dependent situations under consider-

ation; the map T can control the dynamics over the interval [t, t +τ] as in Section 2.2
or over one of the intervals [t, t + τ2], [t− τ1, t] as in Section 2.3. In the autonomous
setting, there is one additional hypotheses, namely that hµ is fixed by the advective
and diffusive dynamics; that is8, Pε hµ = hµ . It follows that X = Yε ; examples of
such a situation include:

1. X is boundaryless (eg. a solid torus represented by a solid cube in R3, identifying
opposing faces),

8 In general, Pε hµ = hνε
, where hνε

is a density of the push-forward of hµ by the dynamics.
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2. X is an attractor,
3. X has boundaries, however, αX ,ε ,αY,ε are chosen in such a way that the diffusion

does not perturb points across the boundary of X .

From chapter 4 onwards, we will consider the situations where one chooses
αX ,ε = αY,ε = (1/`(Bε(0)))1Bε (0). Dynamically, this means that one diffuses uni-
formly over an ε-ball, then applies the deterministic dynamics T , the diffuses uni-
formly over an ε-ball again. We have chosen such αX ,ε ,αY,ε as these are very natural
choices of small random perturbations of the dynamics with bounded support. An
important property of our building block operator is compactness.

Theorem 1 ([13]). If Yε has finite Lebesgue measure and one chooses αX ,ε = αY,ε =
(1/`(Bε(0)))1Bε (0), then Lε : L2(X ,µ)→ L2(Yε ,νε) is compact operator.

3.2 Optimality properties of compact self-adjoint operators on
Hilbert space

We recall the minimax principle for compact self-adjoint operators, which forms a
key part of our approach. Let Q : H →H be a compact, self-adjoint operator on a
Hilbert space H . Then Q has only a countable number of distinct eigenvalues. We
enumerate the positive eigenvalues of Q, λ

+
1 ≥ λ

+
2 ≥ ·· · and the negative eigenval-

ues, λ
−
1 ≤ λ

−
2 ≤ ·· · , where the number of occurrences equals the multiplicity of the

eigenvalue. We choose orthonormal bases of eigenvectors u±l , enumerated so that
Qu±l = λ

±
l u±l . We may write

Q =
M−

∑
l=1

λ
−
l 〈·,u

−
l 〉u

−
l +

M+

∑
l=1

λ
+
l 〈·,u

+
l 〉u

+
l , (3)

where M± may be finite or infinite. (see eg. Theorem II.5.1 [6]).
If Q is also positive9 then

Q =
M+

∑
l=1

λ
+
l 〈·,u

+
l 〉u

+
l , (4)

where M+ may be finite or infinite. All eigenvalues of Q are nonnegative and are
denoted λ

+
1 ≥ λ

+
2 ≥ ·· · ; see eg. Proposition II.7.14 [6].

One has the following minimax principle (see eg. Theorem 9.2.4, p212 [3]):

Theorem 2. Let Q : H →H be compact and self-adjoint.

λ
+
l = min

V :codimV≤l−1<M+
max

06= f∈V

〈Q f , f 〉
〈 f , f 〉

, ` = 1, . . . ,M+ (5)

9 An operator Q on a Hilbert space H is called positive if 〈Qx,x〉 ≥ 0 for all x ∈H .
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and

λ
−
l =− min

V :codimV≤l−1<M−
max

06= f∈V

−〈Q f , f 〉
〈 f , f 〉

, ` = 1, . . . ,M−. (6)

Furthermore, the maximising f s are u+
l and u−l , respectively.

The eigenvalue we are particularly interested in is λ
+
2 . Specialising to H =

L2(X ,µ), with 〈 f ,g〉µ =
∫

f ·g dµ , one has

Corollary 1. If λ
+
1 is simple, then the V in (5) is sp{u+

1 }⊥, one has

λ
+
2 = max

f∈L2(X ,µ)

{
〈Q f , f 〉µ
〈 f , f 〉µ

: 〈 f ,u+
1 〉µ = 0

}
. (7)

and the maximising f is u+
2 .

4 Main constructions and results

Using our building block operator L, in each of the three dynamical settings we
construct a suitable operator-based optimisation problem whose solution yields op-
timal almost-invariant or coherent sets. We then form a relaxation of this problem
and show that at its core is a self-adjoint operator. Finally, we utilise the optimal-
ity properties of this self-adjoint operator to exactly solve this relaxed problem via
eigenvectors, and then use these eigenvectors to construct almost-invariant or coher-
ent sets.

4.1 Autonomous dynamics

We consider the operator Lε : L2(X ,µ)→ L2(X ,µ), defined as in (2) with P the
Perron-Frobenius operator for T . We wish to measurably partition X = A∪Ac such
that Lε 1A ≈ 1A, Lε 1Ac ≈ 1Ac and µ(A)≈ µ(Ac). This can be achieved by consider-
ing

ρ(A) =
〈Lε 1A,1A〉µ

µ(A)
+
〈Lε 1Ac ,1Ac〉µ

µ(Ac)
. (8)

The above expression can be interpreted as follows. Supposing for the moment that
Lε = L0 defined as L0 f = P( f · hµ)/hµ ; this is a “advection only” version of Lε .
Then

〈L01A,1A〉µ
µ(A)

=
〈P(1A ·hµ)/hµ ,1A〉µ

µ(A)
(9)

=
〈P(1A ·hµ),1A〉`

µ(A)
=
〈1A ·hµ ,1A ◦T 〉`

µ(A)
=
〈1A,1A ◦T 〉µ

µ(A)
=

µ(A∩T−1A)
µ(A)

.(10)
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Similarly, 〈L01Ac ,1Ac〉µ/µ(Ac) = µ(Ac∩T−1Ac)/µ(Ac), thus, in the zero diffusion
setting

ρ0(A) =
µ(A∩T−1A)

µ(A)
+

µ(Ac∩T−1Ac)
µ(Ac)

,

which is a natural expression to optimise over A to find the optimal almost-invariant
set A. A difficulty with the purely deterministic point of view is that if one is pre-
pared to make A very complicated, one can push the value of ρ(A) arbitrarily close
to 2. We use the addition of a small amount of diffusion via the operators DX ,ε to
regularise this optimisation problem, while not changing greatly the expression for
ρ(A).

As 〈Lε 1A,1A〉µ = 〈Lε 1A,1A〉µ = 〈L∗ε 1A,1A〉µ one has

ρ(A) =
〈Lε 1A,1A〉µ

µ(A)
+
〈Lε 1Ac ,1Ac〉µ

µ(Ac)
=
〈Qε 1A,1A〉µ

µ(A)
+
〈Qε 1Ac ,1Ac〉µ

µ(Ac)
, (11)

where Qε = (Lε +L∗ε)/2. The advantage of Qε is that it is self-adjoint in L2(X ,µ).
Now one has

ρ(A)−1

=
〈Qε 1A,1A〉µ

µ(A)
+
〈Qε 1Ac ,1Ac〉µ

µ(Ac)
−1

=
(

µ(Ac)
µ(A)

+1
)
〈Qε 1A,1A〉µ +

(
µ(A)
µ(Ac)

+1
)
〈Qε 1Ac ,1Ac〉µ −

(
〈Qε 1A,1X 〉µ + 〈Qε 1Ac ,1X 〉µ

)
=
(

µ(Ac)
µ(A)

〈Qε 1A,1A〉µ +
µ(A)
µ(Ac)

〈Qε 1Ac ,1Ac〉µ
)
− (〈Qε 1A,1X −1A〉µ + 〈Qε 1Ac ,1X −Ac〉µ)

=
(

µ(Ac)
µ(A)

∫
Qε 1A ·1Adµ +

µ(A)
µ(Ac)

∫
Qε 1Ac ·1Acdµ

)
−
(∫

Qε 1A ·1Ac dµ +
∫

Qε 1Ac ·1Adµ

)
=

〈
Qε

(√
µ(Ac)
µ(A)

1A−

√
µ(A)
µ(Ac)

1Ac

)
,

(√
µ(Ac)
µ(A)

1A−

√
µ(A)
µ(Ac)

1Ac

)〉
µ

Thus, finding A⊂ X that maximises ρ(A) is equivalent to the problem:

max
A⊂X

〈
Qε

(√
µ(Ac)
µ(A)

1A−

√
µ(A)
µ(Ac)

1Ac

)
,

(√
µ(Ac)
µ(A)

1A−

√
µ(A)
µ(Ac)

1Ac

)〉
µ

.

(12)

Note that
〈√

µ(Ac)
µ(A) 1A−

√
µ(A)
µ(Ac)1Ac ,1X

〉
µ

= 0 for any choice of A. Thus, a relaxed

form of (12), where we remove the restriction that the argument of Qε is a difference
of characteristic functions, but retain the orthogonality property of this ansatz is:

max
f∈L2(X ,µ)

{
〈Qε f , f 〉µ
〈 f , f ,〉µ

: 〈 f ,1X 〉µ = 0
}

. (13)
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Recall that Qε 1X = 1X , that Qε is self-adjoint and compact (by Theorem 1 setting
Yε = X and νε = µ), but not positive, in general. Furthermore (see discussion in
Section 5.3) λ

+
1 = 1 is simple. We may therefore apply Corollary 1 to see that the

maximum value of (13) is λ2, the second largest eigenvalue of Qε , and that the
maximising f is u2, the corresponding eigenvector of Qε . As (13) is a relaxation of
(12), we immediately see that ρ(A)≤ 1+λ2 for all measurable A⊂ X . One can also
obtain an a priori lower bound for ρ(A):

Theorem 3.
2−2

√
2(1−λ2)≤ sup

A⊂X
ρ(A)≤ 1+λ2.

Proof. See appendix A.

The above result is strongly related to classic conductance bounds in the reversible
Markov chain literature [29, 25] and has been discussed in regard to almost-invariant
sets in a matrix setting [11]. An a posteriori lower bound (relying on eigenvector
computations) has been proposed by Huisinga and Schmidt [24].

Finally, to construct a partition A,Ac from the solution to (13), we set A = Aβ :=
{x ∈ X : u2(x) > β} and Ac = Ac

β
:= {x ∈ X : u2(x) ≤ β}, where β is chosen to

maximise ρ(Aβ ). In numerical computations, β is obtained via a line search, as
described in Section 6.3

4.2 Nonautonomous or time-dependent dynamics: single time
direction

The constructions in this section may be found in greater detail in [13]; we recall
only the main points here. We consider the operator Lε : L2(X ,µ)→ L2(Yε ,νε)
defined as in (2) using P the Perron-Frobenius operator for T , where T represents
the finite-time dynamics from some time t to t +τ . We wish to measurably partition
X = A∪Ac and Yε = B∪Bc such that

1. Lε 1A ≈ 1B and Lε 1Ac ≈ 1Bc ,
2. µ(A) = νε(B) and µ(Ac) = νε(Bc).

We would also like µ(A)≈ µ(Ac) and νε(B)≈ νε(Bc).
This can be achieved by considering

ρ(A,B) =
〈Lε 1A,1B〉νε

µ(A)
+
〈Lε 1Ac ,1Bc〉νε

µ(Ac)
. (14)

Using arguments identical to the autonomous case above, one can show that in the
“advection only” setting, one has

ρ0(A,B) =
µ(A∩T−1B)

µ(A)
+

µ(Ac∩T−1Bc)
µ(Ac)

.
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Thus, it is now clear that to maximise ρ(A,B) one should choose A so that it is
close to the preimage of B (and likewise for the complements). Of course, one could
choose A = T−1B to obtain ρ(A,B) = 2 and so there is a problem of nonuniqueness
in solutions to an optimisation of ρ(A,B) over A and B. As in the autonomous setting
we require the small amount of diffusion via DX ,ε ,DY ′ε ,ε to regularise the optimisa-
tion of ρ(A,B) over A and B; this also (generically) produces a unique optimum.

Consider the optimisation problem

sup
A⊂X ,B⊂Yε

{ρ(A,B)−1 : µ(A) = νε(B)}, (15)

where we have subtracted a constant 1 for convenience. One has (see [13] for details)

ρ(A,B)−1 (16)

=
〈Lε 1A,1B〉νε

µ(A)
+
〈Lε 1Ac ,1Bc〉νε

µ(Ac)
−1 (17)

=

〈
Lε

(√
µ(Ac)
µ(A)

1A−

√
µ(A)
µ(Ac)

1Ac

)
,

(√
νε(Bc)
νε(B)

1B−

√
νε(B)
νε(Bc)

1Bc

)〉
νε

(18)

We note that
〈√

µ(Ac)
µ(A) 1A−

√
µ(A)
µ(Ac)1Ac ,1X

〉
µ

= 0 and
〈√

νε (Bc)
νε (B) 1B−

√
νε (B)
νε (Bc)1Bc ,1Yε

〉
νε

=

0 for any choice of A,B. Thus, a relaxed form of (15) where we remove the restric-
tion that the argument of Lε is a difference of characteristic functions, but retain the
orthogonality property of this ansatz is:

max
f∈L2(X ,µ),g∈L2(Yε ,νε )

{
〈Lε f ,g〉νε

‖ f‖µ‖g‖νε

: 〈 f ,1X 〉µ = 〈g,1Yε
〉νε

= 0,

}
. (19)

Proposition 1 [13] shows that the value of (19) is λ
1/2
2 , the square root of the second

largest eigenvalue of Qε := L∗ε Lε and the maximising f (resp. g) is u2 (resp. v2), the
corresponding eigenvector of Qε (resp. Q∗ε ). As (19) is a relaxation of (15), using
(16)–(18) one obtains

Theorem 4. [Froyland [13]]

max
A⊂X ,B⊂Yε

{ρ(A,B) : µ(A) = νε(B)} ≤ 1+λ
1/2
2 .

To construct a partition A,Ac from the solution to (19), we set A = Aβ := {x ∈
X : u2(x) > β}, Ac = Ac

β
:= {x ∈ X : u2(x)≤ β}, B = Bβ ′ := {y ∈ Yε : v2(y) > β ′},

Bc = Bc
β ′ := {y ∈ Yε : v2(y) ≤ β ′}, where β is chosen to maximise ρ(Aβ ,Bβ ′) and

β ′ = β ′(β ) is chosen so that µ(Aβ ) = νε(B′β ). In practice, the optimal value of β is
found via a line search; see Section 6.4 for details.
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4.3 Nonautonomous or time-dependent dynamics: both time
directions

Recall that T+ represents the finite-time dynamics from some time t to t + τ2 and
that T− represents the finite-time dynamics from some time t to t− τ1. We consider
the operators Lε,+ : L2(X ,µ)→ L2(Yε ,νε) and Lε,− : L2(X ,µ)→ L2(Zε ,ηε). The
operator Lε,+ is defined by substituting PT+ (the Perron-Frobenius operator for T+)
for P in the expression (2) for L in Section 3.1. The operator Lε,− is defined by
substituting PT− (the Perron-Frobenius operator for T−) for P in (2), and replacing
Y ′ε ,Yε with Z′ε ,Zε . In summary,

L1(Zε , `)
DZ′ε ,ε←−L1(Z′ε , `)

PT−←−L1(Xε , `)
DX ,ε←−L1(X , `)

DX ,ε−→L1(Xε , `)
PT+−→L1(Y ′ε , `)

DY ′ε ,ε−→L1(Yε , `)
(20)

We wish to measurably partition X = A∪Ac, Yε = B∪Bc, and Zε = C∪Cc such
that

1. Lε,+1A ≈ 1B and Lε,+1Ac ≈ 1Bc ,
2. Lε,−1A ≈ 1C and Lε,−1Ac ≈ 1Cc ,
3. µ(A) = νε(B) = ηε(C) and µ(Ac) = νε(Bc) = ηε(Cc).

We would also like µ(A)≈ µ(Ac), νε(B)≈ νε(Bc), and ηε(C)≈ ηε(Cc).
We consider

ρ(A,B,C) (21)

=
1
2

((
〈Lε,+1A,1B〉νε

µ(A)
+
〈Lε,+1Ac ,1Bc〉νε

µ(Ac)

)
+
(
〈Lε,−1A,1C〉ηε

µ(A)
+
〈Lε,−1Ac ,1Cc〉ηε

µ(Ac)

))
.

Using arguments identical to the autonomous case above, one can show that in the
“advection only” setting, one has

ρ0(A,B,C)

=
1
2

((
µ(A∩T−1

+ B)
µ(A)

+
µ(Ac∩T−1

+ Bc)
µ(Ac)

)
+

(
µ(A∩T−1

− C)
µ(A)

+
µ(Ac∩T−1

− Cc)
µ(Ac)

))
.

Consider the optimisation problem

sup
A⊂X ,B⊂Yε ,C⊂Zε

{ρ(A,B,C)−1 : µ(A) = νε(B) = ηε(C)}, (22)

where we have subtracted a constant 1 for convenience. Using the expression (21)
for ρ(A,B,C) we have (using (18) twice)
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ρ(A,B,C)−1 (23)

=
1
2

((
〈Lε,+1A,1B〉νε

µ(A)
+
〈Lε,+1Ac ,1Bc〉νε

µ(Ac)

)
+
(
〈Lε,−1A,1C〉ηε

µ(A)
+
〈Lε,−1Ac ,1Cc〉ηε

µ(Ac)

))
−1

=
1
2

(〈
Lε,+

(√
µ(Ac)
µ(A)

1A−

√
µ(A)
µ(Ac)

1Ac

)
,

√
νε(Bc)
νε(B)

1B−

√
νε(B)
νε(Bc)

1Bc

〉
νε

(24)

+

〈
Lε,−

(√
µ(Ac)
µ(A)

1A−

√
µ(A)
µ(Ac)

1Ac

)
,

√
ηε(Cc)
ηε(C)

1C−

√
ηε(C)
ηε(Cc)

1Cc

〉
ηε

 . (25)

Using the shorthand ΨA =
√

µ(Ac)
µ(A) 1A−

√
µ(A)
µ(Ac)1Ac , ΨB =

√
νε (Bc)
νε (B) 1B−

√
νε (B)
νε (Bc)1Bc

and ΨC =
√

ηε (Cc)
ηε (C) 1C −

√
ηε (C)
ηε (Cc)1Cc , it is straightforward to verify that ||ΨA||µ =

||ΨB||νε
= ||ΨC||ηε

= 1 and 〈ΨA,1〉µ = 〈ΨB,1〉νε
= 〈ΨC,1〉ηε

= 0. Thus, a relaxed
form of (22), where we remove the restriction that the arguments of Lε,+ and Lε,−
are differences of characteristic functions, but retain the orthogonality properties of
this ansatz is:

max
f∈L2(X ,µ),g∈L2(Yε ,νε ),h∈L2(Zε ,ηε )

{
1
2

(
〈Lε,+ f ,g〉νε

|| f ||µ ||g||νε

+
〈Lε,− f ,h〉ηε

|| f ||µ ||h||ηε

)
(26)

: 〈 f ,1〉µ = 〈g,1〉νε
= 〈h,1〉ηε

= 0
}

We now rewrite this relaxed optimisation problem in terms of the self-adjoint oper-
ator Qε = (L∗ε,+Lε,+ +L∗ε,−Lε,−)/2.

(26) = max
f∈L2(X ,µ)

{
1
2

(
〈Lε,+ f ,Lε,+ f 〉νε

|| f ||µ‖Lε,+ f‖νε

+
〈Lε,− f ,Lε,− f 〉ηε

|| f ||µ‖Lε,− f‖ηε

)
: 〈 f ,1〉µ = 0

}
= max

f∈L2(X ,µ)

{
1
2

(
〈L∗ε,+Lε,+ f , f 〉µ

|| f ||µ〈L∗ε,+Lε,+ f , f 〉1/2
µ

+
〈L∗ε,−Lε,− f , f 〉µ

|| f ||µ〈L∗ε,−Lε,− f , f 〉1/2
µ

)
: 〈 f ,1〉µ = 0

}

= max
f∈L2(X ,µ)

1
2

( 〈L∗ε,+Lε,+ f , f 〉µ
|| f ||2µ

)1/2

+

(
〈L∗ε,−Lε,− f , f 〉µ

|| f ||2µ

)1/2
 : 〈 f ,1〉µ = 0


≤ max

f∈L2(X ,µ)


(

1
2

(
〈L∗ε,+Lε,+ f , f 〉µ

|| f ||2µ
+
〈L∗ε,−Lε,− f , f 〉µ

|| f ||2µ

))1/2

: 〈 f ,1〉µ = 0


= max

f∈L2(X ,µ)


(
〈Qε f , f 〉µ
|| f ||2µ

)1/2

: 〈 f ,1〉µ = 0

 .

The operator Qε is self-adjoint, compact (by Theorem 1, noting that duals, compo-
sitions, and sums of compact operators are compact), and positive (since L∗ε,+Lε,+
and L∗ε,−Lε,− are positive, and sums of positive operators are positive). Assum-
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ing λ
+
1 is simple, by corollary 1 the value of (26) is λ

1/2
2 , the square root of sec-

ond largest eigenvalue of Qε := (L∗ε,+Lε,+ + L∗ε,−Lε,−)/2 and the maximising f
is u2, the second eigenvector of Qε . The corresponding maximising g and h are
Lε,+u2/‖Lε,+u2‖νε

and Lε,−u2/‖Lε,−u2‖ηε
, respectively. As (26) is a relaxation of

(24), the equalities (23)–(24) prove:

Theorem 5.

max
A⊂X ,B⊂Yε ,C⊂Zε

{ρ(A,B,C) : µ(A) = νε(B) = ηε(C)} ≤ 1+λ
1/2
2 .

To construct a partition A,Ac from the solution to (26), we set A = Aβ := {x∈ X :
u2(x) > β}, Ac = Ac

β
:= {x ∈ X : u2(x)≤ β}, B = Bβ ′ := {y ∈Yε : Lε,+u2(y) > β ′},

Bc = Bc
β ′ := {y∈Yε : Lε,+u2(y)≤ β ′}, C = Cβ ′′ := {z∈ Zε : Lε,−u2(z) > β ′′}, Cc =

Cc
β ′′ := {z ∈ Zε : Lε,−u2(z)≤ β ′′} where β is chosen to maximise ρ(Aβ ,Bβ ′ ,Cβ ′′))

and β ′ = β ′(β ), β ′′ = β ′′(β ) are chosen so that µ(Aβ ) = νε(Bβ ′) = ηε(Cβ ′′). In
practice, the optimal value of β is found via a line search; see Section 6.5 for details.

5 Further discussion

Having completed the description of the three dynamical setups, we now discuss
some further properties, focussing mainly on the similarities and differences of Sec-
tions 4.2 and 4.3.

5.1 Single- vs. bi-directional coherence

One of the main features that we demonstrate in the numerical case studies is that
coherent sets in the sense of Section 4.2 typically have boundaries that are approxi-
mately aligned along stable and unstable manifolds. In particular, the boundaries of
the coherent sets at the initial time are aligned with stable directions and those at the
final time are aligned with unstable directions. Why should this be the case? If the
advective dynamics is invertible, the only way that mixing can occur is via diffusion.
Therefore, an efficient way for a set to be rapidly mixed over a finite time interval
would be for the set to be stretched into long filaments, thus greatly increasing the
length of its boundary, allowing diffusion to have a much greater effect. Alterna-
tively, choosing a set at the initial time that already has a very long boundary would
also enhance mixing as the initial diffusion would have a large effect.

Optimally coherent sets resist this diffusive mixing by having short boundaries at
both the initial and final times. Intuitively this is accomplished by the boundary of
the initial set being mostly roughly aligned with stable directions; thus, under for-
ward time evolution, these parts of the boundary are not stretched much, and when
the final time is reached, they have evolved so as to roughly align with unstable di-
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rections. Symmetrically, one can take the backward time viewpoint: coherent sets at
the final time should have small boundary and evolve backward in time to sets with
small boundary; this is achieved by the sets at the final time being roughly aligned
with unstable directions. The length of the finite-time interval under consideration
governs how well the boundaries are aligned with stable/unstable manifolds (the lat-
ter are time-asymptotic objects); the longer the interval, the stronger the alignment.
In fact, we will show in Section 7 that the optimally coherent sets depend on the
time interval considered, as they should.

We have specifically chosen case studies that have regions of strong hyperbolicity
to illustrate this point. When the coherence is due to elliptic-type dynamics, as eg.
in the polar vortex example in [19] or the Agulhas rings in [15], this phenomenon is
not observed.

5.2 Creating a sequence of finite-time coherent sets

In applications, one may be interested in sets that are coherent over a finite-time du-
ration of length τ , and in tracking such sets over a time horizon of several multiples
of τ . If one were to compute coherent sets using the techniques of Section 4.2 from
time t− τ to t, and then from t to t + τ , the sets obtained at t would not match. This
is because the discussion in the previous subsection indicates that the first experi-
ment would yield a set at t with boundary roughly aligned with unstable directions,
while the second experiment would yield a set at t with boundary roughly aligned
with stable directions. The construction of Section 4.3, on the other hand, comput-
ing over the window t− τ to t + τ finds a “central” set at time t with the property
that its boundary does not grow large in either backward or forward time. By ap-
plying the method of Section 4.3 to a series of windows of length 2τ , one obtains a
sequence of such sets which should vary continuously with time. This is one of the
main motivations for the constructions in Section 4.3.

A similar effect result could be achieved using the method of Section 4.2 in the
following way:

1. Compute the transfer operator for the period t−τ to t +τ , and establish optimally
coherent sets at t− τ and t + τ via thresholding.

2. Push the left singular vector (at t − τ) forward with the transfer operator from
t− τ to t and threshold according to the conservation of mass principle.

By pushing forward to the intermediate time t, the sets obtained should also have
the property that they have short boundaries when pushed forward to t +τ or pulled
back to t− τ . We will explore this possibility in future work.
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5.3 Further mathematical properties of the coherent set framework

In [13] several properties of the operator Lε from Section 4.2 are proved. We briefly
mention some of these properties here in the situation where one uses ε-ball diffu-
sion for αX ,ε and αY,ε . These properties are dealt with in greater detail and generality
in [13].

1. The analytical framework for identifying finite-time coherent sets based on the
second singular vectors of Lε is frame-invariant or objective. This means if the
framework is applied in a general time-dependent rotating and translating frame,
the coherent sets obtained will be the same (except rotated and translated) as
those obtained in a static frame. The issue of frame-invariance does not apply to
Section 4.1 as the dynamics should not be time-varying. The arguments in [13]
could be adapted to the setting of Section 4.3.

2. If T is a diffeomorphism and X = Yε = M, the leading singular value σ1 = 1 of
Lε is simple. Arguments similar to those in [13] could be applied to the material
in Section 4.1 and 4.3 to demonstrate simplicity of λ1.

3. If T is a diffeomorphism and X = Yε = M, a lower bound on the second singular
value σ2,ε < 1 is given in [13], depending on ε . The techniques in [13] could be
adapted to the constructions in Section 4.1 and 4.3.

4. If T is a diffeomorphism and X = Yε = M, subdominant singular vectors of Lε

are 1/2-Hölder regular, with the Hölder constant having an explicit dependence
on ε (larger ε , smaller constant). In particular, this places some limitations on the
geometric shapes of the optimally coherent sets. One could apply the techniques
in [13] to the constructions in both Section 4.1 and 4.3.

Regarding point 3. above, in the case of autonomous two-dimensional area-
preserving maps T , Junge et al. [27] state that the probability to map out of a T -
invariant set by an ε-perturbed systems is bounded to first order from above by ε

(i.e. the amplitude of perturbation) multiplied by the ratio of set boundary length to
set volume. They also state a lower bound on the second largest eigenvalue λ2 of Rε ;
thus for a fixed ε if the invariant set of the unperturbed system has small boundary
and its (normalized) Lebesgue measure is close to 1/2, then λ2 is closer to 1. In [27],
the self-adjoint operator Rε is constructed similarly to ours, but using a one-sided
diffusion only (i.e. akin to (DX ,ε P+(DX ,ε P)∗)/2).

6 Numerical representations of transfer operators

In order to apply the theory developed in the previous sections to specific mathe-
matical models, we require a computer representation of the operators P,L,Pε , and
Lε . We recall here the standard approach of Ulam [45], adapted to our specific op-
erator constructions. We represent these operators as a projected action on a finite-
cardinality basis of characteristic functions. Let {B1, . . . ,Bm} denote a partition of
X and define πX ,m : L1(X , `)→ sp{1B1 , . . . ,1Bm} by
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πX ,m f =
m

∑
i=1

(
1

`(Bi)

∫
Bi

f d`

)
1Bi .

Similarly, let {C1, . . . ,Cn} denote a partition of Yε and define πYε ,n : L1(Yε , `)→
sp{1C1 , . . . ,1Cn} by

πYε ,` f =
n

∑
j=1

(
1

`(C j)

∫
C j

f d`

)
1C j ,

where ` is Lebesgue measure. If µ,νε are absolutely continuous with respect to `,
and the maximal diameter of the partition elements decrease to zero as m,n→ ∞,
then πX ,m,πYε ,n converge strongly to the identity operator in Lp(X ,µ),Lp(Yε ,νε),
p = 1,2 (see eg. Prop. 9, Chap. 6 [41]).

6.1 Numerically representing P and L

We consider the operator πYε ,nPπX ,m : sp{1B1 , . . . ,1Bm} → sp{1C1 , . . . ,1Cn}, which
has matrix representation10:

Pi j =
`(Bi∩T−1(C j))

`(C j)
. (27)

In what follows, it will be useful to consider the related matrix

P̄i j =
`(Bi∩T−1(C j))

`(Bi)
, (28)

which may be considered as a discrete action of T on measures. P̄ is row-stochastic,
has leading eigenvalue 1, and has an interpretation as a transition matrix where the
entry P̄i j represents the conditional probability that a randomly chosen point in Bi
lands in C j after one application of T .

In what follows, we use the shorthand `B = [`(B1), . . . , `(Bm)] and `C = [`(C1), . . . , `(Cn)].
Given µ , let pi = µ(Bi) and we approximate hµ as ∑

m
i=1(pi/`B

i )1Bi ; from now on for
brevity, we drop this functional representation for densities and measures and write
them as vectors. The image density hνε

= Pε hµ is estimated as ∑
m
i=1(pi/`B

i )Pi j and
the image measure νε is estimated as ∑

m
i=1(pi/`B

i )Pi j`
C
j = ∑

m
i=1 piP̄i j =: q j. Thus, to

construct an approximate matrix representation for L, we use the definition (2) to
obtain

10 Li [30] contains the first statement of this result in the context of interval maps, but is straight-
forward to derive using the property that for each measurable A⊂Yε ,

∫
A P f d` =

∫
T−1A f d` for all

f ∈ L1(X , `).



Almost-invariant and finite-time coherent sets: directionality, duration, and diffusion 19

Li j =
(pi/`B

i )Pi j

∑
m
i=1(pi/`B

i )Pi j

=
(pi/`B

i )P̄i j(`B
i /`C

j )

∑
m
i=1(pi/`B

i )P̄i j(`B
i /`C

j )

=
piP̄i j

∑
m
i=1 piP̄i j

. (29)

This latter expression appeared in [19]. It is clear that 1L = 1. Denoting the inner
products 〈x,y〉p and 〈x,y〉q by ∑

m
i=1 xiyi pi and ∑

n
i=1 xiyiqi respectively, it is straight-

forward to check that L∗, the matrix dual satisfying 〈xL,y〉q = 〈x,yL∗〉p is P̄>, and
that 1L∗ = 1.

In the autonomous setting, recall one has X = Yε and µ = νε and µ should be
T -invariant. To estimate the T -invariant µ , we use the leading eigenvector of P̄, ie.
choose p to be the (assumed unique) vector satisfying p = pP̄. The expression for L
now becomes

Li j =
piP̄i j

p j
, (30)

and is a discrete approximation of L : L2(X ,µ)→ L2(X ,µ); in fact, in this set-
ting L is nothing but a discrete approximation of the Perron-Frobenius operator
Pµ : L1(X ,µ)→ L1(X ,µ) defined with respect to µ , rather than `. In the autonomous
setting, there have been a number of papers that discuss choosing partitions in a
way that Ulam’s method produces the most accurate estimate of the physical invari-
ant measure µ for T [20, 26, 36]. For the purposes of finding almost-invariant and
coherent sets, as numerical diffusion plays an important role, we advise choosing
partition sets that are approximately spherically symmetric (eg. squares or cubes) so
that the implicit numerical diffusion that results is approximately isotropic.

We remark that the matrix representation (29) is not the same as the matrix rep-
resentation of πX ,mL0πY,n; that is, L is not exactly a Galerkin projection of L0. We
have chosen this alternative formulation for numerical convenience and do not be-
lieve that the numerical impact is great. To estimate the entry P̄i j numerically, one
may sample test points xi,k, k = 1, . . . ,K uniformly distributed over Bi (eg. on a
uniform grid) and then compute T (xi,k) and count how many fall in C j; that is,

P̄i j ≈
#{k : T (xi,k) ∈C j}

K
. (31)

The software package GAIO [7] is used to estimate the transition matrix entries.
GAIO uses generalized rectangles (boxes) as partition elements and, using a multi-
level tree-like data structure, can efficiently find which boxes contain image points.
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6.2 Numerical representation of Pε and Lε

Although in the previous section we have constructed a matrix representation of
L0, not Lε for some ε > 0, in fact, as a consequence of the discretisation we have
already implicitly incorporated a low level of numerical diffusion of the order of the
diameter of the partition elements. We now discuss two ways to construct a matrix
representation of Lε , explicitly including diffusion of the type governed by DX ,ε and
DY ′ε ,ε .

1. For each test point xi,k ∈ Bi, k = 1, . . . ,K, represent the diffusion over an ε-ball
centred at xi,k by a second grid of points yi,k,k′ ,k′ = 1, . . . ,K′ uniformly spread
over Bε(xi,k). For example, one could select yi,k,k′ on a grid centred at xi,k; in
terms of computer code, the most efficient approach is to create a “mask” of such
points for an ε-ball centred at zero and merely add the vector xi,k to translate this
fixed “mask”. Now compute T (yi,k,k′),k = 1, . . . ,K,k′ = 1, . . . ,K′; in total this
represents K ·K′ points for each box Bi. Finally, for each image point T (yi,k,k′)
we again create K′′ points uniformly distributed in a ball of radius ε , centred at
T (yi,k,k′); call this final set of K ·K′ ·K′′ points zi,k,k′,k′′ . This final set of points
can again be created via the “mask” procedure described above; now one adds
the vector T (yi,k,k′). Finally, we estimate

P̄ε,i, j =
#{zi,k,k′,k′′ ∈C j}

K ·K′ ·K′′
.

This was the approach taken in [13]. It has a high accuracy because it directly
simulates the concatenation DY ′ε ,ε PDX ,ε via test points and effectively applies a
discretisation only once.

2. While the above approach is cheap from a memory point of view, there is an
overhead to computing T -images of K ·K′ points. A faster (but somewhat less ac-
curate) approach would be to discretise each of the three operators DY ′ε ,ε ,P,DX ,ε

separately and then estimate their product by matrix multiplication. Such an ap-
proach is less accurate because the effects of the three discretisations are mul-
tiplied together, however if ε is much larger than the box diameters, the error
should be comparatively small. An advantage to separately discretising is that
one can try different diffusion amplitudes without having to recompute the dis-
cretisation P.
Let {B1, . . .Bm} denote a partition of X . We first set up the matrix P̄ without
diffusion as described in section 6.1. We construct a matrix DX ,ε representing a
discretised version of DX ,ε as follows. In each box Bi we choose K test points
xi,k ∈ Bi, k = 1, . . . ,K. For each xi,k ∈ Bi we represent the diffusion over an ε-ball
centred at xi,k by a second grid of points yi,k,k′ , k′ = 1, . . . ,K′, uniformly spread
over Bε(xi,k) and estimate

DX ,ε,i, j =
#{yi,k,k′ ∈ B j}

K ·K′
.
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We similarly construct a matrix DY ′ε ,ε based on sets {C1, . . . ,Cn}. The matrix Pε

is then obtained as Pε = DY ′ε ,ε PDX ,ε .
In this paper we take an even faster and coarser approach whereby a ball of radius
ε is approximated as a square or cube of side-length 2ε . This approach is faster
as it makes use of the internal data structure of GAIO [7].

In the following sections we briefly describe how to appropriately put together
the matrices L. From now on, we drop the ε subscript for the matrices.

6.3 Autonomous setting

In the autonomous setting, we construct Li j = piP̄i j/p j, where the map T used to
construct P̄ represents the dynamics over the fixed time duration we are interested
in. As we are in the autonomous setting, only the duration matters, not the initial
time. We consider

Q := (L+L∗)/2; (32)

note that Q is self-adjoint in 〈·, ·〉p (but is not a symmetric matrix in general), and
that 1Q = 1Q∗ = 1. By Corollary 1 the solution to (13) is given by the second left
eigenvector u+

2 of Q; we will numerically estimate u+
2 as the second left eigenvector

of Q, normalised so that 〈u+
2 ,u+

2 〉p = 1. If there is strong almost-invariance present,
we expect the values of u+

2 to be around ±1. Note that Froyland [11] proposed
the use of the second right eigenvector of (P̄+ P̂)/2 to obtain almost-invariant sets
(where P̂ denotes the transition matrix for the time-reversed Markov chain governed
by P̄) As (P̄ + P̂)/2 = Q>, our use of the second left eigenvector of Q yields an
identical result. Here we have incorporated the autonomous and nonautonomous
constructions under a single unified set of constructions, and also have demonstrated
how to naturally incorporate diffusive aspects of dynamics.

The aim is to find an optimal partition of X . We restate the algorithm as used in
[18] for finding almost invariant sets using R.

Algorithm 1 (Almost invariant sets)

1. Partition the state space X into a collection of connected sets {B1, . . . ,Bm} of
small diameter.

2. Construct the Ulam matrix P̄ using (31) and compute the (assumed unique) fixed
left eigenvector p of P̄. If explicit diffusion is to be added, use one of the methods
in Section 6.2.

3. Construct the matrix L using (30) and Q using (32).
4. Compute the second largest eigenvalue λ2 < 1 of Q and corresponding left eigen-

vector u2, normalised so that 〈u2,u2〉p = 1.
5. Denote I(b) = {i : u2,i > b}, Ic(b) = {i : u2,i ≤ b}. Perform a line search on b to

maximise11

11 The expression (33) is a discrete form of (8).
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∑i∈I(b), j∈I(b) piP̄i j

∑i∈I(b) pi
+

∑i∈Ic(b),i∈Ic(b) piP̄i j

∑i∈Ic(b) pi
. (33)

6. Denote by b̂ the optimal b and set Â := ∪i∈I(b̂)Bi, Âc := ∪i∈I(b̂)cBi.

6.4 Nonautonomous setting: single direction

In this setting we wish to study transport over the time interval [t0, t1] and build
the matrix P̄ using a map T that describes the dynamics over this interval. We then
construct L using (29). Proposition 1 [13] shows that the value of (19) is λ

1/2
2 , the

square root of the second largest eigenvalue of Qε := L∗ε Lε and the maximising f
(resp. g) is u+

2 (resp. v2), the corresponding left eigenvector of Qε (resp. Q∗ε ). One
could define a matrix approximation of Q as Q := LL∗, and a matrix approximation
of Q∗ as Q∗ := L∗L, however, it is more efficient numerically to find left and right
singular vectors of L directly. The reason for this is that L is reasonably sparse,
especially for small ε , and LL∗ may be sigificantly more dense than the matrices
involved in a calculation of singular value of L. The following algorithm was put
forward in [19].

Algorithm 2 (Finite-time coherent sets, single time direction)

1. Partition the domains X and Yε into a collection of connected sets {B1, . . . ,Bm}
and {C1, . . . ,Cn} respectively, of small diameter. If Yε is not known precisely, then
set Yε to be a neighbourhood of T (X) that contains all possible perturbed image
points.

2. Select the reference measure µ as the mass distribution to be tracked, and set
pi = µ(Bi).

3. Construct the Ulam matrix P̄ as in (31), and compute q = pP̄. If additional ex-
plicit diffusion is used, then use one of the approaches in Section 6.2.

4. Define diagonal matrices (Σp)ii = pi, i = 1, . . . ,m, and (Σq) j j = q j, j = 1, . . . ,n,
compute the second largest singular value σ2 < 1 of Σ

1/2
p P̄Σ

−1/2
q and corre-

sponding left and right singular vectors ũ2, ṽ2, and set u2 := ũ2Π
−1/2
p , v2 :=

ṽ2Π
−1/2
q .

5. Denote I(b) = {i : u2,i > b}, Ic(b) = {i : u2,i ≤ b},J(b′) = { j : v2, j > b′},Jc(b′) =
{ j : v2, j ≤ b′}. Perform a line search on b to maximise12

∑i∈I(b), j∈J(b′) piP̄i j

∑i∈I(b) pi
+

∑i∈Ic(b), j∈Jc(b′) piP̄i j

∑i∈Ic(b) pi
, (34)

selecting b′ = b′(b) so that |∑i∈I(b) pi −∑ j∈J(b′) q j| is minimised13 for each
choice of b.

12 The expression (34) is a discrete form of (14).
13 This is the discrete version of insisting that µ(A(b)) = νε (B(b′)).
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6. Denote by b̂, b̂′ the optimal b,b′ and set Â := ∪i∈I(b̂)Bi, Âc := ∪i∈I(b̂)cBi, B̂ :=
∪ j∈J(b̂′)C j, B̂c := ∪ j∈J(b̂′)cC j.

In the numerical case studies section we will frequently plot the output of item
4 above, namely the vectors u2 and v2, and also the output of item 6 above, namely
the sets Â, Âc, B̂, and B̂c. If the vectors ũ2, ṽ2 have `2-norm14 1, then the vectors
u2,v2 will be normalised so that 〈u2,u2〉p = 1 and 〈v2,v2〉q = 1. If there is strong
almost-invariance present, we expect the values of u2 and v2 to be around ±1.

6.5 Nonautonomous setting: both directions

In this setting we are interested in sets at time point t that remain coherent both
in forward and backward times. We build matrices P̄+ and P̄− using maps T+ and
T− that describe the dynamics from t to t + τ2 and from t to t − τ1, respectively.
We then construct L+, L− using (29) and consider the matrix approximation to Qε :
Q := (L+L∗+ + L−L∗−)/2 (recall we always use left multiplication). We propose the
following algorithm:

Algorithm 3 (Finite-time coherent sets, both time directions)

1. Partition the domains X, Yε and Zε into a collection of connected sets {B1, . . . ,Bm},
{C1, . . . ,Cn} and {E1, . . . ,Eo} respectively, of small diameter. If Yε and Zε are
not known precisely, then set Yε to be a neighbourhood of T+(X) that contains
all possible perturbed image points, likewise Zε a neighbourhood of T−(X).

2. Select the reference measure µ at time t as the mass distribution to be tracked,
and set pi = µ(Bi).

3. Construct the Ulam matrix P̄+ as in (31) using T = T+ and compute q+ = pP̄+.
To construct P̄−, use T = T− and replace C j with E j in (31). Set q− = pP̄−. If
additional explicit diffusion is used, then use one of the approaches in Section
6.2.

4. Construct L+ as in (29) using P̄+ and p, and L− using P̄− and p. Form Q =
(L+L∗+ +L−L∗−)/2 by matrix multiplication where L∗+ = P̄>+ and L∗− = P̄>− .

5. Compute the second largest eigenvalue λ2 < 1 of Q and corresponding left eigen-
vector u2. Set v+

2 = u2L+ and v−2 = u2L−. Normalise u2 so that 〈u2,u2〉p = 1 and
normalise v±2 so that 〈v±2 ,v±2 〉q± = 1.

6. Denote I(b) = {i : u2,i > b}, Ic(b) = {i : u2,i ≤ b},J(b′) = { j : v+
2, j > b′},Jc(b′) =

{ j : v+
2, j ≤ b′} and K(b′′) = {l : v−2,l > b′′},Kc(b′′) = {l : v−2,l ≤ b′′}. Perform a

line search on b to maximise15

∑i∈I(b), j∈J(b′) piP̄+
i j

∑i∈I(b) pi
+

∑i∈Ic(b), j∈Jc(b′) piP̄+
i j

∑i∈Ic(b) pi
+

∑i∈I(b),k∈K(b′′) piP̄−ik
∑i∈I(b) pi

+
∑i∈Ic(b)k∈Kc(b′′) piP̄−ik

∑i∈Ic(b) pi
,

(35)

14 This is the default output normalisation for MATLAB, for example.
15 The expression (35) is a discrete form of (24).
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selecting b′= b′(b) and b′′= b′′(b) so that |∑i∈I(b) pi−∑ j∈J(b′) q+
j | and |∑i∈I(b) pi−

∑k∈K(b′′) q−k | are minimised16 for each choice of b.
7. Denote by b̂, b̂′, b̂′′ the optimal b,b′,b′′ and set Â :=∪i∈I(b̂)Bi, Âc :=∪i∈Ic(b̂)Bi, B̂ :=
∪ j∈J(b̂′)C j, B̂c := ∪ j∈Jc(b̂′)C j and Ĉ := ∪k∈K(b̂′′)Ek,Ĉc := ∪k∈Kc(b̂′′)Ek.

In the numerical case studies section we will frequently plot the output of item
5 above, namely the vectors u2 , v+

2 and v−2 , and also the output of item 7 above,
namely the sets Â, Âc, B̂, B̂c, Ĉ and Ĉc. If there is strong coherence present, we again
expect the entries of the vectors u2,v+

2 , and v−2 to be around ±1.

7 Numerical examples

In this section we will apply the different constructions to two well-known example
systems. First we consider a periodically driven double gyre flow [43], which has
frequently been used as a testbed for different tools for the numerical analysis of
transport. Due to the system’s periodicity we will analyse the system both with
respect to almost-invariant sets as well as finite-time coherent sets and point out
the differences of the constructions. We discuss the effects of diffusion for almost-
invariant sets, and for coherent sets, additionally time direction and flow duration.

As a second example system we consider the transitory double gyre flow as in-
troduced in [35]. Here the dynamics is only nonautonomous on a finite time interval,
but autonomous outside. Therefore the system is well-suited to analysing finite-time
coherent structures. Special emphasis will be placed on how the structure of finite-
time coherent sets depends on the time direction and flow duration.

While in these examples the domain at the initial time and final time remains
the same, the coherent set framework also easily handles situations where the initial
domain and final domain do not intersect at all, as in eg. [15].

7.1 Case study 1: Periodically driven double gyre flow

We consider the time-dependent system of differential equations [43]

ẋ = −πAsin(π f (x, t))cos(πy) (36)

ẏ = πAcos(π f (x, t))sin(πy)
d f
dx

(x, t),

where f (x, t) = δ sin(ωt)x2 +(1−2δ sin(ωt))x.
For detailed discussions of the system we refer to [43, 18]. As in [18] in we

fix parameter values A = 0.25, δ = 0.25 and ω = 2π and obtain a flow of period

16 This is the discrete version of insisting that µ(A(b)) = νε (B(b′)) = ηε (C(b′′)).
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p = 1. The system preserves Lebesgue measure on [0,2]× [0,1]. We partition the
domain17 M = [0,2]× [0,1] in n = 32768 = 215 square boxes. Here we will identify
M = X = Yε = Zε . We form matrices P̄ by integrating with a Runge Kutta scheme
with constant stepsize h = 0.01 from t = 0 over different time spans, i.e. over one
period (τ = 1) and τ = ±2.5, using K = 400 uniformly distributed test points per
box (inner grid18 points). In this set-up, with box diameter 0.0078, we have a nu-
merically induced diffusion of about ε ≈ 0.0039. In addition, we consider explicit
diffusion via left and right multiplication of P̄ with diffusion matrices DX ,ε , DY ′ε ,ε .
Here we choose 100 inner grid points per box, for each test point we approximate
a ball of radius ε = 0.02 by 25 inner grid points of a box of diameter 2ε centred in
the respective point.

In the following, we will demonstrate the usage of the different constructions and
discuss effects of diffusion, flow duration, and time-direction.

Almost-invariant sets

As the system is periodic with period p = 1 by construction, the time-1 flow map
T describes an autonomous dynamical system. Thus, we want to determine fixed
regions in phase space that are almost-invariant under the dynamics of T . To this
end, we compute19 p = pP̄ and form matrices L and Q. Following Algorithm 1
we consider the second left eigenvector u2 to eigenvalue λ2 = 0.9998, normalized
such that 〈u2,u2〉p = 1 (Figure 2 (a)). Optimal almost invariant sets are obtained for
b̂ =±0.3801, giving ρ(Â) = 1.9907, see Figure 1. As indicated, regular phase space
structures, i.e. truly invariant sets are picked up.

If these invariant structures are removed from the domain, one finds b̂ = 0 is now
the global optimum; see Figure 2 (b). A similar experiment was carried out in [18].
Note that for the optimal partition, ρ(Â) is within the upper (1 + λ2 = 1.9998) and
lower bounds (2−2

√
2(1−λ2) = 1.96).

In Figure 2 (c) and (d) we show the results of explicit diffusion, incorporated
by left and right multiplication of diffusion matrices DX ,ε ,DY ′ε ,ε (ε = 0.02) with
P̄ as described above. Applying Algorithm 1 to the diffused matrices results in a
visibly smoother eigenvector u2 (Figure 2 (c)) compared to the case without explicit
diffusion (Figure 2 (a)). Moreover, the optimal partitions now are given by b̂ = 0 and
the boundaries are smoother and shorter. (Figure 2 (d) compared to Figure 2 (b)).
As expected, diffusion regularizes eigenvectors of Q; this in turn usually shortens
and smoothens the boundaries of almost invariant sets.

Another important phenomenon that has been illustrated here is an apparent bi-
furcation of the almost-invariant sets with variation in noise amplitude. When only
numerical diffusion was present, the invariant sets shown in Figure 1 were selected

17 Note that the boundaries of M are invariant.
18 See [7] for a description of inner grid points.
19 As Lebesgue measure is preserved, p should give equal weight 1/m to each of the m partition
sets. However, in order to account for possible sampling-induced numerical inaccuracies when
setting up P̄, we will use the numerically obtained p.
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Fig. 1 Almost invariant sets in the double gyre flow on the time interval [0,1] - no explicit diffu-
sion. Due to symmetry in the system, both b̂ =−0.3801 and b̂ = 0.3801 are optimal thresholds in
Algorithm 1. We obtain ρ(Â) = 1.9907, where Â is the light (b̂ =−0.3801) or dark set (b̂ = 0.3801)
and Âc = M \ Â. In this setting, the almost invariant sets correspond to regular (invariant) structures
in phase space.

by Algorithm 1. The addition of explicit diffusion resulted in Algorithm 1 select-
ing the sets shown in Figure 2 (d). The reason for this switch is that with very low
diffusion, advective flux dominates diffusive flux and the invariant sets in Figure 1
minimise transport across their boundaries. As the diffusion amplitude is raised, the
optimal almost-invariant structures change to those shown in Figure 2 (d), which
have a shorter, non-invariant boundary, leading to a reduction in diffusive flux, but
an increase in advective flux; the net effect, is however, lower flux than the invariant
sets in Figure 1 under the ε = 0.02 diffusion regime. We will further investigate
bifurcation aspects in future work.

In Figure 2 (b) and (d) we have also plotted approximations20 to stable and un-
stable manifolds of hyperbolic periodic orbits (oscillating around x = 1 on the y = 0
and y = 1 axes). Apparently, as already discussed in [18], the transfer operator ap-
proach finds a decomposition into almost invariant sets, which is influenced by the
underlying manifold structure but tries to find a more optimal decomposition than a
geometrical approach such as lobe dynamics [39, 40] would suggest. While the sta-
ble and unstable manifolds concern time-asymptotic dynamics, the optimal almost-
invariant sets identified are tuned to a finite flow time of the dynamics.

Finite-time coherent sets: single time direction

In this section we are no longer interested in spatially fixed sets, but in possibly
dynamical regions in phase space that remain coherent during some finite time span.

20 We refer the reader to [18] for more details.
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Fig. 2 Second eigenvectors and corresponding almost invariant sets in the double gyre flow on
the finite time interval [0,1], with and without explicit diffusion. (a) Second eigenvector u2 of Q
(λ2 = 0.9998), ε = 0. (b) Partition by sign results in ρ(A0) = 1.9803. Such a partition would also be
obtained when ignoring the invariant, regular structures as visible in Figure 1, see [18] for a related
case study. (c,d): Effects of explicit diffusion on second eigenvectors and almost invariant sets in
the double gyre flow: (c) Second eigenvector u2 to eigenvalue λ2 = 0.9974 of Qε = (Lε + L∗ε )/2,
where ε = 0.02. (d) Optimal partition into almost invariant sets based on u2 in (c). Here b̂ = 0 is
the optimal threshold, resulting in ρ(Â) = 1.9758.

We will first study finite-time coherent sets obtained from considering the dynamics
in a single time direction. We restrict ourselves to the case without explicit diffusion.

As a first case study, we will consider the dynamics on [0,1] such as in the
previous paragraph, but apply Algorithm 2 to the respective matrix P̄. The result-
ing (normalized) singular vectors u2 and v2 with respect to the singular valueσ2 =
1− 1.6× 10−5 are shown in Figure 3 (a) and (c). The thresholds b̂ = 0 and b̂′ = 0
turn out to define optimal coherent pairs shown in Figure 3 (b) and (d). We obtain
ρ(Â, B̂) = 1.9976, which is bounded from above by 1 + σ2. In addition, we have
overlaid the optimal partition in Figure 3 (b) with an approximation to the stable
manifold of the periodic orbit on the y = 0 axis and the optimal partition in Figure 3
(d) with an approximation to the unstable manifold of the periodic orbit on the y = 1
axis. The (asymptotic) geometric structures influence the shape of the coherent sets
but due to the short finite-time horizon on which their computation is based on a we
do not get a nearly exact correspondence.

We repeat this study by considering the dynamics on [0,2.5] as well as on
[−2.5,0], i.e. longer time intervals which are not integer multiples of the period
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Fig. 3 Singular vectors and finite-time coherent pairs (b̂ = b̂′ = 0 in Algorithm 2) in the double
gyre flow on the time interval [0,1]. (a) Left (normalized) singular vector u2 to singular value
σ2 = 1− 1.6× 10−5 as obtained from Algorithm 2. (b) Finite-time coherent sets (Â, Âc) at t = 0
from u2. (c) Right (normalized) singular vector v2. (d) Finite-time coherent sets (B̂, B̂c) at t = 1
from v2. We obtain ρ(Â, B̂) = 1.9976, which is bounded from above by 1+σ2.

of the flow (though the latter property is not so important here). Figure 4 (a) and (c)
show the outcome of an application of Algorithm 2 on [0,2.5] and Figure 4 (b) and
(d) the results for the interval [−2.5,0].

Again b̂ = b̂′ = 0 turn out to be the optimal thresholds for a decomposition into
finite-time coherent sets21. The decompositions (Â, Âc) at t = 0 and (B̂, B̂c) at t = 2.5
are shown in Figure 4 (a) and (c), whereas the respective decompositions (Â, Âc) at
t =−2.5 and (B̂, B̂c) at t = 0 can be seen in Figure 4 (b) and (d). For both settings,
we obtain σ2 = 0.9999 and ρ(Â, B̂) = 1.9951, bounded from above by 1+σ2.

We compare Figure 4 (a) with Figure 3 (b) to explain the effect of flow duration.
Both of these images describe coherent sets at t = 0; the only difference is the flow
duration. One see that the boundary in Figure 4 (a) is longer than the boundary in
Figure 3 (b) and is also closer to the stable manifold of the hyperbolic point on the
x = 0 axis. The reason for this is that with increasing flow time, advective flux effects
increase, relative to diffusive flux. Thus, a short boundary is less important for the
longer flow duration; instead a boundary that grows in length at a slower rate over
the longer time interval is more important, and so the boundary has grown longer

21 Varying b and b′ around b = b′ = 0, one obtains partitions that are very close to optimal. Because
of the symmetry in the system we concentrate on the partition by sign.
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Fig. 4 Finite-time coherent pairs in the double gyre flow on the time interval [0,2.5] and [−2.5,0].
(a) Finite-time coherent sets (Â, Âc) at t = 0 from left (normalized) singular vector u2 as obtained
from Algorithm 2. Here the dynamics on [0,2.5] is considered. (b) Finite-time coherent sets (Â, Âc)
at t = −2.5 from left (normalized) singular vector u2 as obtained from Algorithm 2. Here the
dynamics on [−2.5,0] is considered. (c) Finite-time coherent sets (B̂, B̂c) at t = 2.5 from right
(normalized) singular vector v2 on [0,2.5]. (d) Finite-time coherent sets (B̂, B̂c) at t = 0 from right
(normalized) singular vector v2 from dynamics on [−2.5,0]. For both settings we obtain ρ(Â, B̂) =
1.9951, which is bounded from above by 1 + σ2, with singular value σ2 = 0.9999. The optimal
thresholds in Algorithm 2 are b̂ = b̂′ = 0. The partitions are overlaid with approximations of the
stable and unstable manifolds of hyperbolic periodic orbits.

and moved closer to the stable manifold relative to Figure 3. This ensures that the
boundary in Figure 4 (c) is shorter than the push-forward of the boundary in Figure
3 (b) to time t = 2.5 would be. In each case (flows times 1 and 2.5), the coherent sets
are tuned to their particular finite-time duration to resist mixing over that period.

Secondly, we notice that although the finite-time coherent sets in Figure 4 (a)
and 4 (d) are both defined at t = 0, the different time spans under consideration
([0,2.5] and [−2.5,0]) produce markedly different results. This can be explained as
follows. For the interval [0,2.5], the sets at t = 0 should have boundaries that are
small (to reduce the diffusive effect at t = 0) and the images of the sets at t = 2.5
should have the same property (to reduce the diffusive effect at t = 2.5). The optimal
coherent pair at t = 0 therefore have a boundary that is approximately the stable
manifold of the hyperbolic point at the bottom of the rectangle at t = 0; then under
forward iteration, this boundary will not grow very much, and indeed will tend to
align with the unstable manifold of the hyperbolic point on top of the rectangle. The
deviation from the true stable and unstable manifolds is a function of the diffusion
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level and the finite time duration. As the diffusion goes to zero and the time duration
goes to infinity, we expect the boundaries to approach the true stable and unstable
manifolds. However, for a given diffusion level and finite time duration, the sets
shown here have less flux transfer than the true manifolds (which are complicated
objects that would create a very long boundary); the coherent sets are optimised to
resist diffusion-assisted mixing over the time interval [0,2.5]. Turning now to the
interval [−2.5,0], we can apply the same argument as above, except that now t = 0
is the final time in the interval and by the above argument one expects the coherent
set boundaries to be roughly aligned along unstable directions, rather than stable
directions. This is indeed what we see in Figure 4.

Finite-time coherent sets: both time directions

Finally, we consider the coherent set framework that takes into account both time
directions. For this we study again both the dynamics on [0,2.5] and the backwards
time dynamics on [−2.5,0] as in the previous paragraph and apply Algorithm 3. We
obtain the second left eigenvector u2 (after normalization) at t = 0, corresponding to
the eigenvalue λ2 = 0.9998 as well as corresponding optimal vectors v+

2 at t = 2.5
and v−2 at t = −2.5. The optimal thresholds in Algorithm 3 are given by b̂ = b̂′ =
b̂′′ = 0, defining finite time coherent sets (Â, Âc) at t = 0, as shown in Figure 5 (a),
(B̂, B̂c) at t = 2.5 (Figure 5 (c)) and (Ĉ,Ĉc) at t =−2.5 (Figure 5 (e)). One obtains
ρ(Â, B̂,Ĉ) = 1.9878, which is bounded from above by 1 +(λ2)1/2 = 1.9999. Here
b̂ = b̂′ = b̂′′ = 0.

While the boundaries of the coherent sets at t = 0 obtained when considering
only one time direction are roughly aligned along stable or unstable manifolds (see
Figure 4 (a) and (d)), the result of the triple construction using both time directions
simultaneously is a dynamical compromise, influenced by both stable and unstable
directions at t = 0 (see Figure 5 (a)).

We also remark that the longer flow time (5 time units in Figure 5 compared to
2.5 time units in Figure 4) result in an even stronger correspondence of Figure 5
(c)–(f) with stable/unstable manifolds (a zoom is shown in Figure 5 (g)).

We also consider explicit diffusion with ε = 0.02 and obtain coherent triples
ρ(Â, B̂,Ĉ) = 1.9628 and (λ2)1/2 = 0.9972, see Figure 5 (b), (d) and (f). The bound-
aries between the respective finite-time coherent sets are shorter and smoother than
in the non-diffusive case, and the small disconnected pieces (lower left of Figure
5 (c) (dark), upper right of Figure 5 (e) (light)) no longer appear in Figure 5 (d)
and (f), respectively, as the extra diffusive flux makes the small disconnected pieces
non-optimal.

7.2 Case study 2: Transitory double gyre flow

We consider the transitory dynamical system introduced in [35]
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Fig. 5 Finite-time coherent sets using forwards and backwards time dynamics on [0,2.5] and
[−2.5,0] based on non-diffusive setting (left) and for the case with diffusion (right). (a) Finite
time coherent sets (Â, Âc) at t = 0 obtained from Algorithm 3, no explicit diffusion. (b) Same as
(a) but for ε = 0.02. (c) Corresponding finite time coherent sets (B̂, B̂c) at t = 2.5 (ε = 0); (g) shows
a close-up. (d) Same as (c) but for ε = 0.02. (e) Corresponding finite time coherent sets (Ĉ,Ĉc) at
t =−2.5 (ε = 0). (f) Same as (e) but for ε = 0.02. The coherence of the triples for the case ε = 0
can be estimated as ρ(Â, B̂,Ĉ) = 1.9878, which is bounded from above by 1 +(λ2)1/2 = 1.9999.
For ε = 0.02 one obtains ρ(Â, B̂,Ĉ) = 1.9628 and (λ2)1/2 = 0.9972.
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ẋ =− ∂

∂y
Ψ , ẏ =

∂

∂x
Ψ ,

with stream function

Ψ(x,y, t) = (1− s(t))ΨP + s(t)ΨF

ΨP(x,y) = sin(2πx)sin(πy)
ΨF(x,y) = sin(πx)sin(2πy)

and transition function

s(t) =


0, t < 0,

t2(3−2t), 0≤ t ≤ 1,
1, t > 1.

A horizontal double gyre pattern (described by the “past” system with stream
function ΨP) on the unit square is rotated anti-clockwise during times 0 < t < 1 into
a vertical double gyre pattern (described by the “future” system with stream function
ΨF ). For t ≤ 0 and t ≥ 1 the system is autonomous, thus the interesting finite-time
behaviour is restricted to [0,1]. Figure 6 illustrates the complex mixing processes
on [0,1]. Of particular importance are the separatrices for the “past” and “future”
autonomous systems, i.e. the vertical line at x = 0.5 for t ≤ 0 (Figure 6 (a)) and the
horizontal line at y = 0.5 for t ≥ 1 (Figure 6 (f)). Their images and preimages in the
transitory time interval [0,1] completely describe the transport mechanism as can
be seen in Figure 6. We refer to [35] for a detailed discussion and analysis of this
transitory dynamical system.

For our numerical study we partition the domain M = [0,1]× [0,1] in n =
16384 = 214 square boxes and form matrices P̄ by integrating with a Runge Kutta
scheme with constant stepsize h = 0.01 for different time spans on [0,1], using
K = 400 uniformly distributed test points per box (inner grid points). In this set-
up, again with box diameter 0.0078, we have a numerically induced diffusion of
about ε ≈ 0.0039, but we do not take into account any explicit diffusion.

First we consider the flow on the entire transition interval [0,1]. The results of an
application of Algorithm 2 are shown in Figure 7. The (normalized) singular vectors
u2 and v2 with respect to the singular value σ2 = 0.9997 are shown in Figure 7
(a) and (c). The thresholds b̂ = −0.0525, b̂′ = −0.0530 turn out to define optimal
coherent sets (Â, Âc) at t = 0 and (B̂, B̂c) at t = 1, shown in Figure 7 (b) and (d).
The coherence can be estimated as ρ(Â, B̂) = 1.9885, which is bounded from above
by 1 + σ2 = 1.9997. The finite-time coherent sets appear to pick up the dominant
light structures in Figure 6 (c) and (f), whose boundaries match those of the sets
considerably.

However, one may wonder why the left hand “blob” is picked up as the opti-
mal coherent set in Figures 7(b), and not the right hand “blob”. An inspection of
Figure 6(c) reveals that a small horizontal “cut” across the thin light filament at ap-
proximately (x,y) = (1,0.5) will separate the light image blob in Figure 6(c). This
also holds for the light preimage blob in Figure 6(d) (here cutting at approximately
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(a) (b) (c)

(d) (e) (f)

Fig. 6 Complex mixing dynamics of the transitory double gyre system. (a) Two vertical sets, cor-
responding to invariant sets for the autonomous dynamics for t ≤ 0, are initialized at time t = 0
and evolved forward under the dynamics. The sets are bounded by a heteroclinic orbit connecting
two saddle point equilibria at (0.5,0) and (0.5,1) in the “past” autonomous system. (b) Image sets
of (a) at t = 0.5 and (c) at t = 1. (d) Preimage at t = 0 of the two horizontal sets in (f) that are
bounded by the separatrix of the “future” autonomous system. (e) same as (d) but at t = 0.5. (e)
Two sets corresponding to invariant sets for the autonomous dynamics for t ≥ 1, are initialized at
time t = 1 and evolved backwards under the dynamics. The sets are bounded by a heteroclinic orbit
connecting two saddle point equilibria at (0,0.5) and (1,0.5) in the “future” autonomous system.

(x,y) = (0.5,1)). Such a cut will lead to only a small advective flux across the cut
and both the light blob and its image have relatively small boundary, to reduce dif-
fusive flux. On the other hand, to similarly separate the dark image blob in Figure
6(c) would require either a longer horizontal cut around (x,y) = (0.1,0.9), leading
to a larger advective flux, or a small vertical cut near eg. (x,y) = (0.2,1), leading to
small advective flux, but slightly more diffusive flux as the boundary of the dark im-
age blob has been lengthened. Thus, there is some slight asymmetry in the system,
which is clearly picked up by the coherent set calculations.

In a second set of numerical experiments we consider transport and mixing on
the subintervals [0,0.5] and [0.5,1]. The results of applying Algorithm 2 are shown
in Figure 8. The decompositions (Â, Âc) at t = 0 and (B̂, B̂c) at t = 0.5 w.r.t. the
dynamics on [0,0.5] can be seen in Figure 8 (a) and (c), whereas (Â, Âc) at t = 0.5
and (B̂, B̂c) at t = 1 w.r.t. the dynamics on [0.5,1] are shown in Figure 8 (b) and (d).
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Fig. 7 Singular vectors and finite-time coherent pairs in the transitory double gyre flow on [0,1].
(a) Left (normalized) singular vector u2 to singular value σ2 ≈ 0.9997 obtained from Algorithm
2. (b) Finite-time coherent sets (Â, Âc) at t = 0 from u2. (c) Right (normalized) singular vector
v2. (d) Finite-time coherent sets (B̂, B̂c) at t = 1 from v2. We obtain ρ(Â, B̂) = 1.9885, which is
well bounded from above by 1 + σ2. The transport barriers from Figure 6 (c) and (f) are overlaid,
delineating considerable parts of the boundaries of the finite-time coherent sets.

On both time intervals we get the same second singular value σ2 = 0.9998 and
b̂ = 0.1488, b̂′ = 0.1511 turn out to be the optimal thresholds for a decomposition
into finite-time coherent sets.The coherence values ρ(Â, B̂) = 1.9919 for both set-
tings are bounded by the theoretical upper bound of 1+σ2. While the shapes of the
sets are visibly influenced by the respective geometric structures, the boundaries of
the sets do not fully match the images of {x = 1/2} and {y = 1/2}. The reason is
again the small level of diffusion. The black curves in Figure 8 (a)–(d) are all much
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Fig. 8 Finite-time coherent sets in the transitory double gyre flow on [0,0.5] (left) as well as
on [0.5,1] (right) using the one-sided construction in Algorithm 2. (a) Finite-time coherent sets
(Â, Âc) at t = 0 from dynamics on [0,0.5]. (b) Finite-time coherent sets (Â, Âc) at t = 0.5 from
dynamics on [0.5,1]. (c) Finite-time coherent sets (B̂, B̂c) at t = 0.5 from dynamics on [0,0.5]. (d)
Finite-time coherent sets (B̂, B̂c) at t = 1 from dynamics on [0.5,1]. For both settings ρ(Â, B̂) =
1.9919 < 1 + σ2 = 1.9998. The optimal thresholds in Algorithm 2 are b̂ = 0.1488, b̂′ = 0.1511.
The corresponding transport barriers from Figure 6 are overlaid.

longer than the boundaries of the coherent sets. Thus, again, the coherent sets are
tuned to a particular flow duration and small diffusion level.

Finally, we consider again the triple construction using the matrices on [0,0.5]
and [0.5,1] from the previous paragraph. The results of an application of Algorithm
3 are shown in Figure 9. In particular, Figure 9 (a) shows the optimal decomposition
into finite-time coherent sets (Â, Âc) at t = 0.5, (b) the sets (B̂, B̂c) at t = 1 and (c)
the corresponding partition (Ĉ,Ĉc) at t = 0. With thresholds b̂ =−0.2532, b̂′= b̂′′=
−0.2464 we obtain ρ(Â, B̂,Ĉ) = 1.9883 bounded by 1+(λ2)1/2, where λ2 = 0.9994.
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Fig. 9 Finite-time coherent sets for transitory double gyre flow on [0,0.5] and [0.51] using the two-
sided construction (Algorithm 3. (a) Optimal finite time coherent sets (Â, Âc) at t = 0.5. (b) (B̂, B̂c)
at t = 1. (c) (Ĉ,Ĉc) at t = 0. Here b̂ =−0.2532, b̂′ = b̂′′ =−0.2464 and ρ(Â, B̂,Ĉ) = 1.9883.

While the optimal sets do not exactly match the boundaries of the geometric
structures in Figure 6, the partitions at t = 0 and t = 1 are very similar to the ones
in Figure 7. Moreover, the central sets at t = 0.5 (Figure 9 (a)) are influenced both
by stable and unstable directions and thus form, as expected, a dynamical compro-
mise which accounts for both the forward and backward time dynamics. As we have
observed before, geometrical structures such as invariant manifolds may not neces-
sarily bound sets of minimal leakage. This is again due to the fact that deterministic
time-asymptotic objects do not account for the finite-time and diffusive effects that
are central to our transfer operator construction.
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8 Summary

In this chapter we proposed a unified setting for finite-time almost-invariant and co-
herent set constructions. The constructions were based around a building block op-
erator that combined advective dynamics via a Perron-Frobenius operator with small
amplitude diffusive dynamics, developed in [13]. This building block operator was
then manipulated to set up suitable optimisation problems for the autonomous and
nonautonomous settings. The unified setting clarified the similarities and differences
of the dynamical problems being solved in the autonomous and non-autonomous
cases. These optimisation problems made use of the fact that the underlying transfer
operator was compact and self-adjoint, leading to a simple analytic solution given
by the eigenfunction corresponding to the second largest eigenvalue.

Via two detailed case studies we investigated the dependence of almost-invariant
and coherent sets on three aspects of the dynamics: the level of diffusion, the flow
duration, and the time-direction of the dynamics. We also compared the boundaries
of the coherent sets with the time-dependent stable and unstable manifolds of or-
ganising hyperbolic points in flows.

As proved formally in [13], for fixed flow times, we showed that increased lev-
els of diffusion produce more regular eigenfunctions, and coherent sets with shorter
boundaries. Intuitively, this is because diffusive flux is proportional to the bound-
ary lengths of coherent sets, and so the boundary would like to be shortened to
minimise the effects of diffusive flux. On the other hand, shortening the boundary
usually means that the boundary is less equivariant (or in the autonomous case, in-
variant) in an advective sense, increasing the advective flux. The result is that an
optimal compromise is reached, tuned to the specific diffusion level and flow du-
ration, with a somewhat shorter boundary. These remarks apply equally to the au-
tonomous and non-autonomous settings. We also demonstrated an instance where
the optimal almost-invariant sets appear to undergo a bifurcations as the diffusion
level is increased.

Increasing flow duration, but fixing the diffusion level, has the opposite effect.
Now, advective flux becomes a greater component of the overall flux, and the bound-
ary tries to move in a way that more aligned with “stable” directions. This is so that
at the final flow time, the boundary has not grown very much (which would lead
to high diffusive flux at the final time). Again, an optimal balance is reached; the
boundary of the coherent set moves close to the stable direction at the initial time,
likely growing somewhat in length, the result tuned to the the specific flow time and
diffusion level.

In hyperbolic settings, we demonstrated numerically that the boundary of the
coherent set is approximately aligned with stable directions at the initial time and
unstable directions at the final time. This can be intuitively explained by an argu-
ment identical to those above; the coherent set at the final time should have relatively
short boundary, and under backward advection, the boundary should not grow very
long, otherwise there will be high diffusive flux at the initial time. In order for this
to occur, the coherent set is approximately aligned along unstable directions at the
final time so that under backward advection the boundary does not grow very long;
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the exact positioning of the coherent sets are tuned to the particular flow time and
diffusion level to minimise flux out of the sets.

Finally, in order to produce a sequence of coherent sets over a sliding window
of fixed finite-time duration, we proposed a new construction where the focus is on
coherent sets in the middle of the finite-time window; these sets remain coherent in
both forward and backward time and can be used to create a natural time-dependent
sequence of coherent sets over several translated finite-time windows.

Future work will include further investigation of bifurcation phenomena and
computational improvements to the bi-directional coherent set calculations.
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Appendix

8.1 Proof of Theorem 3

Our building block operator L may be written as L f (y) =
∫

X k(x,y) f (x) dµ(x),
where k ∈ L2(X ,Yε), satisfies k≥ 0. Thus Q = (L+L∗)/2 is a self-adjoint operator
Q : L2(X ,µ)→ L2(X ,µ) defined by Q f (y) =

∫
κ(x,y) f (x) dµ(x), with Q1 = 1

(see [13] for the specific forms of k and κ). From self-adjointness it follows that
κ(x,y) = κ(y,x) and thus∫

κ(x,y) dµ(y) = 1 =
∫

κ(x,y) dµ(x). (37)

Lower bound

The proof of Lemma 1 draws heavily on the proof of Theorem 2.1 [29] (which is
effectively a continuous time version of Lemma 1) and includes techniques from
Theorem 4.3, Chapter 6 [5].

Lemma 1. Let λ2 denote the second largest eigenvalue of Q. Then 1− λ2 ≥ c2/8
where c = infA(

∫
Q1A ·1Ac dµ)/(µ(A)µ(Ac)).

Proof. We know that sup{〈Q f , f 〉µ/〈 f , f 〉µ : 〈 f ,1〉µ = 0} = λ2, where λ2 is the
second largest eigenvalue of Q. Thus inf{〈(I−Q) f , f 〉µ/〈 f , f 〉µ : 〈 f ,1〉µ = 0} =
1−λ2.

Now,
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〈(I−Q) f , f 〉µ

=
∫

f 2 dµ−
∫

κ(x,y) f (y) dµ(y) · f (x) dµ(x)

=
∫

f 2 dµ−
∫

κ(x,y) f (y) dµ(y) · f (x) dµ(x)

=
∫

f (x)
(∫

κ(x,y)( f (x)− f (y)) dµ(y)
)

dµ(x) using (37)

=
∫

f (y)
(∫

κ(x,y)( f (y)− f (x)) dµ(y)
)

dµ(x) interchanging x and y

= (1/2)
∫ (∫

κ(x,y)( f (x)− f (y))2 dµ(y)
)

dµ(x) combining previous 2 lines.

Now∫
κ(x,y)( f (x)+ f (y))2 dµ(x)dµ(y)

≤ 2
∫

κ(x,y)( f (x)2 + f (y)2) dµ(x)dµ(y) using (a+b)2 ≤ 2(a2 +b2)

=
∫

4κ(x,y) f (x)2 dµ(x)dµ(y) by symmetry of κ

=
∫

4 f (x)2 dµ(x) by (37).

So

(1/2)
∫ (∫

κ(x,y)( f (x)− f (y))2 dµ(y)
)

dµ(x)

≥ (1/2)
∫ (∫

κ(x,y)( f (x)− f (y))2 dµ(y)
)

dµ(x) ·
∫

κ(x,y)( f (x)+ f (y))2 dµ(x)dµ(y)∫
4 f (x)2 dµ(x)

≥ (1/8)

(∫
κ(x,y)|( f (x)2− f (y)2)| dµ(x)dµ(y)

)2∫
f 2 dµ

by Hölder. (38)

Now



40 Gary Froyland and Kathrin Padberg-Gehle∫
κ(x,y)|( f (x)2− f (y)2)| dµ(x)dµ(y)

= 2
∫

κ(x,y)1{ f (x)2− f (y)2>0}( f (x)2− f (y)2) dµ(x)dµ(y) by symmetry of κ

= 2
∫

∞

0
dα

∫
κ(x,y)1{ f (x)2>α≥ f (y)2} dµ(x)dµ(y)

= 2
∫

∞

0
dα

∫
κ(x,y)1Aα

(x) ·1Ac
α
(y) dµ(x)dµ(y) where Aα = { f 2 > α}

= 2
∫

∞

0
dα

∫
Q1Aα

(y) ·1Ac
α
(y) dµ(y)

≥ 2c
∫

∞

0
dα µ(Aα)µ(Ac

α), where c = infA(
∫

Q1A ·1Ac dµ)/(µ(A)µ(Ac))

= 2c
∫

∞

0
dα

∫
1{ f (x)2>α≥ f (y)2}dµ(x)dµ(y)

= 2c
∫

∞

0
dα

∫
1{ f (x)2− f (y)2>0}( f (x)2− f (y)2)dµ(x)dµ(y)

= c
∫
| f (x)2− f (y)2| dµ(x)dµ(y).

By (38) we have

〈(I−Q) f , f 〉µ ≥ (1/8)
c2
(∫
| f (x)2− f (y)2| dµ(x)dµ(y)

)2

(
∫

f 2 dµ)

≥ (1/8)c2
κ
′
∫

f 2 dµ

≥ (1/8)c2
∫

f 2 dµ by [29], Prop. 2.2 (see for a definition of κ ′).

Thus 1−λ2 ≥ c2/8.

Define

ρ(A) =
∫

Q1A ·1A dµ

µ(A)
+
∫

Q1Ac ·1Ac dµ

µ(Ac)
and c(A) =

∫
Q1A ·1Ac dµ

µ(A)µ(Ac)
.

Lemma 2. ρ(A) = 2− c(A).

Proof.∫
Q1A ·1A dµ

µ(A)
+
∫

Q1Ac ·1Ac dµ

µ(Ac)

=
µ(Ac)(

∫
Q1A ·1 dµ−

∫
Q1A ·1Ac dµ)

µ(A)µ(Ac)
+

µ(A)(
∫

Q1Ac ·1 dµ−
∫

Q1Ac ·1A dµ)
µ(A)µ(Ac)

=
µ(Ac)µ(A)−µ(Ac)

∫
Q1A ·1Ac dµ)

µ(A)µ(Ac)
+

µ(A)µ(Ac)−µ(A)
∫

Q1Ac ·1A dµ)
µ(A)µ(Ac)

= 2−µ(Ac)c(A)−µ(A)c(Ac) = 2− c(A) as c(A) = c(Ac).
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Corollary 2. ρ := supA ρ(A)≥ 2−
√

8(1−λ2).

Proof. supA ρ(A) = 2− infA c(A) = 2− c = 2−
√

8(1−λ2).

Upper bound

Lemma 3. ρ ≤ λ2 +1.

Proof. We know that 〈Q f , f 〉µ ≤ λ2 for all 〈 f ,1〉µ = 0. Consider the test function
f =

√
µ(Ac)/µ(A)1A−

√
µ(A)/µ(Ac)1Ac . We have

〈Q f , f 〉µ
= 〈
√

µ(Ac)/µ(A)Q1A,
√

µ(Ac)/µ(A)1A〉µ −〈
√

µ(Ac)/µ(A)Q1A,
√

µ(Ac)/µ(A)1Ac〉µ
−〈
√

µ(Ac)/µ(A)Q1Ac ,
√

µ(Ac)/µ(A)1A〉µ + 〈
√

µ(Ac)/µ(A)Q1c
A,
√

µ(Ac)/µ(A)1Ac〉µ

=
µ(Ac)
µ(A)

〈Q1A,1A〉µ −2〈Q1A,1Ac〉µ +
µ(A)
µ(Ac)

〈Q1Ac ,1Ac〉µ

=
µ(Ac)
µ(A)

〈Q1A,1A〉µ +
µ(A)
µ(Ac)

〈Q1Ac ,1Ac〉µ

−(〈Q1A,1〉µ −〈Q1A,1A〉µ + 〈Q1Ac ,1〉µ −〈Q1Ac ,1Ac〉µ)

=
〈Q1A,1A〉µ

µ(A)
+
〈Q1Ac ,1Ac〉µ

µ(Ac)
−µ(A)−µ(Ac)

≤ λ2.

As A is arbitrary, the result follows.
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34. I. Mezić and S. Wiggins. A method for visualization of invariant sets of dynamical systems
based on the ergodic partition. Chaos, 9(1):213–218, 1999.

35. B. Mosovsky and J.D. Meiss. Transport in transitory dynamical systems. SIAM J. Dyn. Syst.,
10:35–65, 2011.

36. R. Murray. Optimal partition choice for invariant measure approximation for one-dimensional
maps. Nonlinearity, 17(5):1623, 2004.

37. A. Pikovsky and O. Popovych. Persistent patterns in deterministic mixing flows. Europhys.
Lett., 61(5):625–631, 2003.

38. O.V. Popovych, A. Pikovsky, and B. Eckhardt. Abnormal mixing of passive scalars in chaotic
flows. Physical Review E, 75:036308, 2007.

39. V. Rom-Kedar, A. Leonard, and S. Wiggins. An analytical study of transport, mixing and
chaos in an unsteady vortical flow. Journal of Fluid Mechanics, 214:347–394, 1990.

40. V. Rom-Kedar and S. Wiggins. Transport in two-dimensional maps. Archive for Rational
Mechanics and Analysis, 109:239–298, 1990.

41. H.L. Royden. Real analysis. Pearson, third edition, 1988.
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