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Abstract

Grain growth experiments on thin metallic films have shown the geometric and topological characteristics of the grain structure to be
universal and independent of many experimental conditions. The universal size distribution, however, is found to differ both qualitatively
and quantitatively from classical curvature driven models of Mullins type, which reduce grain growth to an evolution of a grain bound-
ary network, with the experiments exhibiting an excess of small grains (termed an “ear”) and an excess of very large grains (termed a
“tail”) compared with the models. While a plethora of extensions of the original Mullins model have been proposed to explain these
characteristics, none have been successful. In this work, large-scale simulations of a model that resolves the atomic scale on diffusive time
scales, the phase field crystal model, are used to examine the complex phenomena of grain growth. The results are in remarkable agree-
ment with the prior experimental results, recovering the characteristic “ear” and “tail” features of the experimental grain size distribu-
tion. The simulations also indicate that, while the geometric and topological characteristics are universal, the dynamic growth exponent is
not.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Most metals, ceramics and minerals are polycrystalline
materials containing grains of different crystal orientation.
The size, shapes and arrangements of these grains strongly
affect macroscale material properties, such as fracture,
yield stress, coercivity and conductivity. In magnetic sys-
tems, for example, the coercivity (or magnetic “hardness”)
can change by four or five orders of magnitude with a
change in grain size [1]. Thus, understanding and control-
ling polycrystalline structures is of great importance in
the production of many engineering materials, and has
motivated numerous experimental and theoretical studies
of grain growth.
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Grain growth in thin metallic films is one example where
extensive research has been conducted. One very interesting
experimental finding in such systems is that the grain size
distributions and topological characteristics appear to be
independent of many experimental conditions [2]. More
specifically, it has been found that, for a large collection
of Al and Cu thin films, a universal grain size distribution
emerges that is independent of the substrate, annealing
temperature, purity, thickness and annealing time. Unfor-
tunately the universal distribution is qualitatively and
quantitatively different from the results of extensive com-
putational studies on grain growth (e.g. [3]), which are
based on the original Mullins model [4]. In this model,
the problem is reduced to the evolution of a two-dimen-
sional grain boundary network by relating the normal
velocity vn to the curvature j of the grain boundary,
vn ¼ lcj, with mobility l and surface tension c, and
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specifying the Herring condition [5] at triple junctions. Var-
ious attempts have been made to extend the original Mul-
lins model and to include more realistic effects, such as
interactions of the film with the substrate, anisotropy in
the grain boundary energy and mobility, grain boundary
grooving, and solute and triple junction drag (see Ref. [2]
and the references therein). While these extensions have
in some cases been shown to significantly alter the grain
statistics, no single cause has been able to explain all of
the experimental measured quantities, as discussed in
Ref. [2]. This discrepancy raises the question of whether
the underlying picture of an evolving smooth grain bound-
ary network of the Mullins curvature-driven models is per-
haps oversimplified.

In addition to the grain size distribution, the rate of
growth of the average grain size has also been examined
in detail. The original Mullins model and its extensions
all seem to predict that the average grain size, represented
by its radius rðtÞ, has a power law behavior of the form
� t1=2, which follows immediately from the linear relation-
ship between grain boundary velocity and curvature.
Experimentally, a much slower coarsening or even stagna-
tion of grain growth in thin films is observed. This may be
because the original Mullins model and its extensions
ignore the crystalline structure of the grains, the dissipation
due to lattice deformations and the Peierls barriers for dis-
location motion. It is difficult to reconcile Mullins-type
models with the atomistic features of grain boundaries,
which (for low angles) can be seen as an alignment of dis-
locations, where the driving force for grain growth is the
stress associated with dislocation motion. The differences
of the description are shown schematically in Fig. 1.

2. Atomic considerations

Atomistic descriptions can incorporate the important
physical features missing in the Mullins-type models and
have led to some important observations. It has been
shown that the complex dislocation structure along curved
grain boundaries gives rise to a misorientation-dependent
Fig. 1. Schematic comparison between an atomistic description of a polycrys
network. Shown is a low-angle grain boundary with aligned dislocations and
mobility [6]. Further studies indicate that grain boundaries
undergo thermal roughening associated with an abrupt
mobility change, leading to smooth (fast) and rough (slow)
boundaries [7], which can eventually lead to stagnation of
the growth process. The defect structure at triple junctions
can lead to a sufficiently small mobility limiting the rate of
grain boundary migration [8,9]. Also, tangential motion of
the lattices is possible. For low-angle grain boundaries,
normal and tangential motion are strongly coupled as a
result of the geometric constraint that the lattices of two
crystals change continuously across the interface while
the grain boundary moves [10]. As a consequence of this
coupling, grains rotate as they shrink, which leads to an
increase in the grain boundary energy per unit length,
although the overall energy decreases since the size of the
boundary decreases [11–13]. Each of these phenomena
can be simulated using molecular dynamics (MD) (see
Ref. [14] for a review). However, to study the effect of these
phenomena on scaling laws, grain size distributions or stag-
nation of growth requires a method which operates on dif-
fusive time scales. For this reason, we choose to study the
PFC model, which incorporates atomistic details on diffu-
sive time scales.

3. PFC model

The PFC method [15] was introduced to model elastic-
ity, dislocations and grain boundaries in polycrystalline
systems in a simple and natural fashion. The model has
been shown to successfully model grain boundary energies
as a function of misorientation [16] and non-classical grain
rotation during grain shrinkage and drag of triple junctions
[17]. In addition, lower coarsening exponents have been
observed for hexagonal lattices [18–20], and even stagna-
tion of grain growth could be seen [21]. The aim of this
paper is to use the PFC model on large scales to obtain sta-
tistical data for grain size distributions and to compare
them with prior experimental data for thin metallic films.
Since the experimental results in Ref. [2] seem to be univer-
sal, we do not fit the PFC parameters to a specific material
talline material and a coarse-grained picture of a smooth grain boundary
two high-angle grain boundaries in an otherwise hexagonal lattice.
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but consider an artificial setting within the simplest PFC
model introduced in Ref. [15]. In dimensionless form, the
equation reads

@w
@t
¼ Cr2 dF

dw
ð1Þ

where the order parameter w is related to the time-averaged
atomic density, t is time, C is the mobility and F is the free
energy, given by

F ¼
Z

wð��þ ðr2 þ 1Þ2Þw
2
þ w4

4
dr ð2Þ

Here, � is a parameter related to temperature. The free en-
ergy functional is constructed so that it is minimized in the
liquid state by w ¼ constant and in the solid crystalline
state by a periodic function that has triangular symmetry
in two dimensions and a dimensionless lattice constant
4p=

ffiffiffi
3
p

. The precise phase diagram can be found in Ref.
[15] and a small portion is shown in Fig. 3. In the crystal-
line state, F is minimized by a periodic function of arbi-
trary orientation, making the model ideal for the study of
polycrystalline materials. Elasticity is naturally incorpo-
rated in this model as any deviation from the equilibrium
triangular structure increases the energy. The specific elas-
tic constants are controlled by the average density of w; �w
and �, and can be written as C12 ¼ C44 ¼ C11=3, where
C12 ¼ ½ð3�wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15�� 36�w2

p
=75. This model and the param-

eters that enter it can be related to more fundamental ap-
proaches, such as classical dynamic density functional
theory [22–24,16].

4. Results

Fig. 2 shows a snapshot of a typical simulation. The cor-
responding animations of the growth process are shown in
the Supplementary material, as movies 1–3. The movies
allow us to identify all of the mentioned effects resulting
from the atomistic description, in particular fast and slow
moving grain boundaries, pinned triple junctions, rotating
grains, elastic deformations within single grains and the
movement of isolated dislocations.
Fig. 2. Grain structure obtained from post-processing a phase field crystal (
averaged local lattice orientation for each of the maxima in the density field. An
grain growth process for the three enlargements are provided in the supplemen
interpretation of the references to color in this figure legend, the reader is refe
All simulations are performed in a periodic domain of
square size L ¼ 8192m starting from a randomly perturbed
constant value of the particle density w. After an initiation
phase in which the white noise is damped rapidly, grains
nucleate, grow and impinge on one another. Thereafter,
the number of maxima in the particle density w remains
mainly constant and coarsening starts. Statistical results
are collected after grains have reached a minimal size of
100 atoms.

4.1. Scaling results

Fig. 3 shows the obtained scaling results for the average
domain area as a power law in time, i.e. tq, where q is 1=2 in
the Mullins-type curvature-driven models. In our simula-
tions it is not clear that this relationship is valid, as the
value of q can be see to change in time and is dependent
on the parameters of the simulation and initial conditions.
For case “A”, we either obtain an initial value of q ¼ 1=3,
which turns into q ¼ 1=5, or a constant value of q ¼ 1=5,
depending on the initial grain size. The constant scaling
exponent is observed for larger initial grains. For case
“B”, corresponding to a softer material, the growth expo-
nent increases to a value of q ¼ 2=5, whereas for case
“C”, a harder material, it decreases to q ¼ 1=20. For all
three cases, the growth exponent is significantly lower than
the expected value q ¼ 1=2 for the Mullins-type models.
Similar low coarsening exponents have been found for hex-
agonal lattices in Refs. [18,19] and in experiments for thin
films of CoPt and FePt [25]. Extensive computational stud-
ies in Refs. [19,20] further show a strong dependency of the
scaling exponent on additional noise, which enhances
the coarsening process. It has also been noted [20]
that the addition of higher-order time derivatives can
change the growth exponent, which may be appropriate
for three-dimensional samples. In two-dimensional thin
films (i.e. films with columnar grain structures), however,
it is expected that the substrate/film coupling provides an
effective friction for rotation or translation that eliminates
the need for such corrections. In either case, it is likely that
the growth exponents are transient because, for very large
PFC) simulation at an intermediate time. The color coding indicates the
enlargement by a factor of four is used for each figure. Animations of the

tary materials, as movies 1–3, corresponding to case “A1” in Fig. 3. (For
rred to the web version of this article.)



Fig. 3. Mean area as a function of time together with the fitted scaling
exponents for various points in the phase diagram depicted in the inset.
“A1” and “A2” have different initial grain sizes (A1 < A2). The
parameters are “A”: ðw0; �Þ ¼ ð�0:29;�0:25Þ; “B”:
ðw0; �Þ ¼ ð�0:25;�0:18Þ; “C”: ðw0; �Þ ¼ ð�0:31;�0:30Þ.
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grain sizes, the Peierls–Nabarro barriers are likely to
inhibit further coarsening. This effect already occur at early
times for quenches to lower temperatures, as confirmed for
points in the phase diagram in the solid region at
ðw0; �Þ ¼ ð�0:31;�0:25Þ, and ðw0; �Þ ¼ ð�0:29;�0:18Þ,
which show a frozen configuration.

4.2. Grain-size distribution

While it is not entirely clear if there is a single, well-
established dynamical exponent, the grain size distribution
functions appear to be much more robust. Fig. 4 shows the
averaged grain size distribution of the PFC simulations for
the considered points in the phase diagram, together with
Fig. 4. Grain size distribution with reference to radius (area in inlet).
Shown is the mean distribution, obtained as the average of the last time
steps for cases “A1”, “A2” and “B” in Fig. 3. Case “C” was not included
as it may still contain remnants of the initial condition. The curve is fitted
to a log-normal distribution with parameters ðl; rÞ ¼ ð�0:13; 0:53Þ. The
experimental data and the results of the Mullins model are taken from
Ref. [2].
the experimental results and the results of the Mullins-type
model taken from Ref. [2].

A considerable discrepancy between the experimental
results and the Mullins-type models has already been dis-
cussed in Refs. [26,2]. They differ in two important
respects. First, the experimental grain structures have a lar-
ger number of small grains, as evidenced by the peak of the
experimental reduced area probability density residing to
the left of that for the simulations based on the Mullins-type
models, a feature that has been termed the “ear”. Second,
the experimental grain structures have “tails” that extend
to significantly larger sizes than those seen in simulations
based on the Mullins-type models. While only very few
grains seen in simulations exceed four times (and very
rarely five times) the mean area, the experimental grain
structures exhibit maximum grain areas that are between
8 and 42 times the mean, with a sizable fraction of grains
whose areas exceed four times the mean grain area (� 3%
by number, representing � 18% of the total area). Various
closed-form distributions have been proposed to fit the
results of the Mullins-type models, e.g. the Louat, Hillert,
Rios and Weibull distribution (see Ref. [3] and the refer-
ences therein). They all not only differ in the “ear” and
“tail” regions, but also peak at r=hri > 1, again in disagree-
ment with the experimental results. The PFC simulations
not only recover the qualitative behaviour of the experi-
mental results, they almost perfectly fit the distribution,
and can be very well described by a log-normal distribu-
tion. The grain size distribution appears to be self-similar.
This is analyzed in detail for case “A1” in Fig. 5. All of the
results were obtained without additional noise. However,
simulations that included noise (not shown) produced
grain distributions consistent with the zero noise case.
Further analysis indicates that, also in agreement with
the experimental data, small grains are primarily three-
and four-sided, whereas large grains generally have more
than six sides.

5. Conclusions

The importance and prevalence of the formation and
properties of polycrystalline materials has led to an enor-
mous amount of theoretical and experimental research.
Unfortunately theoretical progress has been hindered by
the lack of computational methods that can capture the
essential physics on the times and lengths that are
appropriate for such phenomena. While MD simulations
are currently unable to reach time scales required to
observe self-similar growth regimes, coarse-grained
descriptions based on the Mullins model seem to lack the
essential atomistic features allowing for bulk dissipation
during grain growth. In this work, large-scale numerical
simulations of the PFC model were used to examine the
phenomenon of grain growth in two-dimensional systems.
The results of these simulations are in remarkable
agreement with universal aspects of the geometric and
topological characteristics of the grain structures in thin



Fig. 5. (top) Grain size distribution with reference to radius at the labeled
times in the inlet, corresponding to case “A1” in Fig. 3, in comparison
with the experimental results from Ref. [2]. We choose the case with a
“fast” coarsening rate to rule out any dependency on the initial conditions.
The evolution for cases “A2”, “B” and “C” are similar. The initially
narrow distribution broadens rapidly and its peak shifts towards smaller
grains. For large times the grain size distribution appears to be self-similar,
which is further illustrated in the bottom image, which shows the time
evolution of the parameters r and l of a log-normal distribution fitted to
the considered snapshots, again in comparison with the experimental
results from Ref. [2] (shown as the horizontal solid lines).
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metallic films. Among other features, they capture both the
“ear” and “tail” characteristics of grain distributions,
which have proven difficult to obtain with previous models
and methods. Thus the PFC model provides a key resource
for future research in which realistic grain structures are
required. Although not examined in this work, the model
also incorporates mechanical properties of the system and
thus can be used to study, for example, the relationship
between growth conditions and the structural stability of
polycrystalline materials.
6. Methods

6.1. Simulations

The computational approach is based on a modified
version of the convexity splitting proposed in Ref. [27],
which allows for a linearly implicit discretization and a
highly efficient Fourier ansatz, which is solved in parallel
on the high-performance computer JUROPA at FZ Jülich
(www.fz-juelich.de/jsc/juropa). We identify the maxima in
w, compute nearest neighbor relations according to the
proposed approach in Ref. [28] and use OVITO (www.ovi-
to.org) to plot the atomic arrangement with a color coding
according to the number of neighbors to identify disloca-
tions and the orientation for regular lattice points. Grain
boundaries are then identified according to the presence of
dislocations and a jump in orientation. In order to rule
out numerical effects, the simulations have also been consid-
ered on different domains L ¼ 1024; L ¼ 2048 and L ¼ 4096
to test for finite size effects, which are already absent for
L ¼ 4096. L ¼ 8182 is used to obtain better statistics. We
further varied the criteria to identify grain boundaries.
Our results are not sensitive to these variations.

6.2. Experiments

The considered experimental data are for Al and Cu
films, which were sputter deposited onto oxidized Si wafers
or single crystal rock salt. The Al films were deposited at
nominally room temperature, while the Cu films were
deposited at �40 �C. The Cu films were encapsulated in
sputter-deposited SiO2 or Ta38Si14N48/SiO2. Following
deposition, the films were annealed at temperatures in the
range of 0.32–0.77 of the melting temperature. Electron
transparent samples were prepared by back etching and
were examined in a transmission electron microscope.
The details of the grain size measurements from the trans-
mission electron micrographs as well as other experimental
details can be found in Ref. [2].
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