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We present a new diffuse interface model for the dynamics of inextensible vesicles in a 
viscous fluid with inertial forces. A new feature of this work is the implementation of 
the local inextensibility condition in the diffuse interface context. Local inextensibility is 
enforced by using a local Lagrange multiplier, which provides the necessary tension force 
at the interface. We introduce a new equation for the local Lagrange multiplier whose 
solution essentially provides a harmonic extension of the multiplier off the interface while 
maintaining the local inextensibility constraint near the interface. We also develop a local 
relaxation scheme that dynamically corrects local stretching/compression errors thereby 
preventing their accumulation. Asymptotic analysis is presented that shows that our new 
system converges to a relaxed version of the inextensible sharp interface model. This is 
also verified numerically. To solve the equations, we use an adaptive finite element method 
with implicit coupling between the Navier–Stokes and the diffuse interface inextensibility 
equations. Numerical simulations of a single vesicle in a shear flow at different Reynolds 
numbers demonstrate that errors in enforcing local inextensibility may accumulate and 
lead to large differences in the dynamics in the tumbling regime and smaller differences in 
the inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm 
is shown to prevent the accumulation of stretching and compression errors very effectively. 
Simulations of two vesicles in an extensional flow show that local inextensibility plays an 
important role when vesicles are in close proximity by inhibiting fluid drainage in the near 
contact region.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Vesicles are fluid-filled sacs bounded by a closed lipid bilayer membrane. Vesicles play a critical role in intracellular 
transport of molecules and proteins [4]. Vesicles have been used as drug delivery vehicles [56], microreactors [21] and as 
models of more complex biostructures such as red blood cells (RBCs) [55]. RBCs and vesicles are known to undergo complex 
motions and shape changes under applied flows (e.g., see [2,10,15,22,28,38,50]) and transitions from stationary shapes 
(tank-treading) to trembling to tumbling have been observed as a function of flow conditions and membrane characteristics. 
RBCs resist shear deformation due to the presence of a membrane cytoskeleton and also resist bending and area dilatation 
(e.g., see [3,50,65]), while the lipid bilayer membranes in vesicles are liquid-like, resist bending and are largely inextensible 
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(e.g., see [39,55]). In this paper, we focus on the dynamics of homogeneous vesicles, although our results apply more 
generally to the case in which there may be several lipid components on the membrane that can induce the formation of 
rafts.

Most experimental results on vesicles are performed in the low Reynolds number regime, see e.g. [15,28,42]. Un-
der these conditions inertial effects can be neglected and the Stokes limit considered, which allows the development of 
small-deformation perturbation theories [13,29,36,45–47,64], which all qualitatively predict the experimentally observed 
tank-treading and tumbling motion. Various numerical approaches have also been considered in the Stokes limit to ana-
lyze tank-treading and tumbling, e.g. [6,8,7,24,30,31,33,48,51,57,60,61,66]. Except for [30] in which the vesicle shape was 
assumed to be a fixed ellipsoid, all other models are of Helfrich type and consider a membrane free energy

E =
∫
Γ

1

2
bN(H − H0)

2 dΓ +
∫
Γ

bG K dΓ (1)

with membrane Γ (t), total curvature H , spontaneous curvature H0, normal bending rigidity bN , Gaussian bending rigidity 
bG and Gaussian curvature K . We focus on the case in which the vesicle is homogeneous and its topology does not change. 
Then bN , H0 and bG may be assumed to be constant and the Gaussian bending energy only contributes a constant and 
can therefore be neglected. Lagrange multipliers are used to enforce the inextensibility constraint, which can be considered 
as a global constraint to enforce a constant area of the membrane, but allowing for local variations, or as a stronger local 
constraint. The jump condition for the fluid stress tensor S = −pI + νD, where p is the pressure, ν is the viscosity, and D is 
twice the rate of deformation tensor D = ∇v + (∇v)T , with velocity v, along the membrane then reads

[S · n]Γ = δE
δΓ

unconstrained, (2)

[S · n]Γ = δE
δΓ

+ λglobal Hn global area constraint, (3)

[S · n]Γ = δE
δΓ

+ λlocal Hn + ∇Γ λlocal local inextensibility constraint, (4)

where [ f ]Γ = fouter − f inner, n is the normal pointing out of the vesicle, and ∇Γ is the surface gradient ∇Γ = P∇ , with 
the projection operator P = I − n ⊗ n. The Lagrange multipliers are functionals of the fluid velocity v and are obtained by 
requiring

d

dt

∫
Γ

dΓ =
∫
Γ

Hv · n dΓ = 0, global area constraint,

∇Γ · v = 0, local inextensibility constraint.

We remark that locally inextensible vesicles also conserve the global surface area. The jump condition for the velocity in all 
cases is

[v]Γ = 0.

Due to the linearity of the Stokes problem, efficient algorithms can be derived to solve the coupled fluid-structure 
flow problem, e.g. [7,57,60,61,66]. When inertial forces are considered, the development of efficient algorithms remains a 
significant challenge.

Inertial effects can become important in a variety of biophysical applications. Flowing vesicles/RBCs in larger blood 
vessels such as arterioles and arteries may experience Reynolds numbers of order unity or higher, especially if the vessels 
are constricted due to diseases such as thrombosis, e.g. [5,62]. Large Reynolds numbers may also be found in biomedical 
devices such as ventricular assist devices, e.g., [23]. Motivated by these applications inertial effects are considered in [16,32,
34,41,43,54], which found that the classical tumbling behavior of highly viscous vesicles is no longer observed at moderate 
Reynolds numbers.

The Navier–Stokes equations inside and outside the vesicle read

ρ(∂tv + v · ∇v) − ∇ · S = 0 (5)

∇ · v = 0 (6)

with density ρ = ρ1,2 and stress tensor S = S1,2 = −pI + ν1,2D. Here, the notation ρ1,2 means ρ1 inside and ρ2 outside the 
vesicle. The global area constraint, which can be treated explicitly, has been used by [9] within a front tracking method, by 
[17,18,25,44] within phase field methods, and was also considered in [53] within a level-set approach.

The local inextensibility constraint is more delicate and leads to additional nonlinear coupling in the model. This has 
been considered within a level set approach in [16,34,53,54], immersed boundary methods [31,32] and phase field methods 
[8,7,34,43]. Capsule-like models have also been considered using strain-energy functions that penalize local stretching, e.g. 
[12,41].

In [53,54] the system is rewritten as a single-fluid model by considering the jump conditions for the fluid stress tensor 
as a body–force term with a delta-function δΓ to localize the force at the membrane. An iterative multi-step projection 
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method is used to ensure first the incompressibility of the fluid and second to determine the Lagrange multiplier. How-
ever, the projection step to determine the Lagrange multiplier is fully explicit and does not preserve the incompressibility 
of the fluid. The approach also assumes that the level set function is a signed distance function, and thus requires re-
distancing. Further, the inextensibility constraint was enforced throughout the computational domain near the interface, 
which could influence the velocity field in the bulk fluid phases. In [34,35], a saddle-point approach was used to solve the 
level-set formulation of the system using adaptive finite elements. An implicit time-stepping algorithm was proposed where 
the fluid equations and the level-set equations were solved iteratively at each time step. Additional Lagrange multipliers 
were introduced into the level-set equation to enhance volume and surface area conservation. Indeed, without these addi-
tional Lagrange multipliers, the volume and surface area errors increase rapidly leading to inaccuracy of the method. The 
additional Lagrange multipliers, however, do not introduce additional forces in the fluid, which is questionable physically. 
A similar approach is used in [16] although they did not use adaptive local refinement and did not consider the additional 
Lagrange multipliers in the level-set equation. Instead higher order polynomial approximations were used in the finite el-
ement method to increase accuracy, which increases the computational cost. In [43], an other approach was used in the 
level-set context. In particular, a simple elastic force was introduced to penalize local stretching. This method requires a 
large elasticity coefficient to generate nearly inextensible membranes that can introduce time step restrictions for stability.

In [26,31,32], a single-fluid model was also used with a Lagrange multiplier to enforce inextensibility; the scheme was 
implemented using a penalty immersed boundary method (pIB) in 2D and in axisymmetric flows. In this approach, the 
interface is represented by two curves one of which moves with the fluid while the other moves elastically under the 
influence of bending forces. The two curves are linked by stiff springs, which provide the only forces in the fluid. This 
approach enables the system for the fluid flow and the elastic and bending forces to be decoupled, which is in the same 
spirit as the method in [53,54]. In principle, the method should converge to the original inextensible model as the spring 
stiffness tends to infinity, although this was not demonstrated and numerically large stiffnesses can introduce severe time 
step restrictions for stability.

Single-fluid models implemented using the phase field method were presented in [8,7,43]. In this approach, a Lagrange 
multiplier was introduced and was assumed to satisfy an advection–reaction equation where the advective time derivative 
was proportional to the surface divergence of the velocity field. The constant of proportionality was referred to as a tension-
like parameter T . To ensure stability, additional diffusion is introduced which smooths out strong local variations in ∇Γ · v. 
As shown in the asymptotic analysis in [8], and further discussed in [27], inextensibility in this approach was only fulfilled 
in the limit T → ∞ where in practice, T ∼ ε−1 and ε is proportional to the thickness of the diffuse interface, which is 
taken to zero in the asymptotics. Thus, for finite ε , the interface is not fully inextensible. The convergence of the method as 
ε → 0 was not demonstrated numerically.

Each of the methods discussed above has advantages and disadvantages. A common feature is that all the single-fluid 
methods require various forms of regularization to implement the dynamics and to enforce the inextensibility of the vesicle 
membrane to some degree. This is true of our new method as well. However, none of the previously developed methods 
have been shown to converge numerically to inextensible evolution. As we show here, the dynamics of the vesicle can be 
very sensitive to the accuracy to which the inextensibility condition is modeled. Thus, there is still a need to develop models 
for which the accuracy of the inextensibility constraint can be explicitly controlled and for which convergence to the sharp 
interface model can be demonstrated.

Accordingly, in this paper we present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous 
fluid with inertia. A new feature of this work is the implementation of the local inextensibility condition in the diffuse 
interface context. As in the other methods described above, local inextensibility is enforced by using a local Lagrange mul-
tiplier, which provides the necessary tension force at the interface. However, we introduce a new equation for the local 
Lagrange multiplier whose solution essentially provides a harmonic extension of the local Lagrange multiplier off the in-
terface while maintaining the local inextensibility constraint near the interface. The degree to which local inextensibility is 
enforced is controlled by a regularization parameter that scales with the square of the interface thickness. We demonstrate 
using asymptotic analysis and numerical simulations that inextensible evolution is obtained when the interface thickness 
tends to zero. To make the method more robust, we also develop a local relaxation scheme that dynamically corrects local 
stretching/compression errors. The discretized equations are solved in 2D using an adaptive finite element method.

The outline of the paper is as follows. In Section 2, the new diffuse interface models are derived. In Section 3, a matched 
asymptotic analysis of the diffuse models is presented. In Section 4, the spatiotemporal discretization of the system is 
discussed. Numerical results are presented in Section 5. In Section 6, conclusions are given and future work is discussed. 
Finally, details on the matched asymptotic analysis are given in Appendix A.

2. Phase field/diffuse interface models

The phase field method, also known as the diffuse interface method, introduces an auxiliary field φ that distinguishes the 
vesicle interior from the exterior. The vesicle boundary is modeled by a narrow, diffuse layer. An equation is posed for the 
phase field function φ, which is nonlinearly coupled to the fluid equations. In the models presented below, space is nondi-
mensionalized using L, a characteristic length scale (e.g., vesicle size), and time is non-dimensionalized using V /L where V
is a characteristic velocity scale (e.g., far-field velocity magnitude). The density and viscosity are nondimensionalized using 
their values in the matrix fluid. Near the interface, φ can be approximated by
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φ(t,x) := tanh

(−r(t,x)√
2ε

)
(7)

where ε characterizes the thickness of the diffuse interface and r(t, x) denotes the signed-distance function between x ∈ Ω

and its nearest point on Γ (t). Taking r to be negative inside the vesicle, we label the inside with φ ≈ 1 and the outside 
with φ ≈ −1. The interface Γ (t) is implicitly defined by the zero level set of φ.

Consider a diffuse interface version of the nondimensional Helfrich energy [19]

E(φ) =
∫
Ω

1

2ε

1

ReBe

(
ε�φ − 1

ε

(
φ2 − 1

)
(φ + H0)

)2

dΩ, (8)

where the Reynolds number is Re = ρ2 V L/ν2, where ρ2 and ν2 are the density and viscosity of the matrix fluid (the fluid 
outside the vesicle). The bending capillary number is Be = 4

√
2

3 · ν2 L2 V
bN

, where bN is the bending stiffness. The scaling factor 
4
√

2/3 arises from the choice of the double-well potential (φ2 − 1)(φ + H0) contained in Eq. (8) and is chosen to match the 
sharp interface energy in the thin interface limit. For example, in [19] a formal convergence analysis as ε → 0 is performed 
to show that the diffuse interface energy in Eq. (8) tends to the nondimensional form of the sharp interface energy in 
Eq. (1). This approach differs from the treatment in [7] where the diffuse interface version of the Helfrich energy is the 
extension of the sharp interface energy in Eq. (1) off the interface into the whole domain Ω with the total curvature and 
normal vector being calculated as H = ∇ · n and n = −∇φ/|∇φ|, respectively.

2.1. Global surface area constraint: model A

A thermodynamically consistent phase field approach to model the dynamics of vesicles in a viscous fluid was proposed 
in [17,18]. In this approach, spatially constant Lagrange multipliers were introduced to enforce volume and total (global) 
surface area conservation, and bending forces obtained variationally from the energy in Eq. (8) were included. The resulting 
nondimensional Navier–Stokes system is

ρ(∂tv + v · ∇v) + ∇p − 1

Re
∇ · (νD) = g∇φ − λglobal f ∇φ − λvolume∇φ, (9)

∇ · v = 0, (10)

where λglobal = λglobal(t) ∈R and λvolume = λvolume ∈R are the Lagrange multipliers and the terms on the right hand side of 
Eq. (9) are the excess forces due to bending, global surface area conservation and volume conservation respectively. Further,

g = 1

ReBe

(
� fc − 1

ε2

(
3φ2 + 2H0φ − 1

)
fc

)
, (11)

fc = ε�φ − 1

ε

(
φ2 − 1

)
(φ + H0), (12)

f = ε�φ − 1

ε

(
φ2 − 1

)
φ. (13)

The evolution of φ is given by the dimensionless nonlinear advection–diffusion equation

∂tφ + v · ∇φ = −η(g − λglobal f − λvolume), (14)

where η > 0 is a small mobility parameter. The density ratio and viscosity ratio are modeled as ρ = ρ(φ) =
0.5(φ + 1)ρ1/ρ2 + 0.5(1 − φ) and ν = ν(φ) = 0.5(φ + 1)ν1/ν2 + 0.5(1 − φ), respectively (see also [8,53]). The Lagrange 
multipliers λvolume and λglobal follow from the constraints

d

dt
V(φ) = d

dt

∫
Ω

1

2
(φ + 1)dΩ = 0 (volume constraint) (15)

d

dt
A(φ) = d

dt

∫
Ω

ε

2
|∇φ|2 + 1

4ε

(
φ2 − 1

)2
dΩ = 0 (global area constraint). (16)

Using the evolution equation for φ, the system to be solved for λvolume and λglobal reads

λvolume

∫
Ω

dΩ + λglobal

∫
Ω

f dΩ =
∫
Ω

g dΩ, (17)

λvolume

∫
f dΩ + λglobal

∫
f 2 dΩ =

∫ (
1

η
v · ∇φ + g

)
f dΩ, (18)
Ω Ω Ω
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which must be solved together with Eqs. (9), (10) and (14). Because of the accumulation of errors, [20] suggested that 
additional relaxation terms be added to the equations, which was found to improve accuracy. That is, the terms 1

2τ (V0 −
V(φ)) and 1

2τ (A0 − A(φ)) are added to the right hand sides of Eqs. (17) and (18), respectively, where V0 and A0 denote 
the desired volume and area. The relaxation parameter is the inverse of the time step size τ .

2.2. Local inextensibility constraint: model B

To enforce the local inextensibility constraint in the phase–field model, we propose a modification of the flow problem 
in model A. In particular, we introduce spatially varying Lagrange multiplier λlocal , which introduces tension forces along 
the interface. These tension forces take the form ∇ · (δεPλlocal), where P = I − n ⊗ n, with n = −∇φ/|∇φ|, is the tangential 
projection operator and δε = 0.5|∇φ| is a diffuse interface approximation of the surface delta function.

The nondimensional Navier–Stokes equation thereby becomes

ρ(∂tv + v · ∇v) + ∇p − 1

Re
∇ · (νD) = ∇ · (δεPλlocal) + g∇φ − λglobal f ∇φ − λvolume∇φ, (19)

∇ · v = 0, (20)

where we have also retained the volume and global surface area Lagrange multipliers, which we found to help improve the 
accuracy of the method. The inclusion of the volume and global surface area constraints results in a decreased magnitude 
of λlocal compared to the case where the constraints are not included. The evolution equation for φ as well as the system 
to determine λglobal and λvolume remain as before.

The inextensibility constraint ∇Γ · v = P : ∇v = 0 on Γ is extended off Γ into the whole domain Ω , following the diffuse 
domain approach [37,52,58]. The idea is to perform an extension of the equation in order to solve for λlocal in the whole 
domain, without extending the inextensibility constraint away from the interface. In particular, we take

ξε2∇ · (φ2∇λlocal
) + δεP : ∇v = 0, (21)

where ξ > 0 is a parameter independent of ε . Eq. (21) reduces to �λlocal = 0 away from Γ , since φ2 ≈ 1 and δε ≈ 0, and 
becomes P : ∇v = 0 near Γ , where δε is large and φ2 ≈ 0. Thus, this effectively provides a harmonic extension of λlocal off 
Γ while maintaining the local inextensibility constraint near Γ . An asymptotic analysis is given in Section 3, which shows 
convergence of Eq. (21) as ε → 0 to the original sharp interface inextensibility constraint. We note that the tension force 
term in the Navier–Stokes equation expands to ∇ · (δεPλlocal) = δε(∇Γ λlocal −λlocal Hn), which is exactly the body force term 
used in [6,8,7,34,53].

Our approach differs from that taken in the phase field method used in [6,8,7,43], where the evolution equation ∂tλlocal +
v · ∇λlocal = β�λlocal + T P : ∇v was used instead of Eq. (21). In this equation, T is interpreted as a tension-like constant that 
effectively controls the inextensibility of the membrane and the diffusion is only added for regularization purposes, with 
a small parameter β > 0. Note that if T → ∞, such as would be the case if T ∼ 1/ε , then the inextensibility condition is 
enforced throughout the whole domain, which is unlike the formulation considered here. Further, unlike the case here, the 
additional Lagrange multipliers for volume and global area conservation were not considered.

The above choice of the regularization term is further justified by admitting the following energy law. Consider the total 
energy

Etot =
∫
Ω

1

2ε

1

ReBe

(
ε�φ − 1

ε

(
φ2 − 1

)
(φ + H0)

)2

+ 1

2
|v|2 dΩ,

where we have assumed the kinetic energy with constant density, i.e. the density ratio ρ = 1. Note, that thermodynamically 
consistent diffuse interface models with different densities are still controversial and either involve additional forces in the 
Navier–Stokes equation [1] or quasi-incompressibility [40]. The time derivative of the above energy is

dtEtot =
∫
Ω

g∂tφ + v · ∂tv dΩ.

Plug in the time evolution equations (9), (10) and (14) and use integration by parts to obtain

dtEtot =
∫
Ω

−ηg(g − λglobal f − λvolume) − v · ∇φ(λglobal f + λvolume) − ν

2 Re
D : D + v · ∇ · (δεPλlocal)dΩ.

This can be rewritten using Eqs. (17) and (18) multiplied by ηλvolume and ηλglobal, respectively:

dtEtot =
∫

−η(g − λglobal f − λvolume)
2 − ν

2 Re
D : D + v · ∇ · (δεPλlocal)dΩ.
Ω
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Finally using the regularized inextensibility equation (21) and integration by parts we obtain decreasing energy

dtEtot =
∫
Ω

−η(g − λglobal f − λvolume)
2 − ν

2 Re
D : D − ξε2φ2|∇λlocal|2 dΩ.

2.3. Local inextensibility constraint with relaxation: model C

As occurs with the global surface area constraint [20], solving Eq. (21) may introduce small errors at each time step due 
to the regularization term (first term on the left hand side). Such errors may accumulate over time and may lead to spurious 
local stretching and compression of the membrane. Hence, it would be desirable to have a local mechanism to correct these 
errors and drive a slightly stretched or compressed surface back to equilibrium. Such relaxation mechanisms were used in 
sharp interface models of flexible fibers evolving in a Stokes flow [59]. Here, we present a local relaxation mechanism in 
the diffuse interface context.

We introduce a variable c to measure local stretching of the interface. Taking c to evolve by the surface mass conservation 
equation:

∂tc + v · ∇c + c∇Γ · v = 0 on Γ, (22)

and setting the initial value c(x, 0) = 1, locations where c deviates from 1 represent regions of compression (c > 1) and 
stretching (c < 1). For numerical purposes we introduce additional diffusion along the interface

∂tc + v · ∇c + c∇Γ · v = θ�Γ c on Γ (23)

with a small parameter θ > 0. Restricting the diffusion to the interface ensures no interference with the bulk.
We use a version of Hooke’s law to relax the local changes in interfacial area. In particular, we require that the strength of 

the relaxation is proportional to the amount of local stretching and compression. Accordingly, we take ∇Γ · v = ζ(c − 1)/c, 
where ζ > 0 is a constant controlling the strength of the relaxation. As we will see later in the diffuse interface model, 
a good choice for ζ is the inverse of the time step size. As long as c = 1 the original inextensibility condition ∇Γ · v = 0
holds.

Within the diffuse domain formulation we replace Eq. (21) by

ξε2∇ · (φ2∇λlocal
) + δεP : ∇v = ζ

c − 1

c
δε, (24)

where the concentration c satisfies a diffuse interface version of Eq. (23),

∂tc + v · ∇c + cP : ∇v = θ∇ · (P∇c), (25)

e.g., see [52]. The complete model including relaxation consists of solving the Navier–Stokes equation (19), (20) and (24) for 
v, p and λlocal, the surface conservation equation (25) for c, the phase field equation (14) for φ, and Eqs. (17)–(18) for the 
Lagrange multipliers λglobal and λvolume.

At first glance, model C appears to be similar to the approach presented in [8,7,6]. However here, the evolution equation 
is for c, which serves only to correct errors in local inextensibility, rather than for λlocal as in [8,7,6], which generates a 
tension force in the fluid.

3. Asymptotic analysis

In this section, we use matched asymptotic expansions to show that Eq. (24) converges as ε → 0 to the relaxed version 
of the sharp interface inextensibility condition

P : ∇v = ∇Γ · v = ζ
c − 1

c
(26)

on the membrane surface Γ (t), and Eq. (25) converges to the corresponding sharp interface Eq. (23). In this approach, we 
expand the variables in powers of the interface thickness ε in regions close to (inner expansion) and far (outer expansion) 
from the interface. The two expansions are matched in an intermediate region where both expansions are presumed to 
be valid (e.g., see [11,49] for a general description of the procedure). Previous work [17,18] can be used to show that the 
Navier–Stokes system in models B and C converge to the sharp interface incompressible Navier–Stokes equations with jump 
conditions given in Eq. (4).

Outer expansion. Away from Γ (t), which is defined as the zero level-set of φ, we assume that all variables have a regular 
expansion in ε . For example, the local Lagrange multiplier can be written as λlocal = λ

(0)

local + ελ
(1)

local + . . . , and likewise for 
the other variables. Further, away from Γ , we have φ = ±1 to all orders and so ∇φ = 0 and P = I to all orders. Define the 
outer regions to be Ω+ , the exterior of the vesicle, and Ω− the interior of the vesicle. Accordingly, plugging the expansions 
into the equations and matching powers of ε , Eq. (24) becomes

�λ
(i) = 0, for i = 0, 1, . . . in Ω±. (27)
local
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The leading order contribution from Eq. (25) is:

∂tc(0) + v(0) · ∇c(0) = θ�c(0) in Ω±. (28)

Inner expansion. Near Γ (t), we introduce a local coordinate system

x(s, z;ε) = X(s;ε) + εzn(s;ε), (29)

where X(s; ε) is a parametrization of the interface, n(s; ε) is the interface normal vector that points out of the vesicle into 
Ω+ , z is the stretched variable

z = r(x)

ε
, (30)

and r is the signed distance from the point x to Γ (t), which is taken to be negative inside the vesicle. We then assume that 
all variables can be written as functions of z and s and that in these coordinates the variables have regular expansions in ε . 
That is, for the velocity field

v̂(z, s;ε) ≡ v(x;ε) = v
(
X(s;ε) + εzn(s;ε);ε)

, (31)

and the inner expansion is

v̂(z, s;ε) = v̂(0)(z, s) + εv̂(1)(z, s) + ε2v̂(2)(z, s) + · · · . (32)

The definitions and expansions of φ̂ , λ̂local and ĉ are analogous. Note that φ̂(0)(z, s) = tanh(−z/
√

2), which can be justified 
using the analysis in [17,18].

Matching conditions. The inner and outer expansions are matched in a region where both expansions are valid. To obtain the 
matching conditions, we assume that there is a region of overlap where both the expansions are valid, e.g. where εz =O(1). 
In particular, if we evaluate the outer expansion in the inner coordinates, this must match the limits of the inner solutions 
away from the interface. This procedure provides boundary conditions for the outer equations. Summarizing the results for 
the velocity field (the matching conditions for the other fields are analogous) we have [49]

lim
z→±∞ v̂(0)(z, s) = v(0)

(
X(s;0)

)
, (33)

at leading order. At the next order, we obtain

v̂(1)(z, s) = v(1)
(
X(s;0)

) + zn · ∇v(0)
(
X(s;0)

) + o(1), (34)

as z → ±∞, and so on. The quantities on the right hand sides in Eqs. (33) and (34) are the limits from the interior (Ω−) 
and exterior (Ω+) of the vesicle. Here o(1) means that the expressions approach equality when z → ±∞. That is, o(1) is 
defined such that if some function f (z) = o(1), then we have limz→±∞ f (z) = 0.

Analysis near Γ . In the local coordinate system, the derivatives become

∂t = − V

ε
∂z + ∂t, (35)

∇ = 1

ε
n∂z + ∇Γ , (36)

� = 1

ε2
∂zz + H

ε
∂z + �Γ , (37)

where V is the normal velocity of Γ . Note that in Eq. (35) we have abused notation; what we mean here is ∂tc =
− V

ε ∂zĉ + ∂t ĉ and analogously for the other variables (e.g., see [11,49]).
Define P = P : ∇v . It can be shown that the inner expansion of this term takes the form

P̂ = P̂(0) + εP̂(1) + . . . , (38)

where the leading term is given by

P̂(0) = ∇Γ · v̂(0). (39)

Eqs. (38) and (39) are justified in Appendix A. It is also shown in Appendix A that the leading order velocity field fulfills

∂zv̂(0) = 0. (40)

Using this, together with the matching condition (33) we conclude that the outer velocity v(0) is continuous across the 
interface. Further, a straightforward calculation shows that

δ̂ε = − 1

2ε
φ̂

(0)
z + δ̂

(0)
ε + εδ̂

(1)
ε , (41)

where φ̂(0)
z := ∂zφ̂

(0) and we do not present the specific forms of the higher order terms.



S. Aland et al. / Journal of Computational Physics 277 (2014) 32–47 39
At leading order O (1/ε), Eq. (24) becomes:

φ̂
(0)
z P̂(0) = ζ

ĉ(0) − 1

ĉ(0)
φ̂

(0)
z . (42)

Since φz < 0, we conclude that P̂(0) = ∇Γ · v̂(0) = ζ ĉ(0)−1
ĉ(0) . Taking the limit as z → ±∞, using the matching condition and 

the continuity of the velocity, we obtain the inextensibility condition

∇Γ · v(0) = ζ
c(0) − 1

c(0)
on Γ (t), (43)

as claimed.
To analyze Eq. (25) in the inner variables, we use the fact that v̂(0)

z = 0 and that the interface moves with the fluid 
velocity at leading order: V = v̂(0) · n. See also [17,18]. Then, Eq. (25) becomes

∂t ĉ(0) + v̂(0) · ∇Γ ĉ(0) + ĉ(0)∇Γ · v̂(0) = θ�Γ ĉ(0). (44)

Taking the limit z → ±∞ and using the leading order matching condition (33) we obtain

∂tc(0) + v(0) · ∇Γ c(0) + c(0)∇Γ · v(0) = θ�Γ c(0), (45)

the solution of which provides the boundary condition for Eq. (28).

4. Numerical methods

To solve the system of equations numerically we split the time interval I = [0, T ] into equidistant time intervals 0 = t0 <

t1 < . . . and define the time steps τ := tn+1 − tn . Of course, adaptive time steps may also be used. We define the discrete 
time derivative dt ·n+1 := (·n+1 − ·n)/τ , where the upper index denotes the time step number.

The numerical approach for each subproblem is adapted from existing algorithms for the Navier–Stokes equations and 
the Helfrich model. We solve the overall system using an operator splitting approach, with the Navier–Stokes equations 
being implicitly coupled to the inextensibility constraint. The phase field variable is solved separately, as are the global 
Lagrange multipliers and the relaxation variable c.

We present here the time discretization of the inextensibility model with relaxation (model C). At each time step we 
solve

1. The flow problem for vn+1, pn+1 and λn+1
local:

ρn(dtvn+1 + vn · ∇vn+1) + ∇pn+1 − 1

Re
∇ · (νnDn+1) − ∇ · (δn

εPnλn+1
local

)
= gn∇φn − λn

global f n∇φn − λn
volume∇φn, (46)

∇ · vn+1 = 0, (47)

ξε2∇ · ((φn)2∇λn+1
local

) + δn
εPn : ∇vn+1 = τ−1 cn − 1

cn
δn
ε , (48)

where ρn = ρ(φn), νn = ν(φn), Pn = I − ∇φn⊗∇φn

|∇φn|2 and δn
ε = 0.5|∇φn|.

2. The evolution equations for φn+1, gn+1, f n+1
c and f n+1:

dtφ
n+1 + vn+1 · ∇φn+1 = −η

(
gn+1 − λn

global f n+1 − λn
volume

)
, (49)

gn+1 = 1

ReBe

(
� f n+1

c − 1

ε2

(
3
(
φn+1)2 + 2H0φ

n+1 − 1
)

f n+1
c

)
, (50)

f n+1
c = ε�φn+1 − 1

ε

((
φn+1)2 − 1

)(
φn+1 + H0

)
, (51)

f n+1 = ε�φn+1 − 1

ε

((
φn+1)2 − 1

)
φn+1. (52)

We further linearize the nonlinear terms using a Taylor series expansion of order one, e.g. ((φn+1)2 − 1)φn+1 =
((φn)2 − 1)φn + (3(φn)

2 − 1)(φn+1 − φn).
3. The equations for the Lagrange multipliers λn+1

volume and λn+1
global:

λn+1
volume

∫
Ω

dΩ + λn+1
global

∫
Ω

f n+1 dΩ =
∫
Ω

gn+1 dΩ + 1

2τ

(
V0 − V

(
φn+1)),

λn+1
volume

∫
f n+1 dΩ + λn+1

global

∫ (
f n+1)2

dΩ =
∫ (

1

η
vn+1 · ∇φn+1 + gn+1

)
f n+1 dΩ + 1

2τ

(
A0 −A

(
φn+1)).
Ω Ω Ω
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This system is solvable since the determinant of coefficients on the left hand side is positive, as long as f n+1 is not a 
constant function.

4. The advection–diffusion equation for the stretching variable cn+1:

∂tcn+1 + vn+1 · ∇cn+1 + cn+1Pn+1 : ∇vn+1 = θ∇ · (Pn+1∇cn+1). (53)

To solve the system without relaxation (model B), we omit the right hand side in Eq. (48). For the global area constraint 
(model A), we additionally omit the last equation of the flow problem in step 1 and set λn+1

local = 0.
We use the adaptive finite element toolbox AMDiS [63] for discretization in space, with the P2/P1 Taylor–Hood element 

for the flow problem, extended by a P2 element for λlocal. For φ and c, P2 elements are used. The resulting linear systems 
of equations are solved with UMFPACK [14]. The adaptive mesh refinement and coarsening are controlled by the phase field 
variable, for which a specified spatial resolution at the interface that depends on ε is required. The choices for the numerical 
parameters η, ξ , ζ and θ are described in the next section.

5. Numerical results

We perform numerical simulations to test models A, B, and C in 2D. We discuss choices of the model parameters and 
quantify the amount of interface stretching as a function of the interface thickness ε , using two measures of interface 
stretching. We compare the results using the different models to determine the effect of the corresponding approaches for 
enforcing the inextensibility condition on the vesicle dynamics. We demonstrate convergence to inextensible evolution as 
ε → 0. We also investigate the effect of inertia by varying the Reynolds number. We begin using a single vesicle in shear 
flow and we then simulate two vesicles driven together by an extensional flow. Although the models and numerical methods 
presented here can be extended to simulate vesicle dynamics in 3D, we defer such simulations to a future work.

Regularization and relaxation parameters. In practice, we find that the regularization coefficient ξ in Eqs. (21) and (24) in 
models B and C influences the accuracy of the extensibility condition. In particular, increasing ξ leads to larger errors in 
the enforcement of the inextensibility condition while making ξ small tends to increase the region of inextensibility around 
the membrane. We find that a good compromise that maintains accuracy while keeping a narrow region of inextensibility 
is obtained by taking ξ = 1. Note that in Eqs. (21) and (24), ξ is multiplied by ε2 so that the overall coefficient of the 
regularizing term is small and decreases quadratically with ε . Practical considerations also dictate our choice of the relax-
ation constant ζ from Eq. (24) in model C. As ζ increases, the relaxation occurs more rapidly and leads to small time step 
restrictions for stability. As ζ decreases, the relaxation occurs more slowly and errors in inextensibility accumulate more 
readily. We find that a good compromise that maintains accuracy and stability is to take ζ = 1/τ . With this choice, errors 
in inextensibility from the previous time step are approximately eliminated in the next time step. Finally, for the surface 
diffusion coefficient θ from Eq. (25) in model C, analogous tradeoffs between accuracy (small θ ) and stability (large θ ) lead 
us to choose the compromise value θ = ε/3.

Measurement of inextensibility. There are at least two ways of measuring the inextensibility of the vesicle interface. One can 
either measure ∇Γ · v at the interface or one can use the concentration variable c. In the latter case, the value of (c − 1)/c
at the interface represents the local stretching accumulated over time while the former case measures the instantaneous 
stretching. Hence, to test the accuracy of our method we introduce the following two measures of interface stretching:

Ev =
∫
Ω

ε−1(1 − φ2)2|∇Γ · v|dΩ (instantaneous stretching), (54)

Ec =
∫
Ω

ε−1(1 − φ2)2∣∣(c − 1)/c
∣∣dΩ (accumulated stretching). (55)

Note that ε−1(1 − φ2)2 is a (scaled) diffuse interface approximation of the surface delta function.

5.1. Vesicle in shear flow

We simulate a single elliptical vesicle oriented in the y-direction, with major axis of length 2.5 and minor axis of 
length 1.0, placed in the center of a domain Ω = [0, 4]2. We prescribe v = (±10, 0) at the upper/lower boundaries of Ω . 
Stress-free boundary conditions are imposed for the fluid flow in the x-direction. We use homogeneous Neumann boundary 
conditions for λlocal, fc and φ, and the Dirichlet boundary condition c = 1. The initial velocity is set to zero. The bending 
capillary number is taken to be Be = 20, the spontaneous curvature is H0 = 0, the densities of the fluids inside and outside 
of the vesicle are matched ρ1/ρ2 = 1 and the viscosity ratio is ν1/ν2 = 10 so that the viscosity of the fluid inside the 
vesicle is larger than that of the matrix fluid in the vesicle exterior. To investigate the effect of Reynolds number, we use 
Re = 1 and Re = 1/200. Finally, the interface thickness is ε = 0.03, the spatial mesh is adaptive with a minimum grid size 
of h = 2−5 and the time step size τ = 5.0e−4.
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Fig. 1. Convergence study showing a super-linear decrease of the instantaneous stretching Ev in Eq. (54) as a function of the interface thickness ε for 
model B. (Color online.)

Fig. 2. Convergence study showing a super-linear decrease of the accumulated stretching Ec in Eq. (55), as a function of the interface thickness ε , for 
models B (left) and C (right). (Color online.)

5.2. Convergence study and model validation

We first demonstrate that for model B the measure of instantaneous interface stretching Ev converges to zero as ε → 0. 
We take Re = 1 and decrease ε , where the grid is refined accordingly to have the same number of grid points across the 
interface. The results are shown in Fig. 1 at time t = 0.025, which is taken to be small since a fair comparison between 
the results is only possible if the vesicles are at similar positions. We find that the rate of convergence is between first and 
second order in ε . Note that results are not shown for models A and C because in both these cases Ev does not converge 
to zero as ε → 0, albeit for different reasons. In model A, only global stretching is enforced and so there is no control over 
the amount of local interface stretching. In model C, as indicated by the asymptotic analysis in Section 3, the rate of local 
stretching converges as ε → 0 to ∇Γ · v = ζ c−1

c , which is not necessarily equal to 0. For example, if c − 1 = O (τ ), then 
ζ(c − 1) = O (1) since ζ = 1/τ . This is what we observe in our simulations of model C (results not shown), although as we 
show next, the relaxation in model C prevents interface stretching from accumulating over time.

In Fig. 2 the accumulated stretching Ec is shown at t = 0.5 for both models B and C. Here, we also find convergence rates 
between first and second order in both models. Because the simulation time is short, the accumulated stretching is similar 
in both models, although the accumulated stretching is somewhat smaller in model C as ε is decreased. In Section 5.4, we 
show that at longer times, there are substantial differences in the accumulated stretching between the models.

The vesicle volume V (φ) and the total interface area A(φ) are conserved very well for all three models, as seen in Fig. 3. 
The interface area is slightly better conserved by the use of the local inextensibility constraints in models B and C. The slight 
drop in interfacial area around t = 0 is due to the fact that the initial interface is not quite equilibrated since the initial 
interface profile is not represented by a hyperbolic tangent in the normal direction across the interface. Equilibration occurs 
over the first few time steps. The small variations at early times in the vesicle volume are also due to the equilibration of 
the interface. The desired reference values for area and volume for the Lagrange multipliers are indicated in Fig. 3 by the 
dotted black lines and are calculated as the volume and area of the phase field after the first 10 time steps.

5.3. Computational cost of the models

Because models A, B and C require increasing levels of complexity, it is useful to compare the CPU-times for the cor-
responding algorithms. In Table 1, we provide the CPU-time per time step required for each the major subroutines. The 
CPU-times shown are averaged over the time interval 0 ≤ t ≤ 0.5 using ε = 0.03. The results show that solving the Navier–
Stokes equation is the most time consuming part of the simulation. Model A, where there is only a global inextensibility 
constraint and local inextensibility is not enforced, is the fastest. The additional local inextensibility constraint in mod-
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Fig. 3. The interfacial area A(φ) (left), from Eq. (16), and vesicle volume V(φ) (right), from Eq. (15), for the different models as labeled, with Re = 1. The 
dotted black line gives the prescribed reference values A0 and V0. (Color online.)

Table 1
The CPU-times for the different models. The values indicate the times (in seconds) for a single solve of the 
Navier–Stokes equations (46)–(47) with Eq. (48) for models B and C, the Willmore equation (49)–(52) and for 
model C the advection–diffusion equation for c (53).

Model A Model B Model C

NS (incl. inextensibility) 5.12 6.77 6.83
Willmore 2.01 2.05 2.07
Equation for c – – 0.32
Total 7.13 8.82 9.22

Fig. 4. Time evolution of vesicles in a shear flow with Re = 1 (top) and Re = 1/200 (bottom) using model A (red), model B (green) and model C (blue). The 
local inextensibility constraints in models B and C tend to slow the rotation of the vesicle, which is particularly noticeable when Re = 1/200. (Color online.)

els B and C slows down the Navier–Stokes solver by about 30%. In model C the total CPU-time is additionally increased by 
approximately 4% by solving the equation for c.

5.4. Vesicle morphologies and comparison of models at longer times

The vesicle morphologies using the different models with ε = 0.03 and Re = 1 and Re = 1/200 are shown in Fig. 4. The 
red curves correspond to model A, the green to model B and the blue to model C. When Re = 1 (top graphs) the vesicle is 
in the tank-treading regime and assumes a stationary state around t = 2.0 for all models. At short times (t ≈ 0.5) the local 
inextensibility constraints in models B and C lead to a faster rotation and thus a smaller inclination angle of the vesicle. 
This effect is reversed at later times (t ≈ 2.0) where the inclination angle from the stationary vesicle obtained from model A 
is approximately 0.07 radians smaller than that obtained from models B and C (see Fig. 5). Overall, because the vesicle is 
tank-treading, all the models produce very similar results.

When Re = 1/200 (bottom graphs), the vesicle is in the tumbling regime. The vesicle is thus harder to resolve because 
of the unsteady dynamics. As a result, there are larger differences between the models. The local inextensibility constraints 
in models B and C significantly delay the time when the vesicle tumbles and decreases the tumbling frequency. This is 
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Fig. 5. The inclination angles (radians) for Re = 1 (left) and Re = 1/200 (right) corresponding to the vesicle dynamics shown in Fig. 4. (Color online.)

Fig. 6. The accumulated stretching Ec (55) with Re = 1 (left) and Re = 1/200 (right) corresponding to the vesicle dynamics shown in Fig. 4. (Color online.)

Fig. 7. The value of c along the vesicle interfaces for the different models with Re = 1/200 at time t = 1. Note the different scales indicating minimum and 
maximum value of c as well as the desired value 1.0. The amount of local stretching/compression decreases from model A to model B to model C. (Color 
online.)

quantified in Fig. 5 where the inclination angles of the vesicles are shown for the different models with Re = 1 and Re =
1/200.

The accumulated stretching Ec for these simulations is presented in Fig. 6. As expected, the amount of interface stretching 
rapidly accumulates in model A, is non-monotone in time and saturates when the vesicle tank-treads (Re = 1). When the 
vesicle tumbles (Re = 1/200), the stretching errors are similarly non-monotone but are larger and appear to accumulate 
without bound with the most error occurring during the time at which the vesicle rotates rapidly (see the inclination angles 
in Fig. 5). The local inextensibility constraint in model B suppresses this significantly, but still the stretching accumulates 
over time. The local relaxation in model C effectively controls the accumulation of stretching. Although a small amount of 
stretching is observed around t ≈ 5 when the vesicle in model C tumbles, the stretched vesicle interface is rapidly driven 
back to an unstretched state by the relaxation mechanism. The corresponding spatial distributions of c on the interface Γ (t)
are shown at time t = 1 in Fig. 7. The interfaces in models A and B are compressed at the vesicle tips while the sides are 
stretched. On the other hand, in model C the concentration c ≈ 1 all along the vesicle interface, indicating that there is 
little overall stretching of the interface. Note that the color scales are different in each case and that the most stretching is 
observed in model A, as expected.

5.5. Two vesicles in extensional flow

Enforcing local inextensibility becomes more crucial for simulations involving multiple vesicles. To demonstrate this, we 
use the models to simulate the interactions of two vesicles in an extensional flow and compare the results. A Dirichlet 
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Fig. 8. Two vesicles in extensional flow for model A (top row), model B (middle row) and model C (bottom row) at times t = 0.005, 0.18, 0.4, 0.515 (from 
left to right). The interfaces are colored according to the local values of the surface concentration c. The flow streamlines (grey) are colored by the velocity 
magnitude |v|. It can be seen that in model A, the interfaces are compressed at the vesicle tips and stretched along the sides. The local inextensibility 
in models B and C inhibits close contact of the vesicles whereas the local interface stretching in model A enables the vesicles to come into contact and 
coalesce. (Color online.)

boundary condition is used: v(x, y) = 5(2 − x, y − 2) at the boundaries of the computational domain Ω = [0, 4]2. This 
corresponds to inflow at the side boundaries and outflow at the upper and lower boundaries. Two elliptical vesicles, oriented 
in the y-direction, are initially placed at (1, 2) and (3, 2). The axis lengths are 

√
2 and 1.0. The remaining parameters are as 

in Section 5.2 with ε = 0.03.
Fig. 8 shows the membranes colored by the values of the surface concentration c and the flow streamlines for the 

different models. The extensional flow drives the two vesicles to the center of the domain. The results from models B and C 
are very similar whereas model A predicts behavior that is very different from the other two. At early times (t ≈ 0.005, left 
column) the streamlines are observed to fan out near the membranes (and vesicle interior) when model A is used, which 
indicates stretching of the membranes along their sides and compression at their tips. This is even more apparent at later 
times (middle and right columns) through the values of c. In contrast, the streamlines in models B and C are roughly parallel 
throughout the vesicles, which indicates that there is little stretching and compression of the membranes. Accordingly, c
remains approximately 1 throughout the evolution. At around t = 0.4 the two vesicles in model A meet and finally merge at 
around t = 0.515. This merging is not seen in the inextensible models, which can be explained as follows. In order for the 
vesicles to be driven into contact, the fluid in between them has to be squeezed out of the near contact region. When the 
vesicles are close enough, this process requires a nonzero tangential velocity at the vesicle interfaces. Local inextensibility, 
however, does not allow such flow, since it would stretch the vesicle interface in the near contact region. Here, this effect 
is further magnified by the fact that the vesicle interfaces flatten as they approach one another, making it even harder 
to squeeze the fluid out of the near contact region. Therefore vesicle contact (and coalescence) is inhibited by the local 
inextensibility in models B and C.
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6. Conclusions

We presented a new diffuse interface model for the dynamics of inextensible vesicles in a viscous fluid. Following pre-
vious work [6,8,7], we used a local Lagrange multiplier to generate a tension force needed to make the vesicle inextensible. 
However, we introduced a new equation for the local Lagrange multiplier that essentially provides a harmonic extension of 
the local Lagrange multiplier off the interface while maintaining the local inextensibility constraint near the interface. This 
is different from the approach taken in [8,7] where a time-dependent advection–diffusion–reaction equation was used. To 
make the method more robust we introduced a local relaxation scheme that dynamically corrects stretching/compression 
errors. In the relaxation scheme, a version of Hooke’s law is used where the restoring forces are proportional to the amount 
of stretching/compression, which is detected by evolving a (surface) concentration field (initialized to one everywhere) and 
identifying regions where the concentration field deviates from one. Asymptotic analysis demonstrated that our new system 
converges to a relaxed version of the inextensible sharp interface system.

Compared to the classical sharp interface model for inextensible membranes, our diffuse interface model includes five 
additional parameters: the interface thickness ε , the mobility η, the regularization ξ , the relaxation rate ζ and the surface 
diffusion coefficient θ . The first two parameters are present in all diffuse interface models while the latter three parameters 
are new. We discussed how tradeoffs between accuracy and stability can be used to choose the values of these parameters. 
Importantly, we demonstrated that our new models converge as ε → 0 to inextensible evolution.

To solve the equations numerically, we developed an efficient algorithm using an operator splitting approach such that 
the Navier–Stokes equations were implicitly coupled to the diffuse-interface inextensibility constraint. The phase field equa-
tions and the local concentration field were solved separately. Spatial discretization was performed using the adaptive finite 
element toolbox AMDiS [63] with the P2/P1 Taylor–Hood element being used for the flow problem, extended by a P2 el-
ement for the local Lagrange multipliers. P2 elements were also used for the phase field and concentration variables. The 
resulting nonlinear system was linearized and solved using UMFPACK [14].

We compared the results from our new model with local inextensibility constraints and relaxation (model C) to a model 
without relaxation (model B) and a previously derived diffuse interface model [17,18] that conserved only the total surface 
area (model A). Focusing on the dynamics of a single vesicle in shear flow in 2D, we demonstrated that inextensible 
evolution is achieved in the sharp interface limit of models B and C. We found that the local inextensibility constraints 
lead to a larger inclination angle in the tank-treading regime (Re = 1). Large differences in the dynamics are observed in 
the tumbling regime (Re = 1/200) where the local inextensibility constraints in models B and C delay the time at which 
the vesicle tumbles significantly and increase the length of the tumbling period. The results show that errors in the local 
inextensibility in models A and B tend to occur during the fast dynamics of tumbling and accumulate over time. The 
local relaxation in model C prevents this accumulation very effectively. Similar behavior can be observed in sharp interface 
models (see [59]).

A study of two vesicles driven together by an extensional flow showed a further effect of local inextensibility: the inhibi-
tion of close vesicle contact. Fluid drainage out of the near contact region requires tangential forces, which are inhibited by 
local inextensibility. As a consequence, vesicles were found to remain separated by a finite distance when models B and C 
were used. But, when model A was used, the vesicles came into close contact and merged precisely because model A does 
not enforce local inextensibility of the interface.

Future work will use the algorithms presented here to analyze the dependence of the dynamical states of vesicles (tank-
treading, tumbling, trembling) on the Reynolds number and other physical parameters (viscosity ratio, density ratio, etc.), 
and the local inextensibility of the interface. We will compare our results with those obtained previously (e.g., [6,7,30,34,
54]). We also plan to extend our algorithms to 3D, replacing the direct UMFPACK solver with a more efficient precondi-
tioned iterative solver for the coupled system, and to incorporate membrane elasticity to provide a more realistic model of 
red blood cells.
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Appendix A

Here, we provide justifications for the claims made in Section 3. In particular, we show that in the inner variables P has 
a regular expansion in ε , where the leading order term is ∇Γ · v(0) , and that v̂(0)

z := ∂zv̂(0) = 0.

Regular expansion for P̂ . Recall that P = P : ∇v, where P = I − n ⊗ n is the tangential projection operator. A straightforward 
calculation shows that
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P = ∇ · (Pv) − (∇ · P) · v. (56)

Therefore, in the inner variables, we obtain

P̂ = 1

ε
n · (Pv̂z) + ∇Γ · (Pv̂) − (∇Γ · P) · v̂,

= ∇Γ · (Pv̂) − (∇Γ · P) · v̂, (57)

since Pz = 0 and n · (Pv̂z) = 0. Plugging the inner expansion for v̂ into Eq. (57) we obtain a regular expansion P̂ = P̂(0) +
εP̂(1) + . . . and we recognize the first term as

P̂(0) = ∇Γ · (Pv̂(0)
) + H v̂(0) · n = ∇Γ · v̂(0) = ∇Γ · v(0) (58)

as claimed (assuming v̂(0)
z = 0).

Behavior of v̂(0) . Writing the incompressibility condition ∇ · v = 0 in the inner region, we obtain

1

ε
∂z(v̂ · n) + ∇Γ · v̂ = 0. (59)

We thus obtain

∂z
(
v̂(0) · n

) = 0 at O (1/ε), (60)

v̂(1)
z · n + ∇Γ · v̂(0) = 0 at O (1), (61)

and so on. To complete the claim, we need to show that the tangential components of the velocity, namely Pv̂(0) , are 
also independent of z. This follows from the viscous term in the Navier–Stokes equations. It can be shown that this term 
provides the highest order terms in the inner expansion of the Navier–Stokes equations (see [17,18]). Thus at the leading 
order, O (1/ε2), the Navier–Stokes equations become

∂z
(
νv̂(0)

z · n
)
n + ∂z

(
ν∂z

(
Pv̂(0)

)) = 0. (62)

Since the first term is zero, we conclude that ν∂z(Pv̂(0)) = constant. Taking z → ±∞ and using the leading order matching 
condition (33), we find that the constant is equal to zero, which proves the claim.
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