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Abstract The processes of protrusion and retraction during cell movement are driven
by the turnover and reorganization of the actin cytoskeleton. Within a reaction–
diffusion model which combines processes along the cell membrane with processes
within the cytoplasm a Turing type instability is used to form the necessary polar-
ity to distinguish between cell front and rear and to initiate the formation of differ-
ent organizational arrays within the cytoplasm leading to protrusion and retraction.
A simplified biochemical network model for the activation of GTPase which accounts
for the different dimensionality of the cell membrane and the cytoplasm is used for
this purpose and combined with a classical Helfrich type model to account for bending
and stiffness effects of the cell membrane. In addition streaming within the cytoplasm
and the extracellular matrix is taken into account. Combining these phenomena allows
to simulate the dynamics of cells and to reproduce the primary phenomenology of cell
motility. The coupled model is formulated within a phase field approach and solved
using adaptive finite elements.

Keywords Cell motility · Reaction–diffusion · Phase-field approximation
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1 Introduction

Cellular shapes change dynamically in striking ways as a result of mechanical interac-
tions and complex reactions both within the cytoplasm and on the cellular membrane.
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Many theoretical studies consider only the mechanical part. They are based on the
Helfrich Hamiltonian (Helfrich 1973) and consider only the elastic properties of the
membrane accounting for bending and surface tension. Within such an approach the
membrane is considered as an elastic sheet and its evolution is driven by energy min-
imization. Various mathematical approaches have been used to solve this problem,
see e.g Du et al. (2005a), Du et al. (2006), Du and Zhang (2008), Elliott and Stinner
(2010), Lowengrub et al. (2009) and the references therein. Combining the Helfrich
Hamiltonian with streaming effects in the cytoplasm and the extracellular matrix, as
e.g. considered in Bonito et al. (2011), Du et al. (2007), Du et al. (2009), Lowengrub et
al. (2007), Ryham et al. (2012), and Sohn et al. (2010) leads to more realistic dynamical
models, but still focusing only on the mechanical part of the problem. In McMahon
and Gallop (2005) different mechanisms leading to cell deformation are described.
One of the key ingredients is the cytoskeletal assembly and disassembly. Cell shape
is thereby formed by three primary polymer systems that make up the cytoskeleton:
the actin filaments, intermediate filaments and microtubules. The actin polymerization
thereby has a force generating role during cell motility and the branching, bundling
and treadmilling of actin filaments plays a crucial role in the generation and remodel-
ing of high membrane curvature regions. Our goal is to combine these processes with
the Helfrich Hamiltonian and streaming effects and to derive a general computational
model for cell motility.

Previous attempts in this direction have e.g. been considered by Elliott et al. (2012),
Maree et al. (2006), Shao et al. (2012), Shao et al. (2010), Vanderlei et al. (2011), and
Ziebert et al. (2012), but non of these models accounts for the different dimensionality
of the cell membrane and the cytoplasm, streaming and the Helfrich Hamiltonian.

The paper is organized as follows: In Sect. 2 we describe the crawling of cells
and introduce a minimal biochemical network model for the activation of GTPase to
initiate the crawling motion. We introduce the Helfrich Hamiltonian and hydrodynamic
interactions and combine both to form a continuum cell motility model, which will
be formulated within a phase field approach. We also briefly describe the numerical
approach to solve the coupled system and validate it. Simulation results are discussed
in Sect. 3, which include the formation of lamellipodia and filopodia-like structures,
the response of the cell according to a chemoattractor in the extracellular matrix and
various parameter studies on the influence of bending rigidity and surface tension.
Conclusions are drawn in Sect. 4, which also includes a discussion of generalizations
of the model and extensions towards specific cell types.

2 Cell polarity as a result of a Turing type instability

All crawling cells move by first protruding a cell front and subsequently retract-
ing the cell rear. The processes of protrusion and retraction are both driven by the
turnover and reorganization of the actin cytoskeleton. Two abilities of actin filaments
are exploited by the cell in order to move: the ability to push by polymerization and
the ability to contract by interacting with myosin. Actin polymerization drives the
extension of sheet-like and rod-like protrusions at the cell front, termed respectively
lamellipodia and filopodia. Behind the protruding front actin interacts with myosin
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to form contractile arrays that drive the translocation of the trailing cell body. To
model these phenomena an understanding of the processes leading to actin polymeriza-
tion and actin-myosin interaction is required, which can be described through protein
interactions.

Proteins associated with actin are generally classified as actin binding-, actin
associated- or actin modulating-proteins. They play key roles in determining the orga-
nization of actin filaments into the different organizational forms found in the actin
cytoskeleton. Members of the Rho family of small GTPases have been shown to oper-
ate in distinct pathways signaling the formation of different organizational arrays of
the actin filaments in the actin cytoskeleton. Rac and Cdc42 signal the formation of
lamellipodia and filopodia, respectively, and Rho signals the formation of actin stress
fibre bundles for the cell retraction. We thus need a detailed signaling network of
small GTPases with the ability to distinguish between cell front and rear, which can
be achieved through polarization. Various models have been proposed, see Jilkine
and Edelstein-Keshet (2011) for a review and comparison of mathematical models for
single eukaryotic cells. One of the most detailed models is based on a Turing-type
instability Goryachev and Pokhilko (2008). Such models are attractive to consider, as
the Turing instability can lead to spontaneous polarization, a high degree of ampli-
fication can be achieved and the polar pattern remains after the signal is removed.
However, such a diffusion driven instability typically requires large differences in the
diffusion coefficient of the involved species. This might not be realistic in our case as
diffusion coefficients for proteins are similar to each other. However, diffusion along
the cell membrane and within the cytoplasm can be different. Also association and
disassociation between the cell membrane and the cytoplasm might differ for vari-
ous proteins. Taking these processes into account might form more realistic Turing
mechanism Levine and Rappel (2005). Models which distinguish between cytoplasm
and cell membrane have already been proposed for the emergence of cell polarity. In
Altschuler et al. (2008) a model of positive feedback is considered in which a single
species of diffusible, membrane-bound signaling molecules can self-recruit from a
cytoplasmic pool. In this model the polarization frequency has an inverse dependence
on the number of signaling molecules. The frequency of polarization decreases as
the number of molecules becomes large, which suggests that positive feedback can
work alone or with additional mechanisms to create robust cell polarity. The results
of Wedlich-Soldner et al. (2004) on the regulation of GTPase Cdc42 suggest that
cell polarity is established through coupling of transport and signaling pathways and
maintained actively by balance of flux between the cytoplasm and the membrane. A
similar cytoskeleton-dependent mechanism that could account for the intrinsic ability
of cells to polarize in response to Cdc42 activation was proposed in Wedlich-Soldner
et al. (2003) and Maree et al. (2006). The mechanism involves a positive feedback loop
between Cdc42-dependent actin polymerization and delivery of Cdc42 to the plasma
membrane. A detailed model for signaling networks of the GTPase cycle accounting
for the coupling of membrane bound and cytoplasmic processes has been shown to
lead to a Turing instability in Rätz and Röger (2012). Here the different dimensional-
ity of the membrane and the cytoplasm is taken into account in the reaction–diffusion
processes. Mathematically the model considers diffusion in the cytoplasm with a
reaction–diffusion system along the membrane serving as a boundary condition. The
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Fig. 1 Schematics of GTPase cycle. Arrows indicate various molecular transport mechanisms: red (1)
diffusion along the membrane, purple (2) diffusion within the cytoplasm, green (3) association with the
membrane, blue (4) disassociation from the membrane

model distinguishes between membrane-bound active and inactive state of the GTPase,
for which the concentrations are denoted by c1 and c2, respectively, and complexes of
cytoplasmic GTPase, denoted by C , see Fig. 1 for a schematic description.

The model accounts for activation of GTPase by exchange of GDP by GTP, and
inactivation by hydrolysis and dephosphorylation of GTP to GDP, which are catalyzed
by GEF and GAP protein, respectively. The resulting model reads in dimensionless
form

∂t C + ∇ · (Cu) = DCΔC (1)

∂t c1 + u · ∇c1 − u · ∇Γ c1 + c1(u · n)(∇Γ · n)

= −∇Γ · (c1(I − n ⊗ n)u)+ dc1ΔΓ c1 + γ h(c1, c2) (2)

∂t c2 + u · ∇c2 − u · ∇Γ c2 + c2(u · n)(∇Γ · n)

= −∇Γ · (c2(I − n ⊗ n)u)+ dc2ΔΓ c2 − γ h(c1, c2)+ γ q(c1, c2,C) (3)

and boundary condition

− DC∇C · n = γ q(c1, c2,C) (4)

coupling the equations along the membrane and within the cytoplasm. The first equa-
tion is valid inΩcp(t) the cytoplasm, assumed to be a bounded, connected open domain;
where as the last two equations are defined on Γ (t) the cell membrane, which is the
boundary of Ωcp(t), assumed to be a smooth and closed surface; and I = [0, T ] a
time interval. All quantities are assumed to be defined off the membrane. We assume a
constant extension in normal direction n, which is defined to point outwards. I denotes
the identity matrix and u the velocity of the moving cell. The terms containing u in the
equations account for convection and stretching effects, see e.g. Teigen et al. (2011)
for related surfactant models on a deformable surface. The reaction kinetics in the
equations are denoted by

h(c1, c2) = a1c2 + a2
c1

b1 + c1
c2 − a3

c1

b2 + c1
(5)
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Fig. 2 Reaction network. The bipartite graph has two types of nodes, molecular species c1, c2 and C , and
the reactions between them, denoted by ri , i = 1, . . . , 5, the index corresponds to the index of the kinetic
coefficients. Directed edges of the graph represent the flow of the reaction fluxes. Black (solid) edges
indicated processes on the membrane and red (dashed) edges processes within the cytoplasm, including
association and disassociation

and the association and disassociation is modeled by

q(c1, c2,C) = a4C(1 − c1 − c2)+ − a5c2, (6)

which follows from a Langmuir law. It models the membrane association as an reac-
tion between the cytoplasmic GTPase complex and a free site on the membrane. (.)+
thereby denotes the positive part of (.). The system is given in dimensionless form
with diffusion coefficients DC , dc1 and dc2 in the cytoplasm and along the membrane,
respectively. ai are kinetic coefficients, bi kinetic parameters, γ a dimensionless scal-
ing factor.ΔΓ is the surface Laplacian and ∇Γ · the surface divergence. Figure 2 shows
the corresponding reaction network as a bipartite graph, distinguishing processes along
the membrane and within the cytoplasm.

In Rätz and Röger (2012) the velocity terms in the equations are neglected and
the system is further reduced by assuming C to be spatially constant as a result of a
larger diffusivity in the cytoplasm as along the membrane. A linear stability analysis
for the reduced system was shown to lead to a Turing instability for appropriate
parameters, see Rätz and Röger (2012). More recently a Turing instability could also
be found for the biologically more interesting regime in which dc1 = dc2 , see Rätz and
Röger (2013). Now only different diffusivities within the cytoplasm and along the cell
membrane as well as different association/disassociation coefficients are required to
form Turing patterns. We will consider these parameters also for the evolving situation.

2.1 Hydrodynamical model for cell dynamics

We consider the cellular membrane to be an elastic material. The dynamics are mod-
eled as a combined process of energy minimization and an active driving force. The
corresponding spontaneous-curvature model (Helfrich 1973) is based on the assump-
tion that the surface energy associated with bending of the membrane can be expanded
in the dimensionless mean curvature H . The energy E consists of the normal bending
energy as well as a surface tension term and reads in nondimensional form
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E = EB + ES = 1

2

1

Be

4
√

2

3

∫

Γ

(H − H0)
2 dΓ + 1

Ca

2
√

2

3

∫

Γ

dΓ, (7)

with H0 the spontaneous curvature, which reflects a possible asymmetry of the mem-
brane, justified by a different chemical environment on both sides of the membrane. It
can be a function of a protein concentration, see e.g. Veksler and Gov (2007). Here, for
convenience H0 is assumed to be spatially homogeneous. Be denotes the dimension-
less quantity associated with normal bending stiffness, the bending capillary number,
and Ca is the capillary number measuring the effect of surface tension. Additional
contributions, e.g. due to Gaussian curvature are neglected. For a review of models
based on the spontaneous-curvature model we refer to Haußer et al. (2013), and Seifert
(1997).

We now consider a two-phase flow problem with the cell membrane separating the
cytoplasmΩcp(t) and the extracellular matrixΩem(t). We assume an incompressible
Newtonian fluid in Ωcp(t) and Ωem(t) and consider equal density and viscosity for
simplicity. The model thus reads in dimensionless form

∂t ui + (ui · ∇)ui = −∇ pi + 1

Re
Δui (8)

∇ · ui = 0 (9)

for velocity ui and pressure pi , with i = 1 inΩcp(t) and i = 2 inΩem(t). Re denotes
the characteristic Reynolds number. Across the interface Γ (t), the following jump
conditions hold:

[u] = 0 (10)[
−pI + 1

Re

(
∇u + ∇uT

)]
· n = 1

Re

δEB

δΓ
+ 1

Re

δES

δΓ
+ 1

ReFa
c1n, (11)

where [·] denotes the jump across Γ (t), I again the identity tensor and n the outward
normal pointing fromΩcp(t) intoΩem(t). The first condition requires continuity of the
velocity across the membrane satisfying u1 = u = u2, and the second condition mod-
eling the jump in the normal component of the stress tensor, accounting for bending
and surface tension, which is enriched by the active component associated with actin
polymerization associated with the active state of the membrane bound GTPase c1.
The resulting protrusion force from the last contribution acts in normal direction and
its strength is related to c1 and scaled by the dimensionless quantity Fa. For simplicity
we neglect any retraction force. In the current model we also don’t consider adhesion
explicitly. Possible extensions of the model in these directions are discussed in the
Sect. 4.

Typical Helfrich models also contain constraints on cell volume and membrane
area. Due to the incompressibility of the fluid inΩcp the volume constraint is already
fulfilled in our approach. Instead of an area or local inextensibility constraint for the
membrane we here consider a constant surface tension, which is justified in the content
of cell motility as discussed in Shao et al. (2010).
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2.2 Diffuse domain approach of the cell motility model

To numerically solve the coupled system for cell shape dynamics, fluid flow and
reaction–diffusion along the evolving membrane and within the cytoplasm we con-
struct a diffuse-domain approximation, which is based on the phase-field method. This
method introduces an auxiliary field φ that distinguishes the cytoplasm from the extra-
cellular matrix. Both are separated from each other by a diffuse layer, which marks
the membrane. We define a larger stationary domainΩ = Ωcp(t)∪Γ (t)∪Ωem(t) in
which the phase field variable is defined as

φ(t, x) := tanh

(
r(t, x)√

2ε

)
(12)

where ε characterizes the thickness of the diffuse interface and r(t, x) denotes the
signed-distance function between x ∈ Ω and its nearest point on Γ (t). Depending on
r we label the cytoplasm with φ ≈ 1 and the extracellular matrix with φ ≈ −1. Γ (t)
is implicitly defined by the zero level set of φ.

The dynamics of the cell is now governed by equations that couple this field to
the actual physical degrees of freedom along the membrane, in the cytoplasm and the
extracellular matrix. All quantities defined within the cytoplasm, within the extracel-
lular matrix and along the membrane are extended to the larger domain Ω and the
governing equations are reformulated using the phase field variable. This allows to
circumvent the numerical subtleties in solving differential equations on evolving sur-
faces or within evolving domains. A general mathematical description for the use of the
phase-field method to solve such coupled systems was introduced by Li et al. (2009),
Rätz and Voigt (2006), and Teigen et al. (2009) which gives the formal verification of
the derived model.

Phase-field methods have already been used to model the dynamics of cell mem-
branes, however most studies only consider minimization of the Helfrich energy
with constraints on cell volume and membrane area, see e.g. Du et al. (2006).
Other fundamental components of cell membranes which include lipids, proteins
and cholesterol and their interplay on the morphology, structure and dynamics of
membranes are considered by Allain (2004), Lowengrub et al. (2009), Wang and
Du (2008). Also the coupling of the dynamics with the surrounding fluid has been
modeled (Biben et al. 2005), as well as effects due to adhesion (Das and Du 2008).
More recently by Shao et al. (2012), and Shao et al. (2010) protrusion and con-
traction forces are considered to study cell morphodynamics using a phase-field
method.

The diffuse nondimensional Helfrich energy reads

E(φ) = 1

2ε

1

Be

∫

Ω

(
εΔφ − 1

ε
(φ2 − 1)(φ + H0)

)2

dx

+ 1

Ca

∫

Ω

(
ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2

)
dx . (13)
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In Du et al. (2005a,b) formal convergence for ε → 0 to Eq. (7) could be shown. A
thermodynamical consistent phase field approach based on this energy was proposed
by Du et al. (2007), Du et al. (2009), and Ryham et al. (2012). Combining this approach
with the active protrusion force leads to the nondimensional Navier–Stokes equation

∂t u + (u · ∇)u = −∇ p + 1

Re
Δu

+ 1

ReBe
g∇φ − 1

ReCa
f ∇φ + λ1

Re
∇φ − 1

ReFa
c1∇φ (14)

∇ · u = 0 (15)

now defined in Ω . We use the same dimensionless quantities as before: the bending
capillary number Be, which was similarly defined by Biben et al. (2005), and Salac
and Miksis (2011), the capillary number Ca and the active surface force number Fa,
which characterizes the strength of the cell protrusion. All these quantities and their
relation to physical parameters will be explained in Sect. 2.3. The evolution of φ is
given by the system of dimensionless equations

∂tφ + u · ∇φ = −δ
(

1

Be
g − 1

Ca
f + λ1

)
(16)

g = Δ fc − 1

ε2 (3φ
2 + 2H0φ − 1) fc (17)

fc = εΔφ − 1

ε
(φ2 − 1)(φ + H0) (18)

f = εΔφ − 1

ε
(φ2 − 1)φ (19)

λ1 = 1

|Ω|
∫

Ω

(
1

Ca
f − 1

Be
g

)
dx, (20)

see Du et al. (2005a, 2006), and Du and Zhang (2008) for a detailed derivation.
Equation (16) can be considered as an advection equation for the phase field φ, with a
regularizing right hand side, with a small numerical parameter δ. Although Eq. (15) the-
oretically guarantees incompressibility and thus a constant volume, within the phase-
field approximation a Lagrange multiplier λ1 is introduced to enforce the volume
constraint explicitly. This approach was proposed by Du et al. (2009) and is certified
by our numerical experiments. Formal matched asymptotic analysis results showing
the convergence to the sharp interface equations are not available. However numerical
convergence studies by Du et al. (2005a), Du et al. (2006), and Du and Zhang (2008)
confirm the phase-field approximation without the protrusion force.

We now formulate the minimal reaction–diffusion system within a diffuse domain
description. Following Li et al. (2009), Eq. (1) in Ωcp can be reformulated in Ω as
follows

∂t (ψC)+ ∇ · (ψuC) = DC∇ · (ψ∇C)− γ |∇ψ |q(c1, c2,C), (21)
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with ψ = 1
2 (1 +φ) a rescaled phase-field function, which serves as an approximation

of the characteristic function of Ωcp(t), ψ ≈ 1 in the cytoplasm and ψ ≈ 0 in the
extracellular matrix. In order to extend Eqs. (2) and (3) to Ω , we use the diffuse
interface approach proposed by Rätz and Voigt (2006)

∂t (|∇φ|c1)+ ∇ · (|∇φ|uc1) = dc1∇ · (|∇φ|∇c1)+ γ |∇φ|h(c1, c2) (22)

∂t (|∇φ|c2)+ ∇ · (|∇φ|uc2) = dc2∇ · (|∇φ|∇c2)− γ |∇φ|h(c1, c2)

+γ |∇φ|q(c1, c2,C) (23)

Formal convergence to the sharp interface equations can be achieved following the
general treatment by Li et al. (2009), Rätz and Voigt (2006), and Teigen et al. (2009).

In this form we have derived a coupled system of Eqs. (14)–(23), all defined in
the stationary domain Ω . The primary unknowns are velocity, u, pressure p, phase-
field variable φ, and the concentrations c1, c2 and C . The quantities g, f and fc are
introduced to reformulate the higher order equation for φ into a system of second order
equations, and λ1 and ψ are the Lagrange parameter, introduced to fulfill the volume
constraint, and a rescaled phase-field function, respectively.

2.3 Parameters

The parameters in our model follow either from experimental measurements or other
simulation approaches. In order to relate the dimensionless numbers to measured
values we introduce a characteristic length R0 = 5 × 10−6 m, a typical cell radius
and a characteristic velocity v0 = 0.14 × 10−6 m/s, a typical velocity of a moving
cell, see e.g. Shao et al. (2012), Shao et al. (2010) and the references therein. We
further consider the density of the cytoplasm ρ = 103 kg/m3, which corresponds to
that of water. As already mentioned, for simplicity we consider a constant value for
the viscosity in the cytoplasm and the extracellular matrix, which is estimated to be
μ = 10 Pa s. For the Reynold number Re = ρR0v0/μwe thus obtain Re = 7×10−11,
which is much smaller than the considered values by Biben et al. (2005), Ryham
et al. (2012), and Salac and Miksis (2011), where Re = 10−3 is used. To allow
for comparison with these studies we also use Re = 10−3 in our simulations. The
bending capillary number Be is defined by Be = 4

√
2/3μv0 R2

0/bN with bending
stiffness bN and the capillary number Ca is defined by Ca = 2

√
2/3μv0/σ with

surface tension σ . For bN = 10−17 J and σ = 5 × 10−6 N/m, which are measured for
Dictyostelium cells by Simson et al. (1998) and used by Shao et al. (2010) we obtain
Be = 6.6 and Ca = 0.264. For simplicity we neglect the spontaneous curvature and set
H0 = 0 in all computations. Finally the active surface force number Fa = μv0/(αR0)

characterizes the cell protrusion. The corresponding parameter is denoted by α, which
has the dimension N/m2 and measures the strength of the protrusion. As this is an
effective term there are no experimental data available for α. We define the strength
of the protrusion force to be in the same order as the elasticity force due to bending.
With α = 5.6 N/m2 we obtain Fa = 0.05 and together with the other parameters the
considered characteristic velocity v0. The diffusion coefficients along the membrane
are 7 × 10−13 m2/s and within the cytoplasm 1.4 × 10−11 m2/s, see Rätz and Röger
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Table 1 Mechanical and chemical parameters

Symbol Description Value

R0 Typical cell radius 5 × 10−6 m

v0 Typical velocity of crawling cell 0.14 × 10−6 m/s

t0 Characteristic time 35.714 s

ρ Fluid density 103 kg/m3

μ Dynamic viscosity of the fluid 10 Pa s

bN Bending rigidity 10−18 − 10−17 J

σ Surface tension 10−6 − 10−5 N/m

α Coefficient protrusion force 0.39 N/m2 and 5.6 N/m2

ε Boundary layer parameter 0.03

δ Regularization parameter δ
Be = 0.01

DC Diffusion coefficient of cytoplasm 20

dc1 Diffusion coefficient along the membrane for c1 1

dc2 Diffusion coefficient along the membrane for c2 1

a1 Kinetic coefficient 0

a2 Kinetic coefficient 160

a3 Kinetic coefficient 1

a4 Membrane attachment parameter 0.333

a5 Membrane detachment parameter 10

b1 Kinetic parameter 20

b2 Kinetic parameter 0.5

γ Scaling parameter 400

The values for bN correspond to measurements for artificial vesicles, erythrocytes, neutrophils and dic-
tyostelium (Evans and Rawicz 1990; Simson et al. 1998; Strey and Peterson 1995; Zhelev et al. 1994). The
values for σ follow from Simson et al. (1998). The boundary layer parameter ε is a numerical parameter and
determines the width of the diffuse interface. The regularization parameter δ is chosen to depend on Be, see
Ryham et al. (2012). All parameters of the reaction–diffusion system are given in dimensionless form. The
diffusion coefficients are defined as follows DC = D̃C/ ˜dc1 and dc1 = ˜dc1/

˜dc1 = 1, dc2 = ˜dc2/
˜dc1 = 1,

where the ·̃ notation denotes the dimensionful diffusion coefficients. Together with kinetic parameters ai , bi
and γ obtained from Rätz and Röger (2013) they lead to a Turing instability

(2012) and the references therein. Realistic reaction parameters are not available, the
parameters used follow from a stability analysis of the system leading to a Turing
instability, see Rätz and Röger (2013). All parameters used in the simulations are
given in Table 1.

2.4 Numerical approach

The systems of partial differential equations are discretized using the adaptive finite
element toolbox AMDiS (Vey and Voigt 2007; Voigt and Witkowski 2012). We restrict
our simulations to the two-dimensional case and use an adaptively refined triangular
mesh with a high resolution along the cell membrane to guarantee at least five grid
points across the diffuse interface. We further explore an operator splitting approach
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allowing to solve the subproblems of the flow field, the phase-field evolution, the
Lagrange multiplier and the reaction–diffusion problem separately in an iterative
process. A P2/P1 Taylor-Hood element is used for the flow problem, all other quanti-
ties are discretized in space using P2 elements. In time a semi-implicit discretization is
used, which together with an appropriate linearization of the involved non-linear terms
leads to a set of linear systems in each time step, for which the direct unsymmetric
multifrontal method UMFPACK is used.

We split the time interval I = [0, T ] into equidistant time instants 0 = t0 < t1 <
. . . and define the time steps τ := tn+1 − tn . We use τ = 10−3 for all computations.
Of course, adaptive time steps may also be used. We define the discrete time derivative
dt ·n+1 := (·n+1 − ·n)/τ , where the upper index denotes the time step number.

The numerical approach for each subproblem is adapted from existing algorithms
for the Navier–Stokes problem, the Helfrich model and reaction–diffusion models. In
each time step we solve:

1. the flow problem for un+1 and pn+1

dt un+1 + (un · ∇)un+1 = −∇ pn+1 + 1

Re
Δun+1

+ 1

ReBe
gn∇φn − 1

ReCa
f n∇φn + 1

Re
λn

1∇φn

− 1

ReFa
cn∇φn

∇ · un+1 = 0

2. the phase field evolution for φn+1

dtφ
n+1 + un+1 · ∇φn+1 = δ

(
1

Be
gn+1 − 1

Ca
f n+1 + λn

1

)

gn+1 = Δ f n+1
c − 1

ε2

(
3(φn+1)2 + 2H0φ

n+1 − 1
)

f n+1
c

f n+1
c = εΔφn+1 − 1

ε

(
(φn+1)2 − 1

) (
φn+1 + H0

)

f n+1 = εΔφn+1 − 1

ε

(
(φn+1)2 − 1

)
φn+1

We further linearize the non-linear terms by a Taylor expansion of order one, e.g.
((φn+1)2 − 1)φn+1 = ((φn)2 − 1)φn + (3(φn)2 − 1)(φn+1 − φn).

3. the Lagrange multiplier λn+1
1

λn+1
1 =

∫

Ω

(
1

Ca
f n+1 − 1

Be
gn+1

)
dx + 1

2τ

(
V(φn+1)− V0

)
.

This approach uses an additional penalty term, as proposed by Du et al. (2006). V0
denotes the desired cell volume and V(φn+1) = ∫

Ω
φn+1 dx its actual state. The

penalty parameter is related to the time step size τ .
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4. the concentrations Cn+1, cn+1
1 and cn+1

2

dt
(
ψn+1Cn+1)+∇ · (

ψn+1un+1Cn+1) = DC∇ · (
ψn+1∇Cn+1)

−γ |∇ψn+1|q
(

cn+1
1 , cn+1

2 ,Cn+1
)

dt

(
|∇φn+1|cn+1

1

)
+∇ ·

(
|∇φn+1|un+1cn+1

1

)
= dc1∇ ·

(
|∇φn+1|∇cn+1

1

)

+γ |∇φn+1|h
(

cn+1
1 , cn+1

2

)

dt

(
|∇φn+1|cn+1

2

)
+∇ ·

(
|∇φn+1|un+1cn+1

2

)
= dc2∇ ·

(
|∇φn+1|∇cn+1

2

)

−γ |∇φ|n+1|h
(

cn+1
1 , cn+1

2

)

+γ |∇φ|n+1|q
(

cn+1
1 , cn+1

2 ,Cn+1
)

with ψn+1 = 1
2 (1 + φn+1). We again further linearize the non-linear terms q and

h according to the proposed approach in Rätz and Röger (2012).

We start with appropriate initial conditions for u, c1, c2,C and φ and set homogeneous
Neumann boundary conditions for c1, c2,C, g, fc and f , and Dirichlet boundary con-
ditions u = 0 and φ = −1 on ∂Ω . The numerical approach for each subproblem has
already been validated elsewhere. We therefore consider here only convergence tests
for the coupled problem. After reaching the desired pattern on the cellular membrane
to distinguish between cell front and rear, which can be obtained by solving subprob-
lem 4 on a stationary circular shape using the proposed parameters by Rätz and Röger
(2013), the whole system is solved. A deformation of the cell can be observed and a
movement in the direction of the cell front. After an initialization state a stationary
form and a constant velocity is reached. We measure the following quantities: the x1-
coordinate of the center of mass, which is defined as xc = ∫

Ωcp
x1 dx/

∫
Ωcp

1 dx , where
x = (x1, x2), the circularity of the cell, which is defined as the quotient of the perimeter
of an area-equivalent circle and the perimeter of the cell circ = 2(

∫
Ωcp

π dx)1/2/Pb,
with the perimeter Pb obtained by integration over a contour filter in ParaView, the
velocity of the cell, which is defined as ucell = |u(xc, x2)|, and the bending energy
Ebending = 1

2ε
1

Be

∫
Ω
(εΔφ − 1

ε
(φ2 − 1)(φ + H0))

2 dx . All defined quantities are time
dependent. A relative error can be defined to measure their temporal evolution. We
use the following error norm: ‖e‖2 = ((

∑
I |qt,re f − qt |2)/(∑I |qt,re f |2))1/2, where

qt is the temporal evolution of quantity q. The solution on the finest grid serves as
reference solution qt,re f . Table 2 shows the relative error norms as well as the relative
order of convergence (ROC) for the desired quantities if ε is reduced. Together with
ε we also refine the mesh size to guarantee the same number of grid points within
the diffuse interface layer for all simulations and the time step to ensure the same
relation between mesh size and time step. The time interval is I = [0, 3.5], which
corresponds to an end time of T = 123s. Other parameters are obtained from Table 1,
in particular bN = 10−17 J, σ = 5×10−6 N/m and α = 5.6 N/m2 which corresponds
to Be = 6.6,Ca = 0.264 and Fa = 0.05, respectively. We see at least first order
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Table 2 Relative error norms and convergence orders for critical parameters

ε Center of mass xc Cell velocity ucell Circularity circ Energy Ebending

‖e‖2 ROC ‖e‖2 ROC ‖e‖2 ROC ‖e‖2 ROC

0.060 0.0530 0.1895 0.0094 0.1177

0.042 0.0168 3.3081 0.0630 3.1734 0.0075 0.6807 0.0771 1.2190

0.030 0.0044 3.8812 0.0272 2.4244 0.0045 1.4408 0.0334 2.4180

0.021 0.0004 6.7472 0.0094 2.9673 0.0024 1.7358 0.0127 2.7072

(a) (b)

Fig. 3 Evolution of cell volume and mass of the GTPases for various parameters ε. a Volume conservation.
b Mass conservation

convergence, the higher numbers in ROC for xc, ucell and Ebending are probably due
to fortunate circumstances.

As a further consistency test, we consider conservation of mass and cell volume.
The total mass is measured as c = ∫

Ω
(c1 + c2)|∇ψ | dx + ∫

Ω
Cψ dx and the volume

is estimated as V = ∫
Ω
ψ dx . Figure 3 shows the evolution of both quantities over

time for the same parameters as above, and demonstrate the required conservation.

3 Results

We consider the dependency of cell motility on various parameters: the bending stiff-
ness bN , the surface tension σ and the protrusion force parameter α. Modifying the
reaction–diffusion parameters also allows to form either lamellipodia- or filopodia-
like structures, which we demonstrate in an example. We further extend the model
to consider chemotaxis and compute the cell path according to a varying chemotaxis
signal.

3.1 Mechanical dependency of motile cells

As initial condition we consider a circular membrane of radius 1. To speed up the
development of the Turing pattern the simulation starts with a constant value C = 9.25
in Ωcp(0), c1 = 0.1758 and c2 = 0.2186 on the right hand side of the cellular
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Fig. 4 Cell movement. First row shape of the cell at different times evolving from left to right. Shown is
the phase field variable φ, second row concentration of c1 on cell membrane, third row concentration of
c2 on cell membrane, fourth row concentration of C in the cytoplasm, fifth row magnitude and direction
of u. The maximum of |u| corresponds to 0.31 × 10−6 m/s, which is in good agreement with the value
reported by Shao et al. (2012). To visualize the concentrations along the cell membrane or in the cytoplasm
the values of c1 and c2 and C are shown at the [−0.9, 0.9] and [0, 1] level sets of the phase field variable,
respectively. The times t shown are 0.013, 0.3, 0.6, 1.2 and 8 which correspond to 4.64, 10.71, 21.43, 42.86
and 250 s, from left to right

membrane and c1 = 0 and c2 = 0 on the left hand side. After a few iteration of the
whole system a stable Turing pattern with the desired polarity is formed. The resulting
protrusion force leads to a movement to the right and a deformation of the cell shape
forming a lamellipodia-like structure. Figure 4 shows the time evolution of the phase
field variable φ and the concentrations c1, c2 and C , respectively. The maxima of c1
which signals the polymerization of the actin filament meshwork in our model, is
sharply localized at the cell front. The concentration profile of c2 is less pronounced
and the concentration of C within the cytoplasm shows only a small gradient towards
the cell front. Both c2 and C do not directly correspond to the cell movement in the
considered model. We also show the velocity, which reaches after the acceleration
of the cell at the beginning a maximum before it is slowed down into a stationary
profile leading to a stationary cell shape moving with constant velocity. In this state
the shear stress and the stress corresponding to the Helfrich forces are in balance. The
simulation is performed with bN = 10−17 J, σ = 5 × 10−6 N/m and α = 5.6 N/m2.

The stationary shape strongly depends on these parameters. To quantify the depen-
dency Fig. 5 shows the obtained stationary cell shapes for different bending stiffness
bN and different surface tension σ . For Fig. 5a we vary the bending stiffness parameter
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(a) (b)

Fig. 5 Contour of the stationary cell shapes for bending and stiffness values proposed in Table 1.
a σ = 2.5 × 10−6 N/m. b bN = 10−17 J

and use a constant surface tension σ = 2.5 × 10−6 N/m. For Fig. 5b, we use different
values for the surface tension and keep the bending stiffness bN = 10−17 J constant.
α = 5.6 N/m2 is kept constant in all simulations. As expected the cell remains more
circular as stronger the bending stiffness and surface tension. More important, the
results indicate that the influence of bending stiffness compared to surface tension is
relatively small.

We now consider the influence of the protrusion force on the stationary cell shape.
Figure 6c shows the stationary cell shapes for different protrusion coefficients α. The
other parameters are bN = 10−17 J and σ = 5 × 10−6 N/m.

3.2 Formation of filopodia-like structures

In the previous example the diffusion coefficients and kinetic parameters are chosen
to form a Turing pattern which defines a polarity to distinguish between cell front and
cell rear. Different parameters can lead to different patterns. We here demonstrate this
by using again a circular initial shape of radius 1, a constant value of C = 9.25 in the
cytoplasm and random initial conditions for c1 and c2 within [0.1758−0.01, 0.1758+
0.01] and [0.2186 − 0.01, 0.2186 + 0.01], respectively. We here also modify the
diffusion coefficient dc2 along the membrane, which is set to be dc2 = 750 and now
differs from dc1 . The second change in parameters concerns the active surface force
number Fa, which now becomes Fa = 0.71, corresponding to α = 0.39 N/m2. The
elastic parameters of the membrane are set to be bN = 10−18 J and σ = 10−6 N/m.
Figure 7 shows the time evolution of the phase field variable, the concentrations of c1
and c2 along the membrane, the concentration of C within the cytoplasm as well as
the velocity field. Due to the developing of various maxima in c1 the cell only deforms
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(a) (b)

(c)

Fig. 6 Variation of α leads to different cell shapes, as larger the protrusion force as stronger is the defor-
mation and as faster the cell movement. a Circularity, b velocity of the center of mass and c the reached
stationary shape

but does not move into one direction. In contrast to our previous simulations we also
achieve a pattern in C . A stationary shape is not reached within the simulation time.

3.3 Reaction to spatial signals

It remains to be determined to what extent such an intrinsic polarization mechanism
contributes under physiological conditions where cell polarization is controlled by
spatial signals. In neutrophils, the actin cytoskeleton plays an important role in the
amplification of the spatial signal provided by gradients of chemoattractants. Thus, the
cytoskeleton-dependent positive feedback loop could also be used as a powerful signal
amplification mechanism that amplifies a small initial asymmetry in the distribution
of polarity inducers, thereby establishing the polarity axis toward a physiologically
relevant orientation.

To demonstrate this effect we modify Eq. (2) by adding ∇Γ ·(c1∇Γ c̃), with c̃ a given
concentration of a chemoattractant in the extracellular matrix. A similar approach has
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Fig. 7 First row shape of the cell at different times evolving from left to right. Shown is the phase field
variable φ, second row concentration of c1 on cell membrane, third row concentration of c2 on the cell
membrane, fourth row concentration of C within the cytoplasm and last row velocity field. The concentra-
tions along the cell membrane and in the cytoplasm are shown at the [−0.9, 0.9] and [0, 1] level sets of the
phase field variable, respectively. The times t corresponding to the columns are 0.1, 1, 2, 3 and 4 and are
equal at 3.6, 35.7, 71.4, 107.1 and 142.9 s, from left to right

been used by Elliott et al. (2012), and Landsberg et al. (2011). The modified diffuse
interface equation reads

∂t (|∇φ|c1)+ ∇ · (|∇φ|uc1) = dc1∇ · (|∇φ|∇c1)+ γ |∇φ|h(c1, c2)

+∇ · (|∇φ|c1Pφ∇ c̃) (24)

where Pφ = I − ∇φ·∇φ
|∇φ|2 denotes the projection operator towards the interface, with the

identity matrix I.
To illustrate the applicability of the approach we use different modes of c̃ and its

gradient:

1. ∇ c̃ = ξ(cosωt, sinωt)T , the chemoattractant rotates with the angular velocity ω,
2. ∇ c̃ = ξ(1, sinωt)T , the chemoattractant changes its direction in a sinusoidal way,
3. ∇ c̃ = ξR(χ
 n

ϑ
�+1)·∇ c̃(χ
 n

ϑ
�), the chemoattractant randomly changes its direction

by a specific angle ω. The random variable χ is determined every ϑ-th time step
and has the possible values {−ω, 0, ω}. R denotes a rotation matrix and ∇ c̃(χ
 n

ϑ
�)

determines the old direction of the chemoattractant. Similar rules are proposed by
Elliott et al. (2012).
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Fig. 8 Cell responds to a rotating spatial signal leading to a rotation, corresponding to case 1. The cell
shape and velocity in the cytoplasm and in the extracellular matrix is shown for times t equal 21.4, 107.1,
214.3, 321.4 and 428.6 s, from left to right

(a) (b)
Fig. 9 Cell responds to a sinusoidal spatial signal, corresponding to case 2. a ω = 0.014/s. b ω = 0.056/s

The parameter ξ models the strength of the chemotactic signal, which is set to ξ = 5
in all simulations and thus dominates the reaction–diffusion system, leading to a pro-
nounced maxima of c1 in the direction of the strongest gradient of the chemoattractant.
Fig. 8, corresponding to case 1, shows the resulting rotation of the cell together with the
velocity field. The maxima in c1 always points in the direction of the highest gradient of
the chemoattractant. We again observe the formation of a stationary shape here influ-
enced by the spatial signal. Figure 9, corresponding to case 2, shows the evolution of
the cell from t = 0s to t = 428 s for ω = 0.014/s (Fig. 9a) and ω = 0.056/s (Fig. 9b).
The last configuration, corresponding to case 3, is shown in Fig. 10 demonstrating a
more chaotic movement, which becomes stronger for larger ω and smaller ϑ .

4 Discussion

The movement of crawling cells is described using an effective model for the reorgani-
zation of the actin cytoskeleton, which is combined with a Helfrich model for the cell
membrane and streaming within the cytoplasm and the extracellular matrix. The actin
polymerization leading to cell protrusion is thereby initiated by a membrane-bound
active state of the GTPase, as one component of a biochemical network model, taking
into account the different dimensionality of the cytoplasm and the cell membrane. The
model allows to form Turing pattern in a parameter regime in which diffusion along
the membrane can be equal for all components. The used network model is a minimal
model with these characteristics and only takes into account the active and inactive
state of the membrane-bound GTPase, as well as complexes of cytoplasmic GTPase.
However, the minimal model for the GTPases cycle already shows a large variety of
different dynamical behavior, which range from sheet-like formation of lamellipo-
dia and the evolution of stationary cell shapes, to fingering phenomena which are
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(a) (b)

(c)

Fig. 10 Cell evolution corresponding to case 3. The staring point is labeled by S and the end point by E .
a ω = 30◦, ϑ = 400. b ω = 60◦, ϑ = 400. c ω = 60◦, ϑ = 100

filopodia-like. The difference is achieved by changing the strength of the reaction and
the diffusion parameters along the membrane.

The system of equations is formulated in a phase-field approach, which allows for
an efficient numerical treatment. Especially the reaction–diffusion model along the
membrane and within the cytoplasm can be formulated as a coupled system in a fixed
domain using the diffuse interface and diffuse domain approach. The same approach
can be applied for more detailed biochemical network models, as e.g. proposed by
Goryachev and Pokhilko (2008). Also the protrusion force can be generalized by taking
into account various concentrations along the membrane and within the cytoplasm.
In addition also a retracting force can be considered. If we denote concentrations
along the membrane by ci and within the cytoplasm by Ci , the general form for the
nondimensional Navier–Stokes equation reads

∂t u + (u · ∇)u = −∇ p + 1

Re
Δu

+ 1

ReBe
g∇φ − 1

ReCa
f ∇φ + λ1

Re
∇φ

−
∑

i

1

ReFai
ci∇φ −

∑
i

1

ReFai
Ci∇φ (25)

∇ · u = 0 (26)

with Fai = μv0/(αi R0) the active surface force numbers and Fai = μv0/(αi R0)

the active bulk force numbers. In Shao et al. (2012, 2010) only the last terms are
considered, one for a protrusion and one for a retraction force. The importance of
retraction for cell motility is e.g. considered by Enculescu et al. (2008), Enculescu
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et al. (2010) and needs to be taken into account for quantitative comparisons with
specific cells.

An additional contribution neglected in the current model is adhesion. The strong
influence of adhesion is e.g. considered by Barnhart et al. (2011). In Das and Du (2008)
adhesion is modeled in the context of a Helfrich model using an effective contact poten-
tial W , as already proposed by Seifert and Lipowsky (1990). W is thereby modeled
as a function of distance between the membrane and the substrate, e.g. in Lennard–
Jones form W (r) = − (

(β/r)η − (β/r)η/2
)
, with r the signed distance function to

the substrate, β and η the thickness of the repulsive region and the rate of change of
the adhesion potential, respectively. The generalized diffuse nondimensional Helfrich
energy reads

E(φ) = 1

2ε

1

Be

∫

Ω

(
εΔφ − 1

ε
(φ2 − 1)(φ + H0)

)2

dx

+ 1

Ca

∫

Ω

(
ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2

)
dx

+ 1

Ad

∫

Ω

W (r)

(
ε

2
|∇φ|2 + 1

4ε
(φ2 − 1)2

)
dx . (27)

with the adhesion strength number Ad = 2
√

2/3 μv0/ω, with ω the strength of the
adhesion interaction.

To summarize, the introduced model combines the main contributions to cell motil-
ity enabling to reproduce its primary phenomenology. The phase-field approach pro-
vides an easy to handle and efficient numerical approach to deal with the highly
coupled system of equations. The approach can further be extended to incorporate
additional phenomena. The simulation results are obtained not for a specific cell type,
but within a realistic parameter range spanning a large class of cells and their envi-
ronment. We therefore expect the model and the numerical approach to be useful also
for quantitative simulations of specific cells.
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