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We propose a variant of the θ-scheme for diffuse interface models for two-phase flow,
together with three new linearization techniques for the surface tension. These involve
either additional stabilizing force terms, or a fully implicit coupling of the Navier–Stokes
and Cahn–Hilliard equation.
In the common case that the equations for interface and flow are coupled explicitly, we
find a time step restriction which is very different to other two-phase flow models and
in particular is independent of the grid size. We also show that the proposed stabilization
techniques can lift this time step restriction.
Even more pronounced is the performance of the proposed fully implicit scheme which is
stable for arbitrarily large time steps. We demonstrate in a Taylor-flow application that this
superior coupling between flow and interface equation can decrease the computation time
by several orders of magnitude.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The numerical simulation of two-phase flows has reached some importance in microfluidic applications. In the last
decade, diffuse interface (or phase-field) models have become a valuable alternative to the more established sharp inter-
face methods (e.g. Level-Set, Arbitrary Lagrangian–Eulerian, Volume-Of-Fluid). The advantages of diffuse interface methods
include the possibility to easily handle moving contact lines and topological transitions as well as the fact that they do
not require any reinitialization or convection stabilization. The corresponding equations involve a Navier–Stokes (NS) equa-
tion coupled to a convective Cahn–Hilliard (CH) equation. A lot of efficient spacial discretization techniques and solvers for
these equations have been proposed (e.g. [20]). However, not much work has been done on time integration strategies and
efficient coupling between the NS and the CH equation, which we will address in this paper.

But at first, let us introduce the diffuse interface method more carefully. The method was originally developed to model
solid–liquid phase transitions, see e.g. [6,14,26]. The interface thereby is represented as a thin layer of finite thickness and
an auxiliary function, the so-called phase field, is used to indicate the phases. The phase field function varies smoothly
between distinct values in both phases and the interface can be associated with an intermediate level set of the phase field
function. Diffuse interface approaches for mixtures of two immiscible, incompressible fluids lead to the NS–CH equations
and have been considered by several authors, see e.g. [19,15,20,11]. The simplest model reads:

ρ(c)
(
∂tu + (u · ∇)u

) = −∇p + ∇ · (ν(c)D(u)
) + F + μ∇c, (1)

∇ · u = 0, (2)
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Fig. 1. Evolution of a semi-circular bubble under the diffuse interface model with too large time steps. Left: initial shape; Right: Evolved shape after ten
time steps.

∂tc + u · ∇c = ∇ · (M(c)∇μ
)
, (3)

μ = σ̃ ε−1W ′(c) − σ̃ ε�c, (4)

in the domain Ω . Here u, p, c and μ are the velocity, pressure, phase field variable and chemical potential, respectively.
The function W (c) is a double well potential, here we use W = 1/4(c2 − 1)2 which ensures that c ≈ ±1 in two fluid phases,
respectively.

The function M(c) is a mobility, ε defines a length scale over which the interface is smeared out. In general for the
diffuse interface fluid method, it is desirable to keep M small such that the phase field function is primarily moved by
advection. At the same time the mobility needs to be big enough to ensure that the interface profile stays accurately
modeled and the interface thickness is approximately constant. Furthermore, D(u) = ∇u + ∇uT is the strain tensor, ρ(c),
ν(c) and F are the (phase dependent) density, viscosity and body force. The parameter σ̃ is a scaled surface tension which is
related to the physical surface tension by σ̃ = σ 3

2
√

2
. There are efficient solvers available to discretize and solve Eqs. (1)–(4)

in space (see e.g. [20]).
Surface tension is a major component of all multiphase fluid models and hence various spatial discretizations of the

surface tension force for diffuse–interface models have been proposed (e.g. [22]). The surface tension force μ∇c introduces
a strong coupling between the NS equation providing the flow field and the CH equation evolving the phase field. This is
very similar to sharp interface models for two-phase flow where the same interface-to-flow coupling introduces a severe
time step restriction of the form [7,9]:

τ < Cρ
1
2 h

3
2 σ− 1

2 . (5)

Here, τ is the maximum time step size, ρ the average density of both fluids and h the grid size. The above CFL-like
restriction is particularly strong for large effective surface tensions, e.g. when small physical length scales are considered. It
is usually assumed that this restriction also holds for diffuse interface models (e.g. in [21]). In Section 6.1 we will show that
this assumption is wrong.

However, also for diffuse interface models there is some time step restriction which can make computations extremely
costly, even in cases when the interface is supposed to hardly move. Fig. 1 shows such a case of a perfectly circular interface,
which is almost stationary. However, if too big time steps are chosen, even such an equilibrated surface will start to wobble
and finally break up. In sharp interface models, there are techniques to overcome such time step restrictions [17]. To the
best of the authors’ knowledge there is no such technique available for diffuse interface models yet. We will develop tech-
niques to improve the coupling between the NS and the CH equations, which will turn out to lift the time step restrictions
significantly.

Apart from increasing the computational performance, there is a second reason to develop better time integration
schemes for diffuse interface models. The simple time discretization schemes available often imply the need to stabilize
the system by choosing a relatively high CH mobility. But this high artificial diffusion perturbs the simulation results since
matched asymptotic analysis shows the convergence of diffuse–interface methods toward the sharp interface equations only
for small CH mobility [1]. Therefore better time integration strategies would not only speed-up the simulations but also
allow to take smaller (more physical) CH mobility and thus improve the accuracy of diffuse–interface methods.

The structure of the remaining paper is as follows. Sections 2 and 3 will introduce a simple variant of the θ scheme as
well as a block Gauss–Seidel coupling strategy. The main attention is given to Section 4 where some new improved coupling
techniques for diffuse interface models are presented. The solution of the resulting systems is discussed in Section 5. In
Section 6 we perform numerical tests. In particular a CFL-condition for diffuse interface methods is numerically derived and
it is shown that the new proposed coupling methods can, for some problems, result in an extreme gain of performance.
Finally, conclusions are drawn in Section 7.

2. Time discretization: a variant of the θ -scheme

In this section we adopt the well-known θ -scheme for the time discretization of the NS–CH equations. Let the time
interval [0, T ] be divided in N subintervals of size τn , n = 1 . . . N . We define the discrete time derivative of a (solution)
variable v to be dt vn+1 := (vn+1 − vn)/τn , where the upper index denotes the time step number. For a shorter notation we
introduce
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g(u, c,μ) := −ρ(c)u · ∇u + ∇ · (ν(c)D(u)
) + F(c) + μ∇c, (6)

f (u, c,μ) := −u · ∇c + ∇ · (M(c)∇μ
)
. (7)

For a constant θ ∈ [0,1] we propose the following variant of the θ -scheme:

ρn+ 1
2 ∂tun+1 + ∇pn+1 = θ g

(
un+1, cn+1,μn+1) + (1 − θ)g

(
un, cn,μn), (8)

∇ · un+1 = 0, (9)

∂tcn+1 = θ f
(
un+1, cn+1,μn+1) + (1 − θ) f

(
un, cn,μn), (10)

μn+1 = σ̃ ε−1W ′(cn+1) − σ̃ ε�cn+1, (11)

where ρn+ 1
2 = (ρ(cn+1) + ρ(cn))/2 denotes an approximation to the intermediate density. Note that the system (8)–(11)

differs from the standard θ -scheme by the use of ρn+ 1
2 . To derive a standard θ -scheme one would have to divide the

momentum equation by ρ(c) to isolate the time derivative of u. Then the θ -scheme can be applied to the system ∂t u =
[g(u, c,μ) − ∇p]/ρ(c). This leads to more complicated equations requiring much more implementation effort. The above

variant circumvents this problem by using ρn+ 1
2 . One easily verifies that the method has the same consistency order and

stability properties as the standard θ -scheme. To be more precise, the method is of second order if θ = 0.5 and of first order
if θ �= 0.5. The most important cases are θ = 1 (backward Euler) and θ = 0.5 (Crank–Nicolson). Both are A-stable and are
often used to discretize two-phase flow problems in practice. We will also restrict our numerical experiments to these two
cases. The biggest disadvantage of the Crank–Nicolson scheme is that it has no smoothing property, i.e. it does not smooth
high frequencies. Therefore it is in some cases appropriate to use the optimally smoothing backward Euler scheme, although
it has lower order.

3. Linearization and coupling

The first question that arises when looking at Eqs. (8)–(11) is: How to couple the NS and CH equations. The nonlinear
coupling between un+1, cn+1 and μn+1 can be treated by several decoupling strategies. One usually applies an iterative
strategy where each time step requires multiple solves of the governing equations until the approximation error in the
solution variables is sufficiently small. To our knowledge, only sequential coupling of the NS and CH equations has been
considered in the literature. Hence, both equations are solved separately, using the solution of the other equation explicitly
from a previous computation.

3.1. Block Gauss–Seidel decoupling

The simplest decoupling strategy is the block Gauss–Seidel method. This method is widely used, e.g. in [11,16]. We use
subscript indices to denote the variables of the sub-iteration while superscripts still denote the time step number. Then the
block Gauss–Seidel strategy applied in every time step reads:

1. Initialize the sub-iteration with the values from the last time step:

u0 = un, c0 = cn, μ0 = μn (12)

2. for k = 0,1, . . .

• Solve the NS equation to get uk+1 and pk+1:

ρn+ 1
2 ∂tuk+1 + ∇pk+1 = θ g(uk+1, ck,μk) + (1 − θ)g

(
un, cn,μn), (13)

∇ · uk+1 = 0, (14)

where ρn+ 1
2 is approximated by (ρ(ck) + ρ(cn))/2.

• Solve the CH equation to get ck+1 and μk+1:

∂tck+1 = θ f (uk+1, ck+1,μk+1) + (1 − θ) f
(
un, cn,μn)

, (15)

μk+1 = σ̃ ε−1W ′(ck+1) − σ̃ ε�ck+1, (16)

• proceed to the next k
3. stop the iterative process when a given tolerance is reached, e.g. ‖ck+1 − ck‖ < tol, and set the variables at the new

time step to

un+1 = uk+1, cn+1 = ck+1, μn+1 = μk+1 (17)
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Note that in Eq. (13) only previously calculated instances of the CH variables c and μ appear. One can interpret the Gauss–
Seidel strategy as a fix point iteration where the fix point operator consists of one solve of the NS equation and one solve
of the CH equation. The fix point iteration consists in applying this operator on the iterates (uk, ck,μk) multiple times un-
til convergence is reached. Note, that convergence can be very slow due to the high nonlinearity of the operators. In fact
a contraction is only assured for very small time steps and divergence may occur if the time step is chosen too large.

3.2. Linearization

There are three remaining nonlinear terms: uk+1 · ∇uk+1 in Eq. (13), W ′(ck+1) in Eq. (16) and ∇ · (M(ck+1)∇μk+1) in
Eq. (15). Using a Taylor series expansion gives the second order linear approximations:

W ′(ck+1) ≈ W ′(ck) + W ′′(ck)(ck+1 − ck), (18)

uk+1 · ∇uk+1 ≈ uk · ∇uk+1 + uk+1 · ∇uk − uk · ∇uk, (19)

∇ · (M(ck+1)∇μk+1
) ≈ ∇ · (M(ck)∇μk+1

) + ∇ · (M ′(ck)(ck+1 − ck)∇μk
)
. (20)

If small length scales are considered, as in most applications of diffuse interface models, convection does not dominate
the NS equation. Hence, a simpler linearization than Eq. (19) is sufficient. Here we skip the last two terms on the RHS of
Eq. (19). Note that this does not affect the accuracy of the method and would at most slow down the convergence if the
problem was dominated by convection. Similarly, the last term of Eq. (20) can be omitted since it has very little effect on
the convergence speed, at least in all of our applications.

3.3. Special case: semi-implicit Euler

A special case of the linearized θ -scheme is when θ = 1 and only one iteration of Eqs. (13)–(16) is performed. The
resulting method can be written as the following semi-implicit Euler scheme:

ρ
(
cn)∂tun+1 + ∇pn+1 = −ρ

(
cn)un · ∇un+1 + ∇ · (ν(

cn)D
(
un+1)) + F

(
cn) + μn∇cn, (21)

∇ · un+1 = 0, (22)

∂tcn+1 = −un+1 · ∇cn+1 + ∇ · (M
(
cn)∇μn+1), (23)

μn+1 = σ̃ ε−1W ′(cn+1) − σ̃ ε�cn+1, (24)

where W ′(cn+1) is again linearized by Eq. (18). In each time step Eqs. (21)–(22) and Eqs. (23)–(24) can be solve sequentially.
This semi-implicit Euler scheme is the simplest time-stepping strategy. It is of first order accuracy but may still give good
results if sufficiently small time steps are used. The scheme has been used by many authors [20,3] including a benchmark
comparison of diffuse interface with level-set and VOF methods which showed good agreement [4].

3.4. Defect correction scheme

It is sometimes useful to apply a defect correction scheme when solving the fix-point iteration in Eqs. (13)–(16). There-
fore, the solution variable is split into its previous value plus an update value (here denoted with a star): uk+1 = uk + u∗ .
Now, the linear system is only solved for the update variable. Hence, solving a system of the form Auk+1 = b is replaced by
solving Au∗ = b − Auk . Left and right hand side of the latter equation are of the order of the defect u∗ , which minimizes
errors in computer arithmetic. Another advantage of this approach is that iterative solvers sometimes perform better, i.e.
need less iterations, when looking for solutions of the defect corrected scheme. To get a better approximation uk+1, the
update equation may be altered to uk+1 = uk + ωu∗ , where the step length ω can be found by a line search strategy. The
resulting Richardson type method is described in detail in [27].

Combining a defect correction scheme with the above block Gauss–Seidel splitting and the linearizations (18)–(20) is
equal to applying one step of a Newton iteration alternately to each of the two subsystems (NS and CH).

4. Advanced linearization techniques

We will now develop techniques to improve the coupling between the NS and the CH equations, which will turn out to
lift the time step restrictions significantly. In an iterative scheme, like the block Gauss–Seidel coupling, this is equivalent to
linearizing the surface tension force more efficiently. We will start by coupling the NS and CH equation really implicitly by
assembling both equations in one large system.
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4.1. Method 1: fully-coupled scheme

The reason for the instability of the NSCH system for larger time steps or high surface tensions is the explicit coupling
of the NS and CH equations. To be more precise it is the chemical potential that may oscillate (i.e. alters its sign) in every
time step. Consequently, the best way to stabilize the system is by taking the chemical potential from the new time step,
i.e. μk+1∇ck instead of μk∇ck in the NS equation, while still advecting the phase field with the new velocity uk+1. This
can be done by assembling both, the NS and CH equations, in one large system. Hence, step 2 of the block Gauss–Seidel
iteration is replaced by

2. for k = 0,1, . . .

• Solve the coupled NS–CH equation

ρn+ 1
2 ∂tuk+1 + ∇pk+1 = θ g(uk+1, ck,μk+1) + (1 − θ)g

(
un, cn,μn)

, (25)

∇ · uk+1 = 0, (26)

∂tck+1 = θ f (uk+1, ck,μk+1) + (1 − θ) f
(
un, cn,μn), (27)

μk+1 = σ̃ ε−1W ′(ck+1) − σ̃ ε�ck+1, (28)

• proceed to the next k

The slight difference to the block Gauss–Seidel iteration from Section 3.1 is the usage of ck in Eq. (27) and μk+1 in Eq. (25).
We will see in Section 6 that this has a strong stabilizing effect, may speed up convergence of the fix-point scheme and
allows larger time steps.

We also tested other variants of assembling NS and CH in one system, for instance using the surface tension force
μk∇ck+1. We found all other variants not to give any improvements in stability. The key point here is really the use of the
new curvature (contained in μk+1). This is a big advantage of diffuse interface models compared to other two-phase flow
models, because the curvature (μ) here is a solution variable and can therefore be implicitly coupled to the NS equation.

The same form of coupling which uses μk+1∇ck in the momentum equation and uk+1 · ∇ck in the CH equation, is often
chosen to show energy estimates of the NS–CH system (e.g. [5]).

4.2. Method 2: linearization of the chemical potential

In this section we present an alternative way which avoids solving NS and CH in one system. We will derive a stabilizing
term which can easily be added to the NS equation. From the previous section we know that it is desirable to replace the
surface tension force θμk∇ck occurring in Eq. (13) by the more implicit version

Fst = θμk+1∇ck. (29)

Instead of using μk which is a first order approximation of the new chemical potential μk+1, we will now derive a second
order approximation. The idea is to predict μk+1 from the available variables ck and uk+1. To start, we use that the surface
tension force Fst can also be written as [15]:

Fst = −θσ̃ ε∇ · (∇ck+1 ⊗ ∇ck), (30)

where the difference to Eq. (29) has the form of a gradient term and can hence be absorbed into the pressure (by redefining
the pressure). Next, let us assume that the movement of c is primarily driven by advection, i.e. the influence of the chemical
potential in Eq. (15) is neglected. Subtracting Eq. (15) of step k + 1 from the same equation in step k gives

ck+1 = ck − τθ(uk+1∇ck+1 − uk∇ck) (31)

≈ ck − τθ(uk+1 − uk)∇ck. (32)

Now, we may insert this expression in Eq. (30) and get

Fst ≈ −θσ̃ ε∇ · (∇ck ⊗ ∇ck) + τθ2σ̃ ε∇ · (∇(
(uk+1 − uk)∇ck

) ⊗ ∇ck
)
. (33)

The first term in Eq. (33) can be transformed back in θμk∇ck (again by redefining the pressure) which gives

Fst ≈ θμk∇ck + τθ2σ̃ ε∇ · (∇(uk+1 − uk) · ∇ck ⊗ ∇ck
)

+ τθ2σ̃ ε∇ · ((∇∇ck · (uk+1 − uk)
) ⊗ ∇ck

)
. (34)

The last term in Eq. (34) turned out to be very small in all our simulations and did not influence neither accuracy nor
convergence speed. We therefore omit it and get the stabilizing term
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S1 := τθ2σ̃ ε∇ · (∇(uk+1 − uk) · ∇ck ⊗ ∇ck
)

(35)

which should be added to the RHS of the NS equation (13). Note, that S1 is a kind of Laplacian of the velocity field and
can therefore be expected to have a stabilizing effect which will be confirmed in Section 6. Adding S1 to Eq. (13) does not
affect the accuracy of the method since S1 vanishes when the fix-point iteration converges. Also note, that the derivation
assumed that the phase field c is only advected, which corresponds to vanishing mobility. For larger mobilities S1 should
be scaled with an (unknown) factor ω ∈ [0,1]. Here, we use ω = 0.2 which turned out to speed up the convergence of the
fix-point method significantly.

4.3. Method 3: stabilizing surface Laplacian

The introduction of a stabilizing Laplacian of the velocity field in the previous section reminds of a very popular tech-
nique used in level-set methods first introduced by Dziuk [13]. The idea is to use that κn = −�Γ idΓ , where κ = ∇ · n is
the mean curvature, n the normal and �Γ id the Laplace–Betrami of the identity mapping. Hence, the implicit part of the
surface tension force can be expressed as

Fst = −σθδk�Γk idΓk , (36)

with some surface Delta function δk . To get a more implicit version of Eq. (36), one can replace idΓk by idΓk+1 . The latter
can be approximated by

idΓk+1 ≈ x → x + θτ (uk+1 − uk)(x), (37)

which gives the surface tension force:

Fst ≈ −σθδk�Γk idΓk − σθ2δkτ�Γk (uk+1 − uk) (38)

= −σθδk�Γk idΓk − σθ2τ∇Γk · (δk∇Γk (uk+1 − uk)
)
. (39)

The first term on the RHS corresponds to the surface tension force θμk∇ck which is already included in our NS equa-
tion (13). Consequently, the second term on the RHS of (39) is an additional stabilizing term which enters the NS equation.
A diffuse interface version is given by

S2 := −σθ2τ∇ · (|∇ck|P∇(uk+1 − uk)
)

(40)

where P = (I − ∇ck⊗∇ck
|∇ck |2 ) is the surface projection. Analogously to the derivation in the previous section, we assumed here

(in Eq. (37)) that the interface is only advected. Hence, the derivation only holds in the limit of vanishing mobility. For
larger mobility we therefore scale S2 in the same way as S1 with a parameter ω ∈ [0,1]. Note, that adding S2 does not
affect the accuracy of the method, since it vanishes when the fix point iteration converges (and uk+1 ≈ uk).

5. Space discretization and solvers

For the numerical solution of the partial differential equations we adapt existing algorithms for the NS–CH equation,
e.g. [29,12]. We use the finite element toolbox AMDiS [28] for discretization with P 2 elements for u, c and μ and P 1

elements for the pressure p. In 2D we solve the resulting linear system of equations with UMFPACK [10]. For the larger
systems in 3D we have to use preconditioned iterative solvers. Efficient preconditioners are available for the individual
systems, that is when NS and CH are solved separately. We apply the F p preconditioner [20] with FGMRES iteration to solve
the NS system. For the CH system we use the preconditioner proposed in [8] also with FGMRES iteration.

It remains the case of the fully coupled NS–CH system, Eqs. (25)–(28), which has not been considered in the literature
so far. From the discretization of Eqs. (25)–(28) we obtain a system of the form[

ANS Mc

Nc ACH

][ �x
�y

]
=

[ �b1

�b2

]
, (41)

where �x contains the degrees of freedom of u and p, while �y contains the degrees of freedom of c and μ. Mc and Nc
denote the coupling terms between the NS and the CH system. Our (simple) approach to solve this system is to combine
the two preconditioners for the CH and NS systems. Let PNS the F p preconditioner for NS and PCH the CH preconditioner.
For the coupled system we use the matrix

P =
[

PNS Mc
1
α PCH

]
(42)

as a right preconditioner, with a scaling factor α. Hence, Eq. (41) is replaced by solving the two systems[
ANS Mc

N A

][
P−1

NS −αP−1
NS Mc P−1

CH−1

][ �v
�w

]
=

[ �b1

�
]

(43)

c CH 0 αPCH b2
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Table 1
Parameters used for stability estimations.

σ 102 103 104 105

M 10−4 10−5 10−6 10−7

ε 0.08 0.04 0.02 0.01
h 2ε ε 0.5ε

ρ 10−1 100 101 102

and [ �x
�y

]
=

[
P−1

NS −αP−1
NS Mc P−1

CH

0 αP−1
CH

][ �v
�w

]
. (44)

A rigorous analysis of the matrix properties is still missing. However, in our numerical tests, this preconditioned system can
be solved by an FGMRES iteration with α = 0.1.

6. Numerical tests

We now validate the proposed linearization schemes on different test scenarios. First, we assess the numerical stability of
the time integration schemes (Section 6.1). Then we conduct a benchmark comparison of the different linearization methods
(Section 6.2). At last we present an application to a Taylor-Flow simulation which clearly shows the superior performance of
the proposed methods. Throughout this section we use an iteration tolerance of tol = 10−10 (see Section 3.1). Furthermore,
we terminate the block Gauss–Seidel scheme if no convergence is reached after 100 iterations. As stabilization constant we
use ω = 0.2 (see Section 4).

6.1. Stability investigations

In this section, we assess the time step stability of the proposed schemes. Our goal is to find the maximum time step
size at which a given two-phase flow configuration is solvable. We use configurations with different surface tensions σ ,
mobilities M , grid sizes h and interface thicknesses ε . In the end we want to find an estimate to predict the maximum
time step size from these parameters. As mentioned in Section 1 for other two-phase flow methods (e.g. Level-Set, ALE) the
estimate gives the CFL-like condition

τmax < Cρ
1
2 h

3
2 σ− 1

2 (45)

with some non-dimensional constant C . This restriction can be derived from the consideration of capillary waves [9] in the
limit of small viscosity. To resolve such waves the time step size should suffice τmax < h/2V , with V = √

σk/2ρ being the
capillary wave phase velocity. Here k is the wavenumber which can for sharp interface models become as big as π/h. For
diffuse interface models this derivation fails since, the smallest wavenumber should depend on ε rather than h. Furthermore
the CH diffusion smooths the phase field function which does not allow the simple ansatz τmax < h/2V . However, a common
assumption is that the time step restriction (45) also holds for diffuse interface methods which we will contradict in the
following.

We use numerical testing to assess the time step stability, since analytical investigations on the coupled NS–CH system
are extremely complicated. We restrict the numerical tests to the Crank–Nicolson scheme (Eqs. (12)–(17) with θ = 0.5).1

As initial condition we use u = 0 and a phase field given by c = tanh((y − 0.5)/
√

2ε) in the domain Ω = [0,1]2 which
represents a flat horizontal interface. Since the curvature is zero this initial condition corresponds to a stationary state. To
trigger an instability, a different random number ∈ [−0.001,0.001] is added to each grid point of the phase field. Hence,
the fix point iteration will not converge for too large time steps. We then try to solve a single time step of the system with
these initial conditions. We do this multiple times for varied time step sizes. We start with very small time steps which
assure convergence. As long as the system can be solved we increase the time step size (by a factor of 1.1) and start again.
At some point the system will not be solvable and we denote the corresponding time step as the maximum time step size
τmax for this configuration.

We repeat this procedure for various numerical parameters shown in Table 1. We use equal densities in both phases and
choose ν = 0.01 to make sure that viscosity does not play a dominant role.2 Varying all other parameters (σ ,ρ, ε,h, M)

independently gives a total number of 4 · 4 · 4 · 3 · 4 = 768 test cases and we denote the corresponding parameters for
some test case i ∈ {1, . . . ,768} by subscripts: σi , ρi , εi , hi , Mi . We use the explicit scheme (Eqs. (12)–(17) with θ = 0.5)
and monitor for each test case the maximally possible time step τmax,i . Our goal is to obtain a relationship between the
test parameters of case i and τmax,i . Assuming a multiplicative relationship with unknown exponents gives the nonlinear
least-squares problem:

1 For θ = 1, the obtained maximum time step would be need to be divided by 2.
2 Analogously to the derivation of (45), see e.g. [9].
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Fig. 2. Log–log plots comparing the maximum time step size with the CFL-condition (48). Either one of the variables ρ , σ , ε , M , h, ν is varied while
keeping the other variables fixed. Results are obtained with a Crank–Nicolson scheme (Eqs. (12)–(17) with θ = 0.5).

min
α

768∑
i=1

∣∣∣∣log

(
α1hα2

i ε
α3
i σ

α4
i Mα5

i ρ
α6
i

τmax,i

)∣∣∣∣
2

(46)

where α contains the searched unknowns, α = (α1, . . . ,α6). We use the routine lscurvefit in MatLab to solve (46) and
obtain α = (7.603,0.001,0.916,−0.326,0.374,0.673) which is equivalent to the time step restriction

τmax < 7.603h0.001ε0.916σ−0.326M0.374ρ0.673. (47)

The calculation of this time step restriction involved some rounding, in particular the maximum time steps may be over
estimated by up to 10%, since we increased them stepwise by 10%. These errors limit the precision of (47) and justifies to
round the obtained values. In this way, we get the following CFL-like time step restriction

τmax < 7.0ερ2/3M1/3σ−1/3. (48)

In strong contrast to (45) this time step restriction is independent of h. It is hard to come up with a theoretical justification
of this expression, due to the complicated interplay of diffusion and advection in the NS–CH model. However, the smallest
capillary wavelength in a NS–CH model can be expected to be proportional to ε which explains the occurrence of ε on
the RHS. Also, it seems reasonable that the CH mobility M enters the RHS with a positive exponent since higher M results
in additional smoothing. A further justification is given by looking at the physical units of Eq. (48). Using that M is measured
in m3 s/kg we obtain that both sides of (48) are measured in s (seconds).

Fig. 2 shows the experimental maximum time step size compared to the CFL-condition (48). Thereby, we vary one of the
six variables (ρ,σ , ε, M,h, ν) while keeping the other variables fixed at ρ = 1.0, σ = 103, M = 10−5, ε = 0.04, h = 0.04,
ν = 0.01. One can see an excellent agreement of the numerical data with the time step restriction curve. But also the limit
of the derived CFL condition becomes apparent by looking at the case of varied viscosity ν in Fig. 2. According to our
derivation, the time step restriction only holds in the limit of small viscosities (here Re � 1). Note, that this coincides with
the famous CFL condition (45) which was also derived for the small viscosity case [9].

We also assess the time step stability of the advanced linearization schemes proposed in Section 4. In particular the
fully coupled scheme (Eqs. (25)–(28)) shows a superior performance. For all test cases the scheme converges in at most 10
iterations independently of the time step. Hence, for a configuration close to the stationary state the fully coupled scheme
allows arbitrary large time steps. This outstanding property will be further exploited in Section 6.3.

But also the two schemes employing the stabilizing terms S1 and S2 (Eqs. (35) and (40), resp.) perform very well. We
divide the maximum time step of the stabilized schemes by the maximum time step of the simple explicit scheme. Fig. 3
shows this ratio for the 256 test cases with h = 2ε .

Using S1 increases the maximum time step by a factor of 1.9–5.5 (average: 3.3). Much more diverse ratios are obtained
when using S2, which increases the maximum time step by a factor between 1.0 and 65.9 (average: 6.8). Note, that the
stabilizing effect of S1 and S2 depends on the factor ω. For the ease of comparison, we set ω = 0.2 here, but adjusting it
manually to the used mobility would allow even higher time steps.
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Fig. 3. The ratio of maximum time steps (stabilized scheme S1 (left) and S2 (right) divided by explicit scheme) for the different test cases. The straight line
shows the average ratio. The vertical axis uses log scaling.

Table 2
Bubble position, errors and rate of convergence (ROC) for different time step sizes τ . The results
confirm first order convergence for θ = 1.0 (a) and second order convergence for θ = 0.5 (b).

τ position error ROC

0.100 0.51280317 3.69E–03
0.040 0.51064693 1.53E–03 0.96
0.020 0.50989193 7.74E–04 0.98
0.010 0.50950797 3.90E–04 0.99
0.005 0.50931372 1.96E–04 0.99

(a) θ = 1.0

τ position error ROC

0.100 0.50904344 7.45E–05
0.040 0.50910657 1.14E–05 2.05
0.020 0.50911533 2.66E–06 2.10
0.010 0.50911762 3.70E–07 2.84
0.005 0.50911799 0.00E–00 –

(b) θ = 0.5

6.2. Benchmark problem

We use the test setup from the two-phase flow benchmark of Hysing et al. [18]. It considers a single bubble rising
in a liquid column for a period of 3.0 time units. The benchmark scenario has also been studied with a diffuse interface
model [4].

We start with the same configuration as test case 1 in [4] with ε = 0.02, M = 2 · 10−5, ρ1 = 1000, ρ2 = 100, ν1 = 10,
ν2 = 1, σ = 24.5. First, let us confirm the accuracy of the θ -scheme. To make the comparison computationally cheaper, we
restrict the following studies to the time interval [0,0.2]. We solve the system with different time step sizes for θ = 1.0
and θ = 0.5. Table 2 shows the final bubble position for all of these cases. We assume that the smallest time step together
with θ = 0.5 gives the most accurate result and take this as a reference value to compute the errors of the other test cases.
The order of convergence (ROC) shows clearly first order convergence for θ = 1.0 and second order convergence for θ = 0.5
(Table 2).

So far, it did not matter whether we use the standard block Gauss–Seidel coupling, the fully coupled NS–CH system, or
any of the introduced stabilizing terms S1, S2. All of these methods give the same computational result as long as their
inner fix-point iteration converges. However, the number of needed iterations and the time for each iteration may vary
among the methods. Therefore, we will next analyze the performance of the four different solution methods:

• explicit: standard block Gauss–Seidel coupling (see Sections 3.1–3.2)
• S1: with additional stabilization term S1 from Eq. (35)
• S2: with additional stabilization term S2 from Eq. (40)
• implicit: fully coupled NS–CH system (Eqs. (25)–(28))

We use the same configuration as before, with ε = 0.005, M = 5 · 10−6. We will use a second order Crank–Nicolson time
stepping (θ = 0.5) with τ = 0.02 which gives comparable time discretization errors as in the original benchmark paper [4].

Table 3 shows the total number of iterations and CPU time in seconds for the different simulations. One can see that
the fully coupled system needs by far the least iterations followed by the two stabilized schemes S1, S2. The number of
iterations for the explicit method is more than three times higher than for the implicit system. However, these differences in
iterations are not directly reflected in the CPU timings. Apparently one solution of the implicit system is almost three times
as expensive as solving the explicit system, reducing the advantage of the implicit system significantly.



S. Aland / Journal of Computational Physics 262 (2014) 58–71 67
Table 3
Performance of different solution methods.

explicit S1 S2 implicit

Iterations 85 52 55 28
CPU time (s) 116 71 89 95

Fig. 4. Number of iterations and CPU times for different surface tensions σ . While the explicit scheme does not even converge for large surface tensions,
the implicit scheme seems unaffected.

Fig. 5. Number of iterations and CPU times for different mobilities M . While the explicit scheme does not even converge for low mobility, the implicit
scheme seems unaffected.

Also the stabilized systems S1, S2 reduce the number of iterations compared to the explicit scheme, while the resulting
linear systems can be solved as fast as the explicit system. Consequently, the methods S1 and S2 perform best in terms of
CPU time. Method S1 is the fastest.

In a next comparison we include higher surface tensions σ and lower mobilities M , since we expect our improved
methods to be particularly fast in these cases. Fig. 4 shows the number of iterations and CPU times for surface tensions
increased by a factor of 2 and 4. The number of iterations and CPU time increases for the explicit method with increasing σ .
For σ = 98.0 the fix point iteration does not converge anymore. Also the stabilized methods S1, S2 become slower for
increased σ but they still converge. Remarkably, the implicit method is not affected by the increase in σ , neither the
number of iterations nor the CPU time changes significantly. A very similar picture can be seen when the mobility is varied.
In Fig. 5 the mobility M is decreased by a factor of 2 and 4. Again the explicit method gets very slow and does not even
converge for the smallest M , whereas the implicit method remains almost unaffected.

A note on spurious velocities: Spurious currents, i.e. artificial velocity fields that persist in an equilibrium situation of
a circular droplet are an ongoing issue in simulations of two-phase flows. We have tested our schemes for such currents
by disabling the gravity force in the benchmark scenario. We found spurious currents to occur here as well, with a velocity
magnitude independent of the chosen scheme. This is not surprising since these currents are a steady state phenomenon,
and should not be affected by the time stepping scheme. However, for the explicit scheme such currents may cause problems,
since they prevent the use of large time steps even if the system is close to the equilibrium. The schemes S1 and S2 allow
larger time steps and the implicit scheme lifts this time step restriction completely and allows the use of arbitrary large
time steps if the system is in equilibrium. We will exploit this property more in detail in the following application to Taylor
flow.
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Fig. 6. Initial shape (top) and final shape (bottom) with flow streamlines of the Taylor bubble. The bubble shape only changed slightly during the time
evolution due to high surface tension pressing the bubble against the channel wall.

6.3. Application to Taylor-flow

We consider a Taylor flow simulation to further demonstrate the efficiency of the proposed linearization techniques.
Taylor flow is the flow of a single elongated bubble through a narrow channel. In narrow channels, the bubble assumes
a quasi-stationary state, i.e. a fixed shape which is only advected in the direction of the channel. Many technical applications
involve Taylor flow, e.g. catalytic converters [30], monolith reactors [23], or microfluidic channels [25]. In these applications,
bubbles of identical size, shape, and distance to each other are typically required. Thus, the hydrodynamics that lead to
a perfect quasi-stationary bubble are of interest in these research areas. This makes Taylor flow also interesting as a general
benchmark for two phase flow methods and indeed such a benchmark has been recently defined in 2D [2] as well as in
3D [24].

6.3.1. 2D Taylor-flow
As in the above-mentioned benchmarks, we want to compute the quasi-stationary state of a Taylor bubble driven through

the channel by a pressure difference between inlet and outlet. An implicit Euler scheme is expected to converge fast to the
stationary solution due to its high numerical dissipativity. Therefore, we use the scheme proposed in Section 3.3 (i.e. θ = 1
and only one sub-iteration) in four different versions:

• explicit: no stabilization (exactly as in Section 3.3)
• S1: with additional stabilization term S1 from Eq. (35)
• S2: with additional stabilization term S2 from Eq. (40)
• implicit: fully coupled NS–CH system (Eqs. (25)–(28) also with θ = 1 and only one sub-iteration)

As in [2] we use a moving frame of reference. Therefore we calculate the bubble velocity ub by ub = (
∫
Ω

(1 − c)u)/

(
∫
Ω

1 − c) and replace the velocity of the convective terms in Eqs. (21) and (23) by (u − ub). Hence the frame of reference
moves with the bubble and the quasi-stationary state becomes really-stationary. Similar to [2] we use the parameters
ν1 = ν2 = 10.0, ρ1 = ρ2 = 1.0, σ = 5 000, M = 3.0 · 10−6, ε = 0.015, ω = 1.0.

To demonstrate the efficiency of the proposed linearization schemes, we use a simple adaptive time stepping. Our goal is
to control the CFL number which can be accomplished by choosing something like τ = 0.5h/max(|u − ub|). Since the usage
of u − ub would not include movement due to CH diffusion we replace this term by the phase field velocity ∂tc/|∇c| and
end up with the following time step selection:

τn = 1

2
τn−1 · max

h|∇cn|
|cn − cn−1| , (49)

where we choose the first time step, τ 0 = 10−4.
The initial condition for the bubble is as in [2]: A rod-like bubble of total length 5 is placed in the middle of a channel

Ω = [0,10] × [0,1], see Fig. 6. The pressure difference between channel inflow and outflow is iteratively adjusted to give
a bubble velocity ub = 1. Though it is hard to see differences between the initial and final bubble shape with the naked eye,
there is some significant bubble deformation going on. In particular, the width of the thin liquid film between bubble and
wall changes during the time evolution.

Fig. 7 shows the adaptive time steps (top) and the change in c (bottom) for the four methods. Let us first focus on the
explicit scheme. Although the bubble is close to its stationary shape, the explicit scheme becomes unstable for large time
steps. Once τ is larger than approximately 10−3 the interface starts to oscillate (‖∂tc‖L1 increases), which results in a rapid
decrease of the time steps. After some calculations with small time steps the bubble stabilizes and the time steps increase
and the whole process starts over again. This results in an up and down of time steps which renders the explicit scheme
almost useless. To reach the stationary state one would have to limit τ from above to approximately 10−3, which would
require a hundred thousand of total time steps to reach a sufficiently stationary state (say at t = 100).

A similar instability occurs for the schemes S1 and S2 but at much larger time steps, τ � 10−1. Hence adding either of
the terms S1 and S2 allows to increase the time steps almost by two orders of magnitude. To reach the stationary state one
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Fig. 7. Comparison the Taylor-flow simulation with the four methods. Top: The adaptively chosen time step over time. Bottom: The change in the phase
field ‖∂t c‖L1 over time. The stationary state is reached when ‖∂t c‖L1 is sufficiently small. The explicit scheme becomes unstable already for time steps
larger than 10−3. Only the implicit scheme is stable for arbitrarily large time steps and approaches the stationary state.

would have to limit τ from above to approximately 10−1, which would require about 1000 total time steps to reach the
stationary state. Note that the computational costs per time step are almost equal for the schemes explicit, S1 and S2: 3.15 s,
3.41 s and 3.56 s, respectively. Very impressing is the performance of the implicit scheme which is stable for arbitrarily
large time steps. Thus, while the bubble approaches the stationary state, larger and larger time steps are possible. Hence,
we obtain the stationary state in just 64 total time steps. The average cost per time step is 8.52 s which gives a computation
time of approximately 9 min for the complete simulation. Hence the implicit scheme outperforms the other schemes by far.

6.3.2. 3D Taylor-flow
Encouraged by the good results of the fully coupled time discretization in 2D, we venture to try a 3D Taylor flow example.

We use the test setup from the 3D Taylor flow benchmark in [24]. Thereby a gas bubble of volume 17.5 mm3 is placed in
a domain of size 1.98 mm×11.88 mm×1.98 mm. Exploiting the symmetry in x- and z-direction, we restrict the calculations
to a quarter of this domain. Further parameters are in the liquid phase: ρL = 1195.6 kg/m3, νL = 28.54 · 10−3 kg/ms, in the
gas bubble: ρG = 11.95 kg/m3, νL = 28.54 · 10−5 kg/ms, the surface tension is σ = 66.69 · 10−3 kg/s2 and the desired final
bubble velocity is 205.57 mm/s. For the diffuse interface model we use M = 0.9 · 10−9 m3s/kg and ε = 0.03 mm.

Again, we are looking for a stationary state. Hence, we use the fully coupled NS–CH system (Eqs. (25)–(28)) with θ = 1
and only one sub-iteration. Starting with τ 0 = 2.0 · 10−5 s, we double the time step size every 50 time steps. A grid size of
h = 0.087 mm at the interface gives around 1 million total degrees of freedom. We use an MPI based parallelization with 44
cores and the preconditioned FGMRES iteration described in Section 5. One time step is solved in approximately 1 minute.
Fig. 8 shows the time evolution of ‖∂tc‖L1 and the bubble velocity ub . The change in c decays exponentially. We assume
that we are sufficiently close to the stationary solution if ‖∂tc‖L1 < 10−3.

The final bubble is depicted in Fig. 9 together with the streamlines showing a recirculating flow pattern at the front and
the rear of the bubble. To compare the bubble shape with the reference solution from [24], we cut the phase field vertically
through the middle of the domain. The zero level set of the phase field along this slice is compared to the reference solution
from DROPS [24] in Fig. 10 and shows a quite satisfactory agreement.

7. Conclusions

In this paper, we addressed time integration strategies for the diffuse interface model for two-phase flows. We proposed
a variant of the θ -scheme together with three new linearization techniques for the surface tension. These involve either
additional stabilizing terms (S1 or S2), or a fully implicit coupling of the NS and CH equation.
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Fig. 8. Time evolution of ‖∂t c‖L1 (left) and bubble velocity ub (right). The change in c decays exponentially (left).

Fig. 9. Quasi-stationary state of the Taylor bubble moving from the left to the right. The streamlines show a recirculating flow pattern at the front and the
rear of the bubble.

Fig. 10. Final bubble shape at the rear (left) and the front (right) of the bubble. The line shows the reference solution from DROPS [24]. The crosses mark
our diffuse interface solution. Both solutions are aligned at the ends.

As in all two phase flow methods the coupling between the flow and the interface equation plays a crucial role and
limits the stability and the range of applicable time steps significantly. This is particularly true if high surface tensions or
small length scales are considered. In the common case that interface and flow equation are coupled explicitly, we could
show a time step restriction of the form

τ < Cεσ−1/3M1/3ρ2/3 (50)

which is very different to other two-phase flow models and in particular is independent of the grid size. As in other
two-phase flow models, this restriction can make computations extremely costly. Even in cases when the interface is almost
stationary, too large time steps will lead to oscillations and finally destruction of the interface.

We also showed that the proposed stabilization techniques could lift the above time step restriction. The simple stabi-
lizing terms S1 and S2 may allow an increase in time step size of about two orders of magnitude. If a fix point or Newton
sub-iteration is used in each time step, these terms can reduce the number of iterations significantly, while not affecting
the accuracy.
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Very impressing is the performance of the fully implicit scheme which is stable for arbitrarily large time steps. We
demonstrate in a Taylor flow application that this superior coupling between flow and interface equation can decrease
computation time of diffuse interface models by several orders of magnitude.

Apart from increasing the computational performance, the improved time integration schemes allow to choose lower CH
mobility, which may come closer to physically correct values. Hence, the mean curvature flow included in the CH equation
is suppressed which may lead to more accurate computational results.
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