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A mechanism for cell motility by active
polar gels

W. Marth, S. Praetorius and A. Voigt

Institut für Wissenschaftliches Rechnen, TU Dresden, Dresden 01062, Germany

We analyse a generic motility model, with the motility mechanism arising by

contractile stress due to the interaction of myosin and actin. A hydrodynamic

active polar gel theory is used to model the cytoplasm of a cell and is com-

bined with a Helfrich-type model to account for membrane properties. The

overall model allows consideration of the motility without the necessity

for local adhesion. Besides a detailed numerical approach together with con-

vergence studies for the highly nonlinear free boundary problem, we also

compare the induced flow field of the motile cell with that of classical squir-

mer models and identify the motile cell as a puller or pusher, depending on

the strength of the myosin–actin interactions.
1. Introduction
Living cells move themselves around using different strategies, well adapted to

their environment. A full understanding of the mechanisms behind cell motility

is still missing but remains central for many biological and biomedical

processes. Various generic mechanisms have been proposed to describe motility

in different situations. Many eukaryotic cells for example move using a

crawling motion. Here, motility results mainly from polymerization and

depolymerization of actin filaments. The underlying treadmilling process, if

combined with local adhesion of the cell on a substrate, leads to macroscopic

motion. The treadmilling process and the associated crawling motion have

been studied from a microscopic point of view, see [1–3] for a review on exist-

ing mathematical models. Continuum models, which allow for spatial and

temporal resolution, have been considered for such a crawling motility mechan-

ism in [4–8]. All these approaches use a reaction–diffusion system along the

cell membrane and/or within the cytoplasm to effectively account for actin

polymerization and combine it with a mechanical or hydrodynamic model

for cell dynamics. This allows the description of the morphology and evolution

of eukaryotic cells and for it to be linked to realistic signalling networks, as, for

example, considered in [7,9].

Other motility mechanisms are less explored, but necessary in situations in

which local adhesion is less evident, such as for cells moving in martigels

[10,11] or freely swimming microorganisms. We here consider a motility mech-

anism arising by contractile stress due to the interaction of myosin and actin.

Microscopically, myosin motor complexes use the energy from ATP hydrolysis

to grab onto neighbouring actin filaments and exert stress. This process is also

known for eukaryotic cells, where it shapes the rear of the cell, but it can also

lead to motility itself. Here, the exerted stress is contractile and leads to a micro-

scopic quadrupole flow around the myosin–actin complexes. A hydrodynamic

active polar gel theory is developed to model these phenomena on a continuum

level [12–14]. If considered in a confinement, a splayed polarization of the

filaments can occur and has already been used as a route to motility [15–17].

All these studies consider a droplet. In the first case, with a surface tension

using a numerical approach based on hybrid lattice Boltzmann simulations,

in the second, the same setting is considered using a stream-function finite

difference scheme and in the third a droplet of fixed shape is considered

using an analytic description.

We will here extend the approach to include also bending properties of a cell

membrane, which, however, turns out to be of less relevance for the motility
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mode within the considered parameter regime. The focus of

the paper is a detailed computational study of the motility

mechanism due to myosin–actin interactions. We explain

the model used, which is here formulated in a phase-field

description; demonstrate thermodynamic consistency of the

overall model (without the active components); consider an

adaptive finite-element discretization in space and a semi-

implicit time discretization for the system of equations; and

show convergence studies for critical parameters. As the con-

sidered motility mode results from a physical instability, a

stable numerical discretization is essential for a detailed

analysis. The simulation code is used to demonstrate the

robustness of the motility mechanisms and detailed par-

ameter studies are provided to contribute to a better

understanding of the mechanisms behind cell motility for

environments without local adhesion. We also analyse the

flow field induced by the motile cell and compare it with a

squirmer model, which allows the identification of the

motile cell as a puller or pusher, depending on the strength

of the myosin–actin interactions. We further discuss possible

extensions of the model, e.g. combinations of myosin–actin

interactions with actin polymerization. All simulations are

restricted to two dimensions. The described model can also

be used for three-dimensional cell motility, where the

myosin–actin interactions are assumed to dominate and

treadmilling only plays a minor role. However, compu-

tational studies require an adequate preconditioner/solver

for the system and its development is still current research.

As already exemplarily shown in [15], the motility mode

remains persistent in three dimensions and we expect a simi-

lar robustness of the instability. However, a quantitative

comparison of critical parameters, as well as comparisons

with fluid flow measurements of moving cells will require

computational intensive three-dimensional simulations.
2. Mathematical model
The used model is an extension of the considered approach in

[15] and provides a generic route to study individual pro-

cesses leading to cell motility. We will focus here on

myosin–actin interactions as a source for cell motility. We

review the equations and highlight the modifications.
2.1. Energy
We consider the free energy of the system

E(P; f; u) ¼ EP þ ES þ Ekin (2:1)

which consists of the energy of the filament network EP in the

cytoplasm of the cell Vcp(t), described by an orientation field

P, which is the mesoscopic average orientation of the actin

filaments, the surface energy ES of the cell membrane G(t),
described by a phase-field variable f and the kinetic energy

Ekin inside and outside of the cell, characterized by the

velocity u. For the sake of simplicity, we consider in the deri-

vation equal density r and viscosity h for the cytoplasm and

the fluid outside Vout(t), which is considered as an isotropic

Newtonian fluid, so that

Ekin ¼
r

2

ð
V

u2 dx; (2:2)

with V ¼ Vcp(t) < G(t) < Vout(t).
The phase-field variable is chosen, such that f � 1 in the

cytoplasm and f � 21 in the fluid outside. The cell mem-

brane is implicitly defined by the zero level set of f. In

[15], the cell has been considered as a droplet for which the

surface energy reads

ES;CH ¼
3s

2
ffiffiffi
2
p
ð
V

1

2
jrfj2 þ 1

1
W(f)dx; (2:3)

where W(f ) ¼ (1/4)(f2 2 1)2 denotes the double-well poten-

tial, 1 determines the interface thickness and s is the surface

tension. We here also take bending energy of the cell mem-

brane into account and use the Helfrich [18], or modified

Willmore energy in a phase-field approximation [19,20]

ES;W ¼
3bN

4
ffiffiffi
2
p
ð
V

1

21
1Df� 1

1
(f2 � 1)(fþ

ffiffiffi
2
p

H01)

� �2

dx; (2:4)

where bN denotes the bending rigidity and H0 the spontaneous

curvature. We will set H0 ¼ 0 for simplicity. If 1 tends to zero

ES,CH! s
Ð
G ds [21] and ES,W! bN

Ð
G(H 2 H0)2 ds [22] with H

the mean curvature. We will consider the combination of both

surface energies

ES ¼ ES;CH þ ES;W; (2:5)

for which G-convergence for 1! 0 was shown in [23].

The energy of the filament network is given by [15]

EP ¼
ð
V

k
2
(rP)2 þ c0

4
jPj2ð�2fþ jPj2Þ þ b0P � rf dx: (2:6)

The gradient term with the positive Frank constant k is a sim-

plification of a general distortion energy formulation from the

theory of liquid crystals, with the assumption of the same

value of the stiffness associated with splay and bend defor-

mations (e.g. [24]). Linking f to the second term allows

restriction of P to the cytoplasm: if f , 0, the minimum is

obtained for jPj ¼ 0 and thus the term does not contribute to

the energy, and for f . 0 the term forms a double-well with

two minima with jPj ¼ 1 and the form specified by the

parameter c0. The last term in equation (2.6) guarantees for

b0 . 0 that P points outwards in normal direction to the cell

boundary. This is expected to be of relevance for polymeriz-

ation and depolymerization of actin filaments and used in

[1,8,25], but for the motility mode considered here a strong

preference of the orientation of P at the cell boundary cannot

be seen. In [15], it is argued that small b0 values can resemble

the effect of a weak external field. We will therefore consider

both cases b0 ¼ 0 and 0 , b0� 1 as in a more general

approach with a combination of myosin–actin interactions

and treadmilling b0 . 0 will be required anyhow. Figure 1

provides a schematic picture of the used variables.

Before we introduce the governing equations, we consider

the energies in a non-dimensional form. We consider the

characteristic values for space x ¼ Lx̂; velocity u ¼ Uû and

energy E ¼ hUL2Ê; with characteristic length L, characteristic

velocity U and fluid viscosity h. This yields a timescale

t ¼ ðL=UÞ̂t and a pressure p ¼ ðhU=LÞp̂: We further define

the constants c1 ¼ (c0L2/k) and b ¼ (b0L/k) and the

dimensionless quantities:

— Reynolds number Re ¼ rUL=h
— capillary number Ca ¼ (2

ffiffiffi
2
p

=3)(hU=s)

— bending capillary number Be ¼ (4
ffiffiffi
2
p

=3)(hUL2=bN)

— a polarity number Pa ¼ (hUL/k)

— an active force number Fa ¼ (hU/zL),

http://rsif.royalsocietypublishing.org/
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Figure 1. (a) Schematic description for a moving cell. Shown is the splayed orientation field P in a motile steady state, with constant velocity vcell as well as the
streamlines of the velocity profile u and the phase-field f with the cell membrane G(t) corresponding to the zero-level set of f. (b) The orientation field serves as
a model for the average aligned microscopic actin filaments which are connected by myosin motors. (Online version in colour.)
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where z . 0 describes a contractile and z , 0 an extensile

stress. Dropping the �̂ notation, we obtain the energies in a

non-dimensional form

EP ¼
1

Pa

ð
V

1

2
(rP)2 þ c1

4
jPj2ð�2fþ jPj2Þ þ bP � rf dx;

ES ¼
1

Ca

ð
V

1

2
jrfj2 þ 1

1
W(f)dx

þ 1

Be

ð
V

1

21
1Df� 1

1
(f2 � 1)f

� �2

dx

and Ekin ¼
Re
2

ð
V

u2 dx:

which are used in the following.

2.2. Governing equations
The equations are based on [15]. We denote the variational

derivative or chemical potential of the orientation field

and the phase field by P\ ¼ dE=dP and f\ ¼ ðdE=dfÞ;
respectively.

2.2.1. Orientation field equation
The orientation field equation considers a polar liquid crystal

theory combined with generalized hydrodynamics, see

[26,27] and [28–30] for a review, and is given by

@tPþ (u � r)PþV � P ¼ jD � P� 1

k
P\; (2:7)

where the left-hand side is the co-moving and co-rotational

derivative where the vorticity tensor defined as V ¼ (1=2)

(ru` �ru) takes rotational effects from the flow field into

account, where ru ¼ (@jui)(i;j): The deformation tensor

D ¼ (1=2)(ruþru`) and the non-dimensional constant j

relates the coupling between the orientation field and the

flow field and describes the alignment on P with the flow,

where j . 0 for rod-like and j , 0 for oblate cells. Further-

more, k ¼ hrot/h is a scaling factor between rotational and
dynamic viscosity. The non-dimensional chemical potential

reads

P\ ¼ 1

Pa
ð�c1fPþ c1P2P� DPþ brfÞ: (2:8)
2.2.2. Phase-field equation
We consider the phase field as an implicit representation of

the cell surface and consider a regularized advection equation

for the phase-field variable f with the advected velocity

given by the fluid velocity u. The introduced diffusion

term is scaled with a small mobility coefficient g . 0. The

evolution equation reads

@tfþr � (uf) ¼ gDf\; (2:9)

with non-dimensional chemical potential

f\ ¼ dEP

df
þ dES

df
; (2:10)

with

dEP

df
¼ 1

Pa
ð�c1jPj2 � br � PÞ; (2:11)

which describes the influence of the orientation field and

dES

df
¼ 1

Be
c� 1

Ca
m; (2:12)

which accounts for the bending and surface tension effects

with

m ¼ 1Df� 1

1
(f2 � 1)f (2:13)

and

c ¼ Dm� 1

12
(3f2 � 1)m (2:14)

introduced to write the higher-order equation for f as a

system of second-order equations for f, m, c.

http://rsif.royalsocietypublishing.org/


Table 1. Material parameters of the system. For the given values, we
obtain the following characteristic numbers Ca ¼ 0.1, Be ¼ 0.3, Pa ¼ 1,
Fa ¼ 1 and Re ¼ 5�10213.

symbol description value

L characteristic length 1026 m

U characteristic velocity 1026 m s21

r fluid density 103 kg m23

h dynamic viscosity of the fluid 2 � 103 Pa s

s surface tension 0.0188 N m21

bN bending rigidity 1.26 � 10214 N m

k Frank constant 2 � 1029 N [15,24]

j shape factor 1.1 [15]

hrot rotational viscosity 3.3 � 103 Pa s [15]

z activity parameter 2 � 103 N m22 [17]

1 boundary layer parameter 0.21

g mobility 0.025

c1 double-well parameter for P 5

b forcing normal direction of P at

interface

0, 0.005, 0.05
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2.2.3. Flow equations
The physics of the flow are described by the Navier–Stokes

equations

Re(@tuþ (u � r)u)þrp ¼ r � s
r � u ¼ 0; (2:15)

with hydrodynamic stress tensor s ¼ sviscous þ sactiveþ
sdist þ sericksen: The viscous stress is

sviscous ¼ D: (2:16)

The active stress is

sactive ¼
1

Fa
~fP� P; (2:17)

which describes the phenomenologically introduced activity

[28,31], with ~f ¼ 0:5(fþ 1) denoting the rescaled phase-

field function, which serves as an approximation of a charac-

teristic function for Vcp(t), with ~f � 1 in Vcp(t) and ~f � 0 in

Vout(t). The third term, which describes the stress coming

from the distortions of the filaments, reads

sdist ¼
1

2
(P\ � P� P� P\)þ j

2
(P\ � Pþ P� P\): (2:18)

For the Ericksen stress, we consider the divergence to be

defined through

r � sericksen ¼ f\rfþrPT � P\; (2:19)

which describes the stress coming from the cell surface as well

as from the filaments as a result of their energy minimizing be-

haviour [32,33]. This term also follows for the considered case

ES ¼ ES,CH from the explicit form used in [15].

2.2.4. Initial and boundary conditions
We consider a cell in a canal and take a rectangular domain

V. We assume periodic boundary conditions on the left and

right boundary for all variables. At the upper and lower

boundary, we use homogeneous Neumann boundary con-

ditions: rP � n ¼ rP\ � n ¼ 0 and rm � n ¼ rc � n ¼ 0 as

well as Dirichlet boundary conditions u ¼ 0 and f ¼ 21.

The initial condition for f is the implicitly described initial

cell shape f ¼ tanh (r=(
ffiffiffi
2
p

1)); with r the signed distance

function to the membrane G(0) and for P we apply an equal

aligned filament network P ¼ (P1; P2)` þ d; where d is a

vector-valued random number generated following an uni-

form distribution on the interval [20.05, 0.05] in order to

break the symmetry. For all simulations, we start with a cir-

cular cell with the radius R ¼ 5 which is placed in the

centre of V ¼ [0, 160] � [0, 40]. The initial condition for the

orientation field is P ¼ (1; 0)` þ d:

2.2.5. Material parameters
We consider the following material parameters, see table 1,

which are adapted from [7,15] and the references therein.

The low Reynolds number allows the flow equation to be

restricted to a Stokes system.

2.2.6. Analytical results and numerical treatment
Neglecting all active terms, the proposed system of equations

fulfil thermodynamic consistency. This is shown in appendix

A. If we further neglect the orientation field (P ¼ 0), the

model reduces to a phase-field approximation used for

vesicle–fluid interactions (e.g. [34–36]). Further neglecting
the bending forces by considering only ES ¼ ES,CH, we

obtain ‘Model H’ in the classification of Hohenberg &

Halperin [37]. If e tends to zero, this special case converges

to a two-phase flow problem with a jump condition for the

fluid stress tensor �pI þ D and a continuity condition for

the fluid velocity u at the interface (e.g. [38]). Even if this

analysis cannot easily be carried over to the full system, the

last condition is expected to hold and thus guarantees that

fluid cannot flow through the membrane.

The system of partial differential equations is discretized

using the parallel adaptive finite-element toolbox AMDiS

[39,40]. We further explore an operator splitting approach,

allowing the subproblems of the flow field, the orientation

field and the phase-field evolution to be solved separately

in an iterative process. In time, a semi-implicit discretization

is used, which, together with an appropriate linearization of

the involved nonlinear terms, leads to a set of linear systems

in each time step. Details are described in appendix B.
3. Simulations
3.1. Motility due to contractile and extensile stress
As in [15], motility can be achieved by means of a spontaneous

splay deformation. It is a two-stage process, with an elongation

of the cell as a consequence of a quadrupolar straining flow

resulting from the active stress tensor sactive: The elongation

stops, if the surface forces characterized by Ca and Be balance

the active stress. The orientation field P, which remains rather

uniform during the elongation, starts to fluctuate, which

induces a shear flow parallel to the orientation field and a

spontaneously splay instability. The splayed configuration

breaks the axial symmetry of the system and transforms the

quadrupolar flow in a dipolar flow with two large vortices

running across the cell, which has an influence on the cell

http://rsif.royalsocietypublishing.org/
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Figure 2. Cell movement for contractile stress, movement to the right: (a) shape of the cell at different times evolving from left to right. Shown is the magnitude
and the direction of the orientation field. (b) Velocity field in a laboratory frame with different maxima: juj ¼ 0:1, juj ¼ 0:12, juj ¼ 0:19 and juj ¼ 0:42,
which correspond to the cell speed vcell of 0, 0.016, 0.054 and 0.125 from left to right. (c) Velocity field of the co-moving frame, i.e. (u1 2 vcell,u2)T. The times t
shown are 100, 220, 250, 340, which correspond to seconds. The values used are from table 1 and we changed 1/Fa ¼ 1.125 and take b ¼ 0 (no explicit forcing
for P to point outwards at the cell boundary).
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shape and causes the cell to move with constant shape and at

constant velocity along the symmetry axis (figure 2).

For completeness, we also demonstrate an example for

cell motility due to extensile stress. Here, the vortices are

reverse and the cell is stretched in the x1-direction. Together

with the active stress, which now generates a flow normal

to the filaments, a bend instability occurs, describing an

alignment of the filaments along the curved shape of the

cell. This results in a downward motion (figure 3). The only

modification needed to achieve this is 1/Fa ¼ 23/2.

The shape and the direction of both instabilities depend

on the initial conditions as well as small disturbances due

to external influences. Figure 4 shows the opposite splay

instability (first row) and the opposite bend instability

(second row). Although the cell moves in the contrary

direction, the velocity profile has a similar shape as before.

All these results qualitatively agree with Tjhung et al. [15].

We now turn to more quantitative comparisons and test the

robustness of the instabilities.
3.2. Onset of motility
In any case, motility is only possible if the strength of the

myosin–actin interactions exceeds a critical value. We

obtain a critical activity parameter 1/Facrit � 0.75. Below 1/

Facrit, no instability occurs and the cell does not move. This

is at least the case for b ¼ 0 and in qualitative agreement

with [15]. The bending capillary number Be does not influ-

ence the behaviour within the considered parameter

regime. However, a quantitative comparison with the results

in [15], where 1/FAcrit � 0.5 is measured, cannot be achieved

as not all parameters used in [15] are known and the critical

value turns out to be highly sensitive to various parameters,

which will be analysed below. Figure 5 shows the upper
branch of the bifurcation diagram separating a stationary

state from a splayed and moving state by plotting the con-

stant velocity of the cell. For b . 0, the transition to a

immotile cell is smoothed out. We no longer have a sharp

transition and observe motility also below 1/Facrit, again in

agreement with [15].

The onset of the instability and the time required to reach

a constant shape moving with constant velocity depends on

the used parameters. The stronger the myosin–actin inter-

actions, the faster this shape is reached. This effect is most

pronounced for b ¼ 0 and decreases for b . 0. The time to

reach a constant shape moving with constant velocity also

depends on membrane properties of the cell. While the bend-

ing capillary number Be only plays a minor role in the

considered parameter regime, the influence of the capillary

number Ca is significant. The smaller the surface tension,

the longer it takes to reach the desired shape. Again, this

effect is less pronounced for b . 0.
3.3. Convergence tests
All obtained results are very sensitive to various parameters.

The motility results from a splay or bend instability, which,

for example, is heavily influenced by the elasticity of the fila-

ment network, related to the Frank constant k, which is here

carefully chosen together with other physical parameters to

observe the instability. Due to this sensitivity on the physical

parameters, we would like to consider the influence of

numerical parameters on the described phenomena.

We consider convergence tests. As we are primarily inter-

ested in cell motility, we first consider a parameter regime for

which our cell becomes motile and moves with a constant

shape and constant velocity. We consider the case of contrac-

tile stress and thus, movement in horizontal direction. We use

http://rsif.royalsocietypublishing.org/
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Figure 3. Cell movement for extensile stress, movement downwards. (a) Shape of the cell at different times evolving from left to right. Shown is the magnitude and
the direction of the orientation field. (b) Velocity field in a laboratory frame with different maxima: juj ¼ 0:117, juj ¼ 0:138, juj ¼ 0:266 and juj ¼ 0:73,
which correspond to the cell speed vcell of 0, 0.02, 0.07 and 0.16 from left to right. (c) Velocity field in a co-moving frame, i.e. (u1 2 vcell,u2)T. Note that bend
instabilities generate a moving direction normal to the initial direction of the orientation field. The times t shown are 10, 80, 100, 170, again corresponding to
seconds. The parameters are the same as in figure 2.
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Figure 4. Opposite instabilities: depending on the initial conditions as well as on the external effects the splay instability (a) and bend instability (b) draw a
different pattern (left) and the cell moves in the opposite direction, to the left and upwards, respectively.
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shape and velocity for validation and measure the following

quantities:

— the x1-coordinate of the centre of mass,

xcm ¼
1

jVcpj

ð
Vcp

x1 dx;

x ¼ (x1; x2)` and jVcpj ¼
ð
Vcp

1 dx;
— the mean velocity of the cell

ucell ¼
1

jVcpj

ð
Vcp

u1 dx;

— as an average of the x1-component of the velocity in Vcp,

where u ¼ (u1; u2)`; and

— the circularity of the cell, which is defined as the quotient

of the perimeter of an area-equivalent circle and the

http://rsif.royalsocietypublishing.org/
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Figure 5. Bifurcation diagram showing the symmetry breaking from a stationary state to a splayed and moving state for increasing 1/Fa. For 1/Fa , 1/Facrit, the cell
remains stationary and for 1/Fa . 1/Facrit, the cell is moving, shown is the absolute value of vcell. This transition is smoothed out for b . 0. The inlet shows both
branches of the diagram with opposite velocities which occur only for the case b ¼ 0. (Online version in colour.)

Table 2. Relative error norms and convergence orders for critical parameters, upper part b ¼ 0 and lower part b ¼ 0.05.

1

centre of mass xcm cell velocity vcell circularity ccell

kek2 ROC kek2 ROC kek2 ROC

b ¼ 0 0.42 0.0600 0.3988 0.0398

0.30 0.0177 3.5298 0.1659 2.5316 0.0314 0.6823

0.21 0.0047 3.8355 0.0787 2.1516 0.0179 1.6157

0.15 0.0028 1.4912 0.0273 3.0575 0.0061 3.1225

b ¼ 0.05 0.42 0.0569 0.2575 0.0430

0.30 0.0298 1.8715 0.1302 1.9691 0.0316 0.8921

0.21 0.0129 2.4195 0.0511 2.6938 0.0174 1.7122

0.15 0.0025 4.7328 0.0095 4.8514 0.0059 3.1431
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perimeter of the cell

ccell ¼
2

B(f)

ð
Vcp

p dx

 !1=2

;

where B(f ) is the perimeter of the cell.

We used absolute values for all quantities and the following

error norm: kek2 ¼ ((
P

Ijqt,ref 2 qtj2)/(
P

Ijqt,refj2))1/2, where qt is

the temporal evolution of quantity q. The solution on the

finest grid serves as reference solution qt,ref. Table 2 shows the

relative error norms as well as the relative order of convergence

(ROC) for the desired quantities if 1 is reduced. We consider

two cases b ¼ 0 and b ¼ 0.05. Together with 1, we also refine

the mesh size to guarantee the same number of grid points

within the diffuse interface layer for all simulations and the
time step to ensure the same relation between mesh size and

time step. The time interval is I¼ [0, 500]. Other parameters

are obtained from table 1. We see essentially first-order conver-

gence, the higher numbers in ROC are probably due to

fortunate circumstances. Figure 6 show the shape and position

for various 1, visualizing the convergence and confirming the

choice of 1 ¼ 0.21 for the previous and further studies.

The second test considers the onset of motility. How sen-

sitive is the obtained critical parameter 1/Facrit on 1? The

relation is shown in figure 7. A deeper analysis of the inter-

face profile, as shown for a one-dimensional cut of a cell in

figure 8 explains this dependency as jPj is slightly more

smeared out than f. This has an influence on the active

stress sactive: Its divergence is reduced at the interface for

increasing 1 and therefore a larger activity is needed to

initiate the instability.

http://rsif.royalsocietypublishing.org/
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3.4. Influence of different viscosities
Up to now we have considered equal density and viscosity

for the cytoplasm and the fluid outside. The model can

easily be extended to relax this restriction. We hereby

follow a typical extension of ‘Model H’, taking r ¼ r (f )

and h ¼ h (f ). As shown in [41], the results for this approach

are comparable to other more advanced approaches. In the

following, we only consider variations in h and define

sviscous ¼ ~h(f)D with an appropriate function ~h(f) inter-

polating between hout and hcp, which are rescaled

dimensionless numbers corresponding to the viscosity in the

fluid outside and the cytoplasm, respectively. Figure 9 shows

the dependency of 1/Facrit on the values of hout and hcp.
Decreasing the viscosity, but keeping both values equal,

leads to a reduction of the required activity for motility, but

increasing the viscosity in the cytoplasm and keeping the vis-

cosity in the outside fluid constant, in all cases, leads to an

increase of the required activity. This can be explained by

http://rsif.royalsocietypublishing.org/
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the necessity to induce a characteristic flow pattern in Vcp to

induce the instability, which becomes harder to achieve for

larger viscosities.

The viscosity also has an influence on the cell velocity. The

reached stationary velocity vcell increases if hout is reduced. For

more realistic parameters, with an even larger ratio of hout/hcp,

we thus expect faster moving cells. The slope of the

corresponding bifurcuation branch, as in figure 5, above

1/Facrit is reduced if hcp is increased. The sharp transition

to motility for b ¼ 0 and the smoothed out transition for

b . 0 remain.
4. Discussion
We already emphasized that this model describes cell motility

without adhesion. Can we relate the motility mode to any

freely swimming microorganism? In order to answer this

question, we first compare the induced flow field with theor-

etical predictions for a squirmer model ([42,43] and e.g. [44]).

The surface tangential velocity for a circular squirmer in a

co-moving frame in polar coordinates is given by

uT;squirmer ¼ n1( sinaþm sin 2a); (4:1)

where n determines the velocity of the cell, whereas m ¼ n2/n1

defines whether the swimmer is a pusher (m , 0), a

puller (m . 0) or a neutral (stealth) swimmer (m ¼ 0), and a

is the angle between the swimmers fixed swimming axis

and the vector pointing to the surface. Figure 10 shows the

surface tangential velocity for different swimmers, where

we choose n1 ¼ 0.15 as well as m ¼ 0 (stealth), m ¼ 0.5

(puller) and m ¼ 20.5 (pusher). The profiles significantly

differ with the extrema in that part of the swimmer, which is

responsible for the motion. In case of a puller, it is the cell

front (0 , a , p/2) and (3p/2 , a , 2p), whereas as the

pusher is driven by the rear, so the extrema appear for

(p/2 , a , 3p/2). For a neutral swimmer, the extrema are

at p/2 and 3/2p.

We now compare these results with our simulations. We

therefore extract the surface tangential velocity in the co-

moving frame from our simulations. We use a contractile
stress and consider uT ¼ (u1 � vcell; u2)`jf(x;~t)¼0 for ~t . 0

such that the stationary profile and velocity is reached.

Figure 11 shows the profile for various parameters 1/Fa and

b ¼ 0.05. In comparison with the analytical results, we find

puller dynamics for 1/Fa � 0.5, similarities to neutral swim-

mers for 1/Fa ¼ 0.75 and pusher dynamics for 1/Fa 	 1. For

b ¼ 0, we qualitatively obtain the same results for 1/Fa 	 1/

Facrit and thus only pusher dynamics. The corresponding vel-

ocity profiles from the squirmer model are obtained from a

data fit (figure 11): n1 ¼ 0.086, m ¼ 0.357 (puller), n1 ¼ 0.172,

m ¼ 0.059 (neutral) and n1 ¼ 0.291, m ¼ 20.139 (pusher),

respectively. Although we are comparing results for nearly cir-

cular shapes, see figure 12 for the corresponding stationary

profiles, with that from analytic results for circular shapes,

we observe a reasonable agreement.

The analytical flow field of a circular squirmer particle

can be described by a superposition of a uniform background

velocity, in our case, the constant velocity of the moving cell

vcell, a Stokeslet, a stresslet and a source doublet. In [45], this

is used to identify typical experimental flow fields. We here

consider the same approach and use the velocity field of a cir-

cular cell with centre of mass xcm ¼ (0; 0)` in a co-moving

frame, given by

v(r) ¼ �vcelle1 �
Ast

r
(Iþ r � r)e1 �

Astr

r2
1� 3

x1

r

� �2
� �

r

� Asd

r3

I

3
� r � r

� �
e1; (4:2)

where r ¼ x=r is the polar axis, scaled with the distance

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

q
, e1 the unity vector in x1-direction and I the

identity matrix. We prepared our numerical solution:

u ¼ (u1 � vcell; u2)T , x ¼ (x1 � xcm; x2 � ycm)T and claim

ju� vj ! min outside the circular cell shape with radius

R ¼ 5 to determine vcell, Ast, Astr and Asd. Table 3 shows the

parameters obtained from the data fit. For 1/Fa ¼ 0.5, the

stresslet parameter Astr is negative which indicates a puller-

like velocity profile and for 1/Fa ¼ 1, Astr is positive, indicat-

ing a pusher-like velocity profile. For 1/Fa ¼ 0.75, the data fit

suggests a low puller-like velocity profile. However, we

should keep in mind that we compare velocity profiles of a

circular and a non-circular shape. This discrepancy can be
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Table 3. Optimal parameters for background velocity vcell, the Stokeslet Ast,
the stresslet Astr and the source doublet Asd obtained from a data fit with
the numerical solution.

1/Fa vcell Ast Astr Asd

0.50 0.0294 0.0387 20.3541 12.5882

0.75 0.0701 0.0872 20.1744 28.8854

1.00 0.1089 0.1460 0.3910 47.3611
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seen by analysing the relative error ju� vj=vcell between the

numerical results and the fitted analytical solution

(figure 13). The maximum of the error appears at the part

of the cell where it is compressed and does not overlap

with the circular shape.
Even if a transition from puller-like to pusher-like

dynamics can be observed for increasing actin–myosin inter-

actions, the flow characteristics are much less developed than

in typical squirmer models [44] and are dominated by the

Stokeslet contribution. Within the analytical treatment of a

circular droplet in [17], it was found that the droplet behaves

like a puller. However, for the small splay considered,

the corresponding flow field is not sufficient for motility

and it is the quadrupole moment that characterizes the

motility mechanism, resembling the motility mechanism of

a squirmer. This is consistent with our findings for low 1/Fa.

In [45], the same fitting approach is used to analyse the

flow topology for swimming microorganisms, such as

Cloamydomonas reinhardtii and Volvox carteri. Here, the flow

is also strongly dominated by the Stokeslet contribution

and puller-like dynamics are only mildly developed.
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However, for a quantitative comparison of our results with the

flow fields of such microorganisms, or that of bacteria, which

typically show pusher-like dynamics, more experimental data

are required. It would be interesting to investigate how predic-

tions of the considered model in three dimensions compare

with such measured flow fields in the future.
5. Conclusion
We here review and extend a proposed generic model for cell

motility [15], which is based on spontaneous symmetry

breaking in active polar gels. It models the interaction of

myosin and actin as the driving mechanism for motility

and does not require adhesion. The model is extended to

include further membrane properties, in particular bending

properties, which, however, turn out to be of minor relevance

for motility in the considered parameter regime. Detailed

numerical studies are performed and convergence studies

considered to demonstrate the stability of the used algorithm,

which is based on a phase-field description. The results

clearly indicate the independence of the physical instabilities,

the splay or bend instability, which are responsible for cell

motility in the considered model, and possible numerical
instabilities and show the robustness of the motility mode.

With this confidence in the model and the developed numeri-

cal algorithm, the results are compared with model and

experimental data for swimming microorganisms. Within

certain parameter regimes a transition from puller-like to

pusher-like dynamics can be found for increasing myosin–

actin interactions, demonstrating the generic properties of

the model. A quantitative comparison with swimming micro-

organisms is not yet possible and besides the lack of available

experimental data, requires three-dimensional simulations

and probably further model extension. One possible way to

extend the model is a combination of the myosin–actin inter-

actions with the treadmilling process of actin polymerization

and depolymerization, described in the introduction. How-

ever, qualitative similarities with generated flow fields of

microorganisms, such as V. carteri could already be found.

The simulated flow field as well as the measured flow field

is dominated by the Stokeslet contribution. In [45], it is

argued that this behaviour will have an effect on the rheology

of suspensions of such microorganisms. With these proper-

ties, suspensions of our modelled cells would probably

behave more like suspensions of sedimenting particles, as

higher-order moments are negligible in flow fields domi-

nated by the Stokeslet contribution. However, if this

http://rsif.royalsocietypublishing.org/
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assumption holds, or the weakly developed puller- or

pusher-like dynamics in the considered model are already

sufficient to observe typical phenomena in active fluids, as,

for example, phase separation, have to be tested.
 lsocietypublishing.org
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Appendix A

A.1. Thermodynamic consistency
Without the active terms, the proposed system of equations is

thermodynamically consistent. To show this, we consider

_E(P;f;u) ¼ _EP þ _ES þ _Ekin

¼
ð

P\ � @tPþ f\@tfþ u � Re @tu dx; (A 1)

with

@tP ¼ �(u � r)P�V � Pþ jD � P� 1

k
P\; (A 2)

@tf ¼ �r � (uf)þ gDf\ (A 3)

and Re @tu ¼ �Reðu � rÞu�rp
þr � ðsviscous þ sdist þ sericksenÞ;

(A 4)

which yields

_EðP;f;uÞ¼
ð

P\ � ð�ðu �rÞP�V �PþjD �P� 1

k
P\Þdx

þ
ð
f\ð�r� ufð ÞþgDf\Þdx

þ
ð

u � ð�Reðu �rÞu�rp

þr�ðsviscousþsdistþsericksenÞÞdx

¼
ð
�1

k
jP\j2�gjrf\j2dx ðpartial integrationÞ

þ
ð

u � �rP` �P\�f\rfþr�sericksen

� �
dx

ðuser�u¼ 0Þ

þ
ð
ru :

1

2
P\�P�1

2
P�P\þ j

2
P\�P

þ j

2
P�P\�sdist

0
BB@

1
CCAdx

ðpartial integration; definitionfor

V¼ 1

2
ðru`�ruÞandD¼ 1

2
ðruþru`ÞÞ

þ
ð
�jruj2dx

ðpartial integration; user�u¼ 0andsviscous¼DÞ
� 0;

where we have used the definition for r � sericksen and sdist,

which show that the integrals involving these terms vanish,

and the identity u � (r � u) ¼ r(juj2)� (u � r)u from

which follows that
Ð

u � ð�Reðu � rÞuÞ ¼ 0.
Appendix B. Numerics
The system of partial differential equations is discretized using

the parallel adaptive finite-element toolbox AMDiS [39,40].
B.1. Time discretization
We split the time-interval I ¼ [0, T ] into equidistant time

instants 0 ¼ t0 , t1 , . . . and define the time steps t : ¼

tnþ1 2 tn. Of course, adaptive time steps may also be used.

We define the discrete time derivative dt . nþ1: ¼ ( . nþ1 2 . n)/

t, where the upper index denotes the time-step number and,

for example, fn: ¼ f (tn) is the value of f at time tn. In each

time step, we solve:

(1) the flow problem for unþ1 and pnþ1:

�Dunþ1 þr pnþ1 ¼ f\nrfn þrPTn � P\n

þ 1

Fa
r � ð~fn

Pn � PnÞ

þ 1

2
r � ðP\n � Pn � Pn � P\nÞ

þ j

2
r � ðP\n � Pn þ Pn � P\nÞ;

r � unþ1 ¼ 0:

(2) The orientation field for Pnþ1:

dtP
nþ1þðunþ1 �rÞPnþ1¼�Vnþ1 �Pnþ1

þjDnþ1 �Pnþ1�1

k
P\nþ1

;

P\nþ1¼ 1

Pa
ð�c1f

nPnþ1þc1ððPnþ1Þ2Pnþ1ÞÞ

þ 1

Pa
ðDPnþ1þbrfnÞ;

where we linearize (Pnþ1)2Pnþ1 ¼ (Pn)2Pnþ1 þ 2(Pn � Pn)

Pnþ1 � 2(Pn)2Pn:

(3) The phase-field evolution for fnþ1,mnþ1,cnþ1:

dtf
nþ1 þr � (unþ1fnþ1) ¼ gDf\nþ1

;

f\nþ1 ¼ 1

Be
cnþ1 � 1

Ca
mnþ1

� 1

Pa
(c1jPnþ1j2 þ br � Pnþ1);

mnþ1 ¼ 1Dfnþ1 � 1

1
((fnþ1)2 � 1)fnþ1;

cnþ1 ¼ Dmnþ1 � 1

12
(3(fnþ1)2 � 1)mnþ1;

where we again linearize the nonlinear terms by a Taylor

expansion of order one, e.g. ((fnþ1)2 2 1)fnþ1 ¼ ((fn)2 2

1)fn þ (3(fn)2 2 1)(fnþ1 2 fn).

B.2. Fully discrete finite-element scheme
The fully discrete finite-element scheme follows in a straight-

forward manner. A P2/P1 Taylor–Hood element is used for

the Stokes problem, all other quantities are discretized in

space using P2 elements. The obtained linear system, for

which the direct unsymmetric multifrontal method UMF-

PACK is used, is solved in each time step. We use an

adaptively refined triangular mesh Th with a high resolution
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along the cell membrane to guarantee at least five grid points

across the diffuse interface as well as a high resolution within

the cytoplasm to appropriately resolve the orientation field.

The criteria to refine or coarsen the mesh is purely geometric

and related to the phase-field variable f. Due to the use

of adaptivity, we need to interpolate the old solution

defined on T n
h onto the new mesh T nþ1

h : To do this without

violating the conservation of cell volume, we solve
kfn;old; ul ¼ kfn;new; ul in every adaption step, with u and

fn;new defined on T nþ1
h and fn,old on T n

h : We use a multi-

mesh strategy [46] to virtually integrate the first term on

the finest common mesh T n
h < T nþ1

h ; which guarantees a

constant cell volume as long as time steps are appropriately

chosen. We require the interface not to propagate over a

whole element within one time step. With this restriction,

all numerical tests show that
Ð
V
f dx is conserved.
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