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We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions.
The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory
with particulate flow approaches and is derived in detail and related to other dynamic density
functional theory approaches with hydrodynamic interactions. The derived system is numerically
solved using adaptive finite elements and is used to analyze colloidal crystallization in flow-
ing environments demonstrating a strong coupling in both directions between the crystal shape
and the flow field. We further validate the model against other computational approaches for
particulate flow systems for various colloidal sedimentation problems. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4918559]

I. INTRODUCTION

Simple fluids can be coarse grained, considered as a con-
tinuum and very well described by the Navier-Stokes equa-
tions. A quantitative description can be achieved down to the
nanometer scale. For colloidal suspensions, this simple treat-
ment is not necessarily valid any more. Here, colloidal parti-
cles, with a typical size range of nanometers to a few microns,
move due to collisions with the solvent molecules, interact with
each other and induce flow fields due to their motion. It is
shown that these hydrodynamic interactions are of relevance in
various practical applications, e.g., colloidal gelation1 or coag-
ulation of colloidal dispersions.2 To calculate nonequilibrium
properties of such systems, it requires to resolve the different
time and length scales arising from thermal Brownian motion
and hydrodynamic interactions. Various approaches have been
developed to consider these interactions in an effective way.
For an overview and proposed coarse-graining descriptions,
see e.g., Ref. 3.

One of the most popular approaches is Stokesian dy-
namics (SD) within the low Reynolds number limit.4 The
hydrodynamic interaction is thereby incorporated in an approx-
imate analytical form, assuming to result as the sum of two-
body interactions. The approach is difficult to implement
for complex boundary conditions and is relatively expensive.
As an alternative, direct numerical simulations are proposed,
which involve determining fluid motion simultaneously with
particle motion. In these methods, the colloidal particles are
fully resolved and coupled with the Navier-Stokes equations,
leading to coupled discrete-continuous descriptions. Other
discrete and hybrid models are, e.g., the (smoothed) dissipative
particle dynamics model,5–7 the fictitious domain/immersed
boundary method,8,9 and the Lattice Boltzmann-molecular
dynamics method.10–12 A short review and comparison of such
models is given in Ref. 13.

Our aim is to derive a fully continuous system of equations
from such hybrid models. This has the advantage of an efficient
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numerical treatment, the possibility of a detailed numerical
analysis, and it offers a straight forward coupling with other
fields. The model will serve as a general continuum model for
colloidal suspension, providing a quantitative approach down
to the length scale set by the colloidal particles and it is oper-
ating on diffusive time scales. The approach will be derived
by combining ideas from: (a) dynamic density functional
theory (DDFT) and (b) hybrid discrete-continuous particulate
flow models. We will test the derived system for colloidal
crystallization in flowing environments and for colloidal sedi-
mentation.

A. Dynamic density functional theory approach

The aim of the DDFT approach is to provide a reduced
model that describes the local state of a colloidal fluid by the
time averaged one-particle density. The evolution of this den-
sity is driven by a gradient-flow of the equilibrium Helmholtz
free-energy functional. A first realization of a DDFT for
colloidal fluids is presented in the work of Marconi and Tara-
zona14 with colloids modeled as Brownian particles. Later, this
theory has been extended by Archer15 and has been connected
to the equations of motion from continuum fluid mechanics.
Rauscher16 described an advected DDFT, to model colloids in
a flowing environment, that do not interact via hydrodynamic
interactions. The work of Goddard et al.17 incorporates the
effect of inertia and hydrodynamic interactions between the
colloidal particles, and recently Gránásy et al.18 have explored
a coarse-grained density coupling of DDFT and the Navier-
Stokes equations.

We start the derivation of our model with the dynamical
equations derived by Archer.15 Therefore, we introduce the
one-particle (number) density ϱ(r, t) and the average local
velocity v(r, t) of the colloidal particles. The density is driven
by a continuity equation

∂tϱ + ∇ · (ϱv) = 0, (1)

with the current, expressed as ϱv, evolving by the dynamical
equation

0021-9606/2015/142(15)/154904/12/$30.00 142, 154904-1 © 2015 AIP Publishing LLC

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

141.30.70.34 On: Tue, 21 Apr 2015 07:18:51

http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
http://dx.doi.org/10.1063/1.4918559
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:simon.praetorius@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
mailto:axel.voigt@tu-dresden.de
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4918559&domain=pdf&date_stamp=2015-04-20


154904-2 S. Praetorius and A. Voigt J. Chem. Phys. 142, 154904 (2015)

mϱ (∂tv + (v · ∇)v + γv) = −ϱ∇ δFH[ϱ]
δϱ

+ η∆v, (2)

where m represents the mass of the particles, γ a dumping
coefficient,FH[ϱ] the equilibrium Helmholtz free-energy func-
tional, and η a viscosity coefficient.

We use a minimal expression for the free-energy, the
Swift-Hohenberg (SH) energy,19,20 in a dimensionless form

FH[ϱ(ψ)] ≃ Fsh[ψ] =


1
4
ψ4 +

1
2
ψ(r + (q2

0 + ∆)2)ψ dr̂,

(3)

with ϱ = ϱ̄(1 + (ψ + 0.5)), a parametrization of the one-parti-
cle density with respect to a reference density ϱ̄. The phenom-
enological parameter r is related to the undercooling of the
system and the constant q0 is related to the lattice spacing.
This functional arises by splitting the energy in an ideal gas
contribution and an excess free energy FH = Fid + Fexc, rescal-
ing and shifting of the order-parameter ϱ, expanding ideal
gas contributions in real-space, and the excess free energy
in Fourier-space and simplification by removing constant and
linear terms that would vanish in the dynamical equations. A
detailed derivation of the energy can be found in Refs. 21–23.

Inserting the density expansion and free-energy (3) into
(1) and (2), we get a system of dynamic equations for the den-
sity deviation ψ and the related non-dimensionalized averaged
velocity v̂,

∂tψ + ∇ ·
�(1.5 + ψ)v̂�

= 0, (4)

(1.5 + ψ) (∂tv̂ + (v̂ · ∇)v̂ + Γv̂)

=
1

Re
∆v̂ − 1

Pe
(1.5 + ψ)∇ δFsh[ψ]

δψ
. (5)

With respect to a length scale L and time scale L/V0, we have
the dimensionless variable v̂ = v/V0, and Peclet number Pe,
Reynolds number Re, and friction coefficient Γ given by

Pe =
3mV 2

0

kBT
, Re =

m ϱ̄LV0

η
, Γ =

γL
V0
,

with Boltzmann’s constant kB and temperature T . In Appen-
dix A, a detailed derivation of this dimensionless form of the
dynamical equations can be found.

In the overdamped limit, Γ ≫ 1, the velocity equation
reduces to an explicit expression that relates the velocity to the
chemical potential by

(1.5 + ψ)v̂ = − 1
ΓPe

(1.5 + ψ)∇ δFsh[ψ]
δψ

. (6)

Inserting (6) into (4) results in the Phase-Field Crystal (PFC)
equation20

∂tψ =
1
ΓPe
∇ ·

(
(1.5 + ψ)∇ δFsh[ψ]

δψ

)
, (7)

referred to as PFC1 model in Ref. 21.

B. Particulate flows

Typical approaches to simulate particulate flows on larger
length scales consider a Newton-Euler equation for each par-
ticle to describe their motion as a rigid body and combine

this with a Navier-Stokes solver for the flow around these
particles. Various numerical approaches have been proposed
to model this flow and the incorporation of a no-slip bound-
ary condition on the particle surfaces, see, e.g., Refs. 24–27.
Examples for numerical approaches are the fictitious domain
and the immersed boundary method. All these approaches use
the general idea to consider the particles as a highly viscous
fluid, which allows the flow computation to be done on a fixed
space region. The no-slip boundary condition on the particle
surface is thereby enforced directly or implicitly, depending on
the numerical approach. All these methods combine a contin-
uous description of the flow field with a discrete off-lattice
simulation for the particles.

Considering an incompressible fluid with viscosity η f

and constant fluid density ρ f , we can write the Navier-Stokes
equations for velocity u and pressure p of a pure fluid in a
dimensionless form,

∂tû + (û · ∇)û = −∇p̂ +
1

Re f
∇ ·

�
2(1 + η̃)D(û)� + F, (8)

∇ · û = 0, (9)

with length and time scale as above and the dimensionless
velocity field û = u/V0, the viscosity perturbation η̃ from the
expansion η f = η̄ f (1 + η̃), and the fluid Reynolds number Re f

and the dimensionless pressure p̂ given by

Re f =
ρ f LV0

η̄ f
, p̂ =

p
ρ fV 2

0

,

respectively. The expression D(û) gives the symmetric part of
the velocity gradient, i.e.,

D(û) = 1
2
(∇û + ∇û⊤)

and F defines a volume force.
As a reference model for colloidal suspensions, we con-

sider the fluid particle dynamics (FPD) model by Ref. 28. Here,
the particles are considered as a highly viscous fluid and the
velocities of the particles are extracted from the fluid velocity
u. The shape of the particles is constructed using a tanh-profile
with a specified radius and interface thickness and their centers
of mass interact via an interparticle potential. The approach can
also be seen as a modification of a classical “model H,”29,30

with a fluid and a particle phase and the driving force in the
Navier-Stokes equations governed by the interatomic poten-
tial. The approach again combines continuous and discrete
descriptions.

The motion of colloidal particles with positions ri(t) are
governed by the velocities vi(t) and the evolution of a flow field
u, where the colloidal particles are suspended in. The basic
idea is to introduce concentration fields φi(r, t) ∈ [0,1] for each
particle and to average the fluid velocity over regions with high
concentration, i.e.,

vi(t) =

φi(r, t)u(r, t) dr
φi(r, t) dr

.

Thus, the motion of the particles can be described by
ri(t + ∆t) B ri(t) + ∆t · vi(t), with∆t the simulation time step.

A space-dependent fluid viscosity η f , as a function of φi,
is introduced to describe the rigidity of the particles, and a
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force term F B F[ta] to account for the particle interactions in
flow equation (8). This force is chosen as the negative gradient
of an interaction potential V , multiplied with the particle-
concentration fields φi,

F[ta](r) def
= −


i

∇ri
�
j,i

V(∥ri − r j∥)�φi(r). (10)

The fluid viscosity η f = η̄ f (1 + η̃) is modeled, by describing
the viscosity perturbation η̃, as

η̃(r) =

i

� η̄p

η̄ f
− 1

�
φi(r), (11)

with η̄ f < η̄p the liquid and particle viscosity, respectively. In
Ref. 31, it is argued that the artificial diffusivity η̄p/η̄ f must
go to∞ for the particles to become rigid. In their method, they
have introduced a different body force to guarantee this rigidity
without taking large values of the viscosity ratio. However, we
will here only consider the original FPD approach.

C. Towards a fully continuous description

Our aim is to derive a fully continuous model by combin-
ing the FPD model with the PFC approach. A first step in this
direction has already been done in Ref. 32, where the interac-
tion potential has already been replaced by the PFC approach.
The discrete off-lattice simulation for the particles is no longer
needed; the particle positions and velocities result from the
advected PFC model. However, the forcing term in the Navier-
Stokes equations still requires the identification of the position
and velocity of each particle, and thus the approach still has
a discrete component. To derive a fully continuous model,
we will first clarify the relation of the different approaches
in Refs. 23, 28, and 32 and will show that all the discrete
coupling terms can be approximated with a simple continuous
expression.

To allow for a description of the flow of individual parti-
cles, we consider a variant of the PFC model, the vacancy PFC
model, introduced in Refs. 33 and 34. Instead of minimizing
the Swift-Hohenberg functional directly, we consider a density
field with positive density deviation ψ, only, which leads to a
modification of the particle-interaction and allows to handle
single particles, as well as many individual particles embedded
in the fluid.

II. DERIVATION OF A FULLY CONTINUOUS MODEL

In Ref. 32, the PFC model and the FPD model are com-
bined, by letting the density field influence the flow field. The
interatomic potential is encoded in Swift-Hohenberg energy
(3) and the particle positions evolve according to the advective
PFC equation (see below). The forcing term F B F[ml] in the
Navier-Stokes equations now ensures the fluid velocity u to be
equal to the particle velocity vi at the particle position ri, i.e.,

F[ml](r) def
= ω


i

(v̂i − û(r))δ(r − ri), (12)

with ω ≫ 1 a penalty parameter and δ(·) the pointwise delta-
function. Thereby, position and velocity of each individual par-
ticle must be extracted from the density field ψ by tracking the

maxima of the density that are interpreted as average particle
positions. These quantities are then explicitly inserted into the
expression of the forcing term. The fluid viscosity η f can be
modeled as before in (11), but now ψ can directly be used to
distinguish between the background fluid and the particles.

Force term (12) constrains the fluid velocity to be equal
to the particle velocity at the center-of-mass position of the
particle. In order to implement a no-slip boundary condition
at the particle surfaces, the delta function needs to be replaced
by the concentration fields φi(r),

F[dd](r) def
= ω


i

(v̂i − û(r))φi(r). (13)

This ansatz is highly related to the diffuse domain approach,35

where this force is shown to converge to the no-slip boundary
condition u = vi at the i-th particle surface, if the interface
width goes to zero. Thereby,ω has to be related to the interface
thickness, see Ref. 36 for a detailed convergence study.

In the following, we give a new formulation of a contin-
uous force term that can be evaluated without extracting indi-
vidual particle positions and velocities. At first, we relate the
density field ψ, described in (7), to a delta function δ(r) and to
a concentration field φ(r) = 

i φi(r). In a second step, the par-
ticle velocities are shown to arise directly from the evolution
equations (7) and (6), respectively.

A. Approximation of a delta-function

For the classical PFC equation in 1D, a one-mode approx-
imation of the density ψ is given by Ref. 37

ψom(r) = A cos(q0r) + ψ̄, (14)

where A,q0, and ψ̄ are constants that define the amplitude,
lattice constant, and mean density of the field, respectively. We
introduce

ψ(0) =
1
2

(
1 +

ψom − ψ̄
A

)
, ψ(k) = (ψ(k−1))2, (15)

for k > 0, or in explicit form ψ(k) = [ψ(0)]2k for k ∈ N. After
appropriate normalization, we obtain

δ(k)(r) B Nkψ(k)(r), (16)

with Nk normalization constants that ensure the property
δ(k)(r) dr = 1. Values for various indices k can be found in

Table I. Thus, we have a sequence of nascent delta functions.
Figure 1 shows the first three elements of this sequence in com-
parison with the classical Gaussians δexp

ϵ (r) � e[(q0∥r∥)2/(−4ϵ)],
visualizing the convergence qualitatively. As a consequence
of this property, the shifted and scaled density field ψ(0) can
be seen as a first-order approximation of a delta function. The
approach can be generalized to 2D and 3D and will be used for
ψ instead of ψom.

TABLE I. The first four elements of the sequence Nk , the normalization
constants for the nascent delta function δ(k ).

k 0 1 2 3

Nk · πq0
1 4

3
64
35

16 384
6 435
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FIG. 1. The first three elements of the sequences δexp
ϵk (normalized), with

ϵk = 2−k , in blue (upper curves) and δ(k ) in red (lower curves). The lattice
constant is q0= 1.

B. Approximation of concentration fields

The concentration field φi in Ref. 28, used for the phase-
field description of particles, is defined by

φi(r) = 1
2

(
1 − tanh

�(∥r − ri∥ − a)3
ϵ

�)
, (17)

with ri the center-of-mass position of the i-th particle, a the
particle radius and ϵ a small parameter that defines the width
of the smoothing region. We now interpret ψ(0) in (15) as a
concentration field. It has the value one at the maxima of
the cosine profile and zero in between. The transition is very
coarse but gives an approximation of the tanh-profile of φ(r)
=


i φi(r), which can be refined with

φ(ψ) = 1
2

(
1 + tanh

�(ψ(0) − σ)3
ϵ

�)
, (18)

where σ = 1
2

�
1 + cos(q0 · a)� is a shifting parameter, see

Figure 2 for an example of such an implementation.
In order to define the viscosity field, we adopt expression

(11) and insert for φ(r) the field φ(ψ). Thus, we introduce a
viscosity field depending directly on the PFC density field ψ,
using transformation (18) as

FIG. 2. Transformation of the density fieldψ into a tanh-concentration field,
for different particle radii. The lattice constant is q0= 1 and interface width
ϵ = 0.1.

η̃(r) = η̃(ψ(r)) =
(
η̄p

η̄ f
− 1

)
φ(ψ). (19)

C. Peak velocities

To approximate the particle velocities vi, we follow the
approach of Rauscher38 and consider a curl-free velocity field
for the derivation. Let u be given with the property ∇ × u = 0
and ∇ · u = 0. Then, there exists a potential field Ψ such that

u = − 1
γm
∇Ψ, ∆Ψ = 0. (20)

Following the argumentation of Ref. 38, the flow potential Ψ
acts as an external potential that drives the particle density. In
DDFT models, this external potential enters the free-energy by
F ∗[ϱ] B FH[ϱ] + Fext[ϱ], with

Fext[ϱ] =

Ψ(r)ϱ dr.

Inserting F ∗ into (2) instead of FH leads to

mϱ (∂tv + (v · ∇)v + γv)= −ϱ∇ δF
∗[ϱ]
δϱ

+ η∆v

= −ϱ∇ δFH[ϱ]
δϱ

− ϱ∇Ψ + η∆v

= −ϱ∇ δFH[ϱ]
δϱ

+ γmϱu + η∆v

and finally we arrive at

mϱ (∂tv + (v · ∇)v + γ(v − u)) = −ϱ∇ δFH[ϱ]
δϱ

+ η∆v.

Going to the dimensionless form, by introducing length
and time scales and inserting Fsh for FH gives

∂tψ + ∇ ·
�(1.5 + ψ)v̂�

= 0, (21)

(1.5 + ψ) (∂tv̂ + (v̂ · ∇)v̂ + Γ(v̂ − û)) = 1
Re
∆v̂

− 1
Pe

(1.5 + ψ)∇ δFsh[ψ]
δψ

. (22)

In the overdamped limit, Γ ≫ 1, velocity equation (22) reduces
to a simple expression for the velocity v̂,

Γ(v̂ − û) ≃ − 1
Pe
∇ δFsh[ψ]

δψ
. (23)

Inserting this into (21) results in the advected PFC equation
introduced in Ref. 23 and considered in the context of DDFT
in Ref. 16,

∂tψ + û · ∇ψ = 1
ΓPe
∇ ·

(
(1.5 + ψ)∇ δFsh[ψ]

δψ

)
= ∇ ·

(
M(ψ)∇ δFsh[ψ]

δψ

)
, (24)

with a mobility function M(ψ) = 1
ΓPe (1.5 + ψ).

Although this equation can only be derived for potential
flows, we will use it as an approximate model for non-potential
flows as well. With (23), we have found an explicit expression
for the mean velocity of the particles that can be used to
formulate forcing term (12) in the continuous form
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F[ml](r) = ω

i

(v̂i − û(r))δ(r − ri)

≈ − ω

ΓPe
∇ δFsh[ψ]

δψ


i

δ(r − ri)

≈ − ω

ΓPe
∇ δFsh[ψ]

δψ
δ(k), (25)

with δ(k) nascent delta function (16) approximating δΩ
=


i δ(r − ri). The first-order approximation of this force, with

δ(0) ≈ N0ψ(0) =
q0

π
ψ(0) =

q0

2π
�
1 +

1
A
(ψ − ψ̄)�,

thus reads

F[ml]
(0) (r) = −(M0 + M1ψ)∇ψ♮(r), (26)

with M0 = (1 − ψ̄/A) ω
ΓPe

q0
2π , M1 =

ω
ΓPe

q0
2πA , and ψ♮ B

δFsh[ψ]
δψ

,
which results in the considered fully continuous description.
For ω ∼ Γ, we have M1 = O( 1

Pe ).

D. Individual particles and number of particles

In order to allow for particles to move freely, we add a
modification introduced by Ref. 33. The authors have argued
that by limiting the field ψ from below, the particle interaction
can be modified. Therefore, they have introduced the constraint
ψ ≥ 0, which allows to control the volume fraction of particles
in the domain by changing the mean density of the system.

To implement the constraint, the free-energy is modified
by including a penalty term, i.e., Fvpfc B Fsh + Fpenalty, with

Fpenalty[ψ] =


β(|ψ |n − ψn) dr̂,

with β ≫ 1 and n an odd integer exponent.
The variational derivative of Fpenalty can be found to be

b(ψ) B δFpenalty[ψ]
δψ

= nβψn−1(sign(ψ) − 1), (27)

with sign(ψ) =


1, for ψ > 0,
0, for ψ = 0,
−1, for ψ < 0.

While localized states are also observed in the original
PFC model for a small range of parameters in the coexistence
regime,39 we consider the approach in Refs. 33, 34, and 40
using penalty term (27). Here, the number of particles can
be controlled by choosing the mean density and the area the
particles occupy. The initial density field for a collection of
N particles located at the positions ri, i = 1, . . . , N , is a
composition of local density peaks,

ψ
(i)
0 (r) =




A ·
�
cos(
√

3q0

2
∥r − ri∥) + 1

�
for ∥r − ri∥ < d

2
0 otherwise,

summed up to ψ(r) = N
i=1ψ

(i)
0 (r).

Thus, each particle occupies an area of approximately
Bp B π(d/2)2 in 2D. Based on the ideas in Ref. 33, we set the
mean density in the particle domain toψ1=

(−48 − 56r)/133,
as well as r = −0.9 and q0 = 1. The last two parameters define
the mean density of the system as

ψ̄ =
N · Bp

B0
ψ1,

with B0 = |Ω| the area of the computational domainΩ and with
A = ψ1 the parameter for the density scaling.

E. Navier-Stokes PFC model

Combining all the components, i.e., the Navier-Stokes
equation for solvent (8) with viscosity η given by η(ψ) in (19),
and volume force F by expression (26), combined with density
evolution (24) with Fsh or Fvpfc, results in the fully continuous
Navier-Stokes PFC (NS-PFC) model

∂tû + (û · ∇)û = ∇ · σ̃ − M1ψ∇ψ♮,
∇ · û = 0,

∂tψ + û · ∇ψ = ∇ ·
�
M(ψ)∇ψ♮�,

ψ♮ =
δFsh/vpfc[ψ]

δψ
,

(28)

with

σ̃ = −p̃I +
1

Re f

�
1 + η̃(ψ)��

∇û + ∇û⊤
�
,

δFsh[ψ]
δψ

= ψ3 + (r + (1 + ∆)2)ψ,
δFvpfc[ψ]

δψ
= ψ3 + (r + (1 + ∆)2)ψ + b(ψ),

and p̃ = p̂ + M0ψ
♮ a rescaled pressure. Besides the definition

of ψ♮, these equations have exactly the form of “model H”
as considered in Ref. 41. In Appendix B, we demonstrate
thermodynamic consistency of the derived model.

III. NUMERICAL STUDIES

We now turn to quantitative properties of the model and
compare it with the original PFC model and the FPD approach
of Ref. 28 for various situations. We rewrite the NS-PFC
system as a system of second order equations. Therefore, the
variational derivatives are implemented as

δFsh[ψ]
δψ

= ψ3 + (r + 1)ψ + 2∆ψ + ∆ν,

δFvpfc[ψ]
δψ

= ψ3 + (r + 1)ψ + 2∆ψ + ∆ν + b(ψ),
ν = ∆ψ.

System (28) has to be solved for u, p̃,ψ,ψ♮,and ν in a domainΩ
with boundary conditions depending on the specific example.
To numerically solve this system of partial differential equa-
tions, we apply here an operator splitting approach42 with a
sequential splitting, where we solve the PFC equations first,
followed by the Navier-Stokes equations. In time, we use a
semi-implicit backward Euler discretization with a lineariza-
tion of all nonlinear terms, i.e., a one-step Newton iteration.
In space, we discretize using a finite element method, with
Lagrange elements, e.g., a P2/P1 Taylor-Hood element for the
Navier-Stokes equation and a P2 element forψ,ψ♮,and ν in the
PFC equation. We further use adaptive mesh refinement, lead-
ing to an enhanced resolution along the particles. The system
is solved using the parallel adaptive finite element framework
AMDiS.43,44
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A. Crystallization

The first numerical examples use Fsh and consider crystal-
lization processes in flowing environments. The fluid is driven
by boundary conditions. In the first case, we consider a rotating
fluid, i.e., a gyre flow and in the second case, a Poiseuille flow
with a parabolic inflow velocity profile.

1. Rotating crystals

A crystal grain is placed in a rotating fluid initially given
by

∂tr = u0(x, y) = *..
,

C sin(π x
dimx

) cos(π y

dimy
)

−C cos(π x
dimx

) sin(π y

dimy
)

+//
-

(29)

in a domain (x, y) ∈ Ω = [0,dimx] × [0,dimy]. For the numer-
ical experiment, we have chosen dimx = dimy = 42d. The
boundary conditions for the Navier-Stokes equations are set
by u0.

We start the growth process with an initial grain of radius
2d in an undercooled environment with parameters r = −0.3
and mean density ψ̄ = −0.35. The mobility function is set to
M(ψ) = ψ + 1.5 and the force scaling to M1 = 1. The fluid
Reynolds number is set to Re f = 1 and the viscosity ratio to
η̄p/η̄ f = 100. For the concentration field that defines the profile
of the viscosity, we have used an approximation of ψ(0),

φ B ψ(0) ≈
ψ −minΩ(ψ)

maxΩ(ψ) −minΩ(ψ) .
Thus, the fluid viscosity is high in particles, low in between
particles, and takes an intermediate value in the isotropic phase
away from the crystal. However, other definitions of the viscos-
ity parameter are possible as well.

In Fig. 3, the growth shapes for different velocities C are
shown at the same simulation time. For a still fluid (C = 0),
i.e., no advection, the final shape is the largest and the size
of the crystal decreases for increasing velocity. For the largest
considered velocity C = 1, the faceting of the crystal is also
more pronounced than for the case of no induced fluid flow.
The stationary images also show that the crystal rotates during
the growth process. This can be seen at the varying crystal
orientations in (a), (b), and (c) indicated by the white angle.

The growth process is analyzed in Fig. 4, showing the
radius of the growing crystal over simulation time. The growth
velocity strongly depends on the induced fluid velocity, as
shown in the inlet plot of Fig. 4. The crystal grows slower for a

FIG. 3. Final growth-shapes of the crystal in a flowing environment at time
t = 3000. Shown is the particle density ψ with color red corresponds to high
density and blue to low density. The fluid velocity denoted by C : (a) C = 0,
(b) C = 0.5, and (c) C = 1. The white angles show the crystal orientation and
thus give an indication for crystal rotation.

FIG. 4. Radius of the crystal divided by lattice constant over dimensionless
time, for various fluid velocities C . In the inlet, the growth velocity of the
crystal normalized by the lattice constant Vg is shown for the final time
t = 3000.

larger induced fluid velocity. This clearly shows one direction
of the coupling, i.e., the fluid influences the crystallization.

The opposite can be found as well. The crystal also
changes the velocity profile of the fluid. In the inlet of Fig. 5,
the velocity profiles of two fluids are compared. The left image
shows the profile of a fluid with no backcoupling of the density
field to the Navier-Stokes equations. This essentially shows the
initial profile u0. The right image shows the velocity profile
for the full NS-PFC model with C = 1. We observe different
magnitudes of the velocity, whereas the streamlines do not
change qualitatively. A more detailed analysis of the velocity
profile along the x-axis from the center to the boundary of
the domain can be found in Fig. 5. With fluid coupling, a
linear increase of the magnitude in the domain of the crystal
is observed, indicated by the black dashed line, which is

FIG. 5. Fluid velocity at time t = 3000 extracted from positive x-axis, as
indicated by the lines in the inlet pictures. The slope 0.04 corresponds to the
angular velocity of the fluid in the region with a radius less than the crystal
radius. In the inlet, the magnitude of fluid velocity in the domain Ω for C = 1
is shown. Left: fluid flow not influenced by the crystal. Right: crystal slows
down the fluid due to higher viscosity in the region of particles.
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FIG. 6. Crystal shape and corresponding velocity profile at time t= 3800
in a narrow channel. Left: density field ψ, with arrows in the lower half
corresponding to u−vcrystal, i.e., fluid velocity relative to the translation
velocity of the crystal. Right: fluid velocity u with contour line that indicates
the shape of the crystal. In the lower half, the velocity relative to the channel
flow velocity, i.e., u−u0, is shown. Color red corresponds to high values and
blue to low values.

lower than the prescribed initial profile. The crystal acts as a
rotating solid in the fluid, with normalized angular velocity
ω = ∥u∥/(∥r∥/d) = 0.04. Away from the crystal, the velocity
increases up to the prescribed boundary velocity C.

2. Translating crystals

In the second case, the crystal grows in a Poiseuille flow. In
a narrow channel, we enforce a parabolic velocity at the inflow
boundary, i.e.,

u0(x, y) = (4C ȳ(1 − ȳ),0)⊤, ȳ B y

dimy
,

with a maximal inflow velocity C and a top/bottom boundary
velocity set to zero. Again, we start with an initial grain of
radius 2d in the center of a box Ω with dimensions dimx

= 168d and dimy = 42d. The simulation parameters are the
same as above in the case of a rotating fluid.

The shape of the growing crystal is influenced by the
fluid, which induces an anisotropy. This can be seen in Fig. 6,
where the shape corresponding to a fluid velocity C = 0.15 is
shown in a clipping of the whole domainΩ. The flow direction
is from left to right. The particle density ψ is shown in the
left image together with the velocity relative to the velocity
of the translating crystal, i.e., vcrystal = (vcrystal,0)⊤ with vcrystal
≈ 0.124. The right image shows in the upper half, the absolute
value of the velocity, with a constant value within the crystal,
and in the lower half, the flow velocity relative to the initial
velocity u0. This shows an elongated vortex. In the case of
no fluid coupling, the crystal grows isotropically to a circular
shape, as in the example above.

Thus, also for Poiseuille flow, we see a coupling in both
directions, the shape of the crystal is influenced by the flowing
environment, and the fluid velocity is influenced by the crystal.

B. Sedimentation

In the following, we apply the NS-PFC model to a collec-
tion of individual particles to show the applicability as a model
for particle dynamics. We therefore consider Fvpfc. For penalty
term (27), we use the parameters (n, β) = (3,2000) in all of
the following simulations. The Reynolds number and viscosity
ratio are chosen as before, but the viscosity profile is now

given by

φ B ψ(0) ≈
ψ

maxΩ(ψ) .
Thus, we have the lower fluid viscosity away from the particles
and a high viscosity on the particles. In order to stabilize the
shape of the particles, we increase the diffusional part, i.e., the
Peclet number Pe, respective to the mobility function M(ψ).
We have chosen M(ψ) ≡ 16 in the following examples.

1. One spherical particle in a confinement

The objective of this study is to calculate the position
and velocity of one spherical particle (circular disk) settling
down in an enclosure due to a gravitational force g. In order
to include this force, we use a Bousinesq approximation and
add the forcing term Fg B φ(ψ)g to Navier-Stokes equations
in (28).

The box dimensions are chosen to be multiples of the
particle size. All lengths are again normalized by the particle
interaction distance d = 4π/

√
3, i.e., the lattice constant. We

consider the following boundary conditions:

with nΣ the outer normal to Σ B ∂Ω.
Due to the symmetry of the system, we expect a symmetric

trajectory, a straight line in the center of the box with the
particle slowing down at the bottom. Fig. 7 shows the y(t)
component of the evolution curve

�
x(t), y(t)� compared with

FPD simulations. We further show the comparison of the veloc-
ity profiles. For both criteria, we obtain an excellent agreement.

In the FPD setup, we have used the normalized density
field ψ(0)(r) as a concentration field instead of tanh-profile (17)
and for treatment of the wall-boundary we have introduced a

FIG. 7. Trajectory and velocity of one particle settling down in a box filled
with a liquid with fluid viscosity η̄ f = 0.1, particle viscosity η̄p = 10, and
gravitational force g= (0,−1). Left: vertical position of the particle, start-
ing from an initial height of 10d. Right: effective velocity of the particle,
i.e., v1(t)2= (ẋ(t)2+ ẏ(t)2)/d2.
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FIG. 8. Two particles settling down in an enclosure. Fluid viscosity is set to
η̄ f = 1 (a) and (b) and η̄ f = 0.1 (c,d), particle viscosity to η̄p = 100 (a,b), and
η̄p = 10 (c) and (d) and mobility of the NS-PFC-model to M (ψ)≡ 2. Left:
trajectories of the particles with coordinates ri(t)= (xi(t), yi(t)), i = 1,2.
Right: absolute velocities: vi(t)2= (ẋi(t)2+ ẏi(t)2)/d2, i = 1,2.

repulsive potential

VB(k,p)(r) B k
�
d−1distΣ(r)�p,

with k = 1,p = 20, and distΣ(r) the distance of r to the bound-
ary Σ of the domain Ω.

Further care is needed in order to guarantee a symmet-
ric solution. Within both approaches, we use a symmetric
triangulation of the domain and symmetric quadrature rules.
Otherwise, we get symmetry breaking in the trajectories, since
the motion on a straight line is unstable with respect to small
perturbations, as it is also pointed out in the work of Ref. 24.

2. Two interacting particles

For two particles sedimenting in a box, additional hydro-
dynamic interactions are expected to influence the motion of
the particles. We expect to see the phenomena of trailing,
drafting, kissing, and tumbling of the particles, as found in
experimental studies45 and as also observed in several numer-
ical studies with various methods, e.g., Refs. 24, 46, and 47.
Again, we compare it with FPD simulations where we have
to apply direct particle-particle interaction potentials, defined

asV(r) B k
�� r

d

�p1 − 2
� r
d

�p2
�
, with (k,p1,p2) = (1,12,6) and a

boundary interaction potential VB as above. Since we do not
have a one-to-one mapping between these potentials and their
representation in Fvpfc and since the PFC-model introduces
additional diffusion due to a non-vanishing mobility function
M(ψ), equality of particle trajectories and particle velocities
cannot be expected. However, the results qualitatively agree for
different fluid viscosities, as can be seen in Fig. 8. To analyze
the dependency of the trajectories on the considered interaction
potential V , FPD simulations with different potentials, i.e.,
different parameters in the Lennard-Jones type interaction,
and purely repulsive interactions are performed and compared
with each other. The obtained differences in the trajectories
and the particle velocities are in the same order as the differ-
ences if compared with the NS-PFC simulations (results not
shown).

The system considered here consists of two particles
placed below each other with a small (symmetric) displace-
ment relative to the middle vertical axis. The initial configu-
ration is chosen as r1 = (−0.1d,9d) and r2 = (0.1d,10d), with
boundary conditions as for the case of one particle. Compared
to the one-particle case, the box size is chosen wider, i.e., a
width of 18d instead of 8d, to further reduce boundary effects.

The solution can also be compared qualitatively to the
results in Refs. 24 and 48, where the authors have studied
the sedimentation of two hard sphere particles in a narrow
enclosure in a similar setup and they have found similar trailing
and drafting phenomena. However, they are not as strong as
in the FPD or in our simulations. The particles start in close
contact and accelerate up to a critical time, when they start
moving apart from each other. In the visualized scenarios in
Fig. 8, the particle behind overtakes the other one and reaches
the bottom first. Compared with FPD in our simulations, the
particles move further away from each other and the velocity
decreases in a similar way up to the contact with the lower
boundary.

3. Many particles in an enclosure

With three particles already, the interaction and motion
of the particles becomes chaotic, as pointed out in Ref. 49
and discussed in detail in the review.50 Therefore, a direct
comparison of trajectories is no longer meaningful. However,
considering not only a few but also a larger number of particles
in a bounded box under gravity cause new effects. Particles
do not settle down homogeneously; their dynamics strongly
depend on the distance to the walls. During the sedimentation

FIG. 9. Four snapshots of the sedimentation simulation for 120 particles in a square box. Color red corresponds to high absolute velocity and blue to low
velocity. Left: initial configuration of particles. Second image: an instability of the particle front, starting from the boundaries. Third image: particles start to
sediment at the bottom. Right: final compressed sediment of particles.
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FIG. 10. Evolution of mean density of particles for four different time steps
corresponding to the snapshots in Fig. 9. The final configuration of particles
in a hexagonal lattice has a higher density than the initial configuration in a
square lattice.

process, Rayleigh-Taylor-like instabilities and fingering occur
and a compression of the particle lattice at the bottom of the
box is seen. To demonstrate the possibility of our approach, to
deal with moderate numbers of particles, we aim to observe
these phenomena. We have studied a situation of 120 particles
arranged in a square lattice in the upper part of a square
domain. The initial distance of neighboring particles is set to
the lattice constant d. The width of the box is chosen so that
20 particles fit perfectly in one horizontal line, i.e., we have
dimx = dimy = 20d. Boundary conditions are chosen similar
to the cases before. For a gravitational force g = (0,−2)⊤ we
have simulated the sedimentation process in a fluid with a
viscosity ratio η̄p/η̄ f = 100, as above. The particles close to
the side walls start settling down first and due to their motion,
an upwards fluid flow in the center of the domain is induced. A
visualization of the sedimentation process is shown in Fig. 9.
We have drawn black circular disks to indicate the particle posi-
tions. Four snapshots are shown, the initial and final configu-
ration and two intermediate states, i.e., the beginning of the
development of the instability and a snapshot with partially
sedimented particles.

In Fig. 10, the mean particle concentration ⟨ψ⟩(y) is
shown, which is obtained by averaging over stripes of width
d along the particle layers,

⟨ψ⟩(y) B
 xmax

x=xmin

 y+0.5d

y′=y−0.5d
ψ(x, y ′) dy ′dx.

The high-concentration region moves from top to bottom over
time and the mean particle density is higher at the bottom of
the box than for the initial configuration.

IV. CONCLUSION

A fully continuous model is developed to simulate col-
loidal particles in a fluid, interacting via direct particle-particle
interaction and via the induced flow fields. The method is
based on ideas of dynamic density functional theory and fully
resolved direct numerical simulations. The derived NS-PFC

system operates on diffusive time scales and provides a quali-
tative approach down to the particle size.

We have demonstrated the quality of the method in various
examples; first, in crystallization processes analyzing the influ-
ence of a macroscopic flow field and second, for three common
test cases, namely, the sedimentation of one, two, and many
particles. For one and two particles, we have quantitatively
compared the trajectories and velocities obtained by our simu-
lation to simulations with the FPD method and have found
good agreement. For the case of many particles, we see the
expected instabilities and compression at the bottom. For more
quantitative comparisons, the calculation of a hydrodynamic
radius would be desirable, as it is done by Refs. 3 and 12.
However, this requires computations in 3D for the comparison
with Stokes drag and drag torque and has thus to be considered
in future work. As a preliminary step, we have computed the
effective radius of the vacancy NS-PFC model by comparison
with the FPD method, using concentration profile (17), for
which a radius is given. We have computed the particle veloc-
ities obtained by both methods for one particle dragged through
a periodic channel. Comparing the result for various radii for
the FPD method, we find an effective radius for the NS-PFC
model of approximately 0.35d.

However, in comparison with the other methods men-
tioned in the Introduction, we do not see the advantages of our
approach in a more detailed description of the underlying phys-
ics on a single particle scale, but in the emergent phenomena on
larger scales. Here, the formulation as a fully continuous model
has several numerical advantages: we expect stable numer-
ical behavior. For the classical PFC equation time step, inde-
pendent stability can be proven for the discrete scheme.51–53

Coupling this to the Navier-Stokes equation, as considered,
e.g., in Ref. 54, allows for larger time steps as in the explicit
coupling schemes of hybrid methods. As the NS-PFC model
only contains local terms, the algorithms are expected to scale
independently of the number of particles. Numerical details
of an efficient parallel scheme are described in Ref. 53 for
the classical PFC equation and can be extended towards the
coupling with Navier-Stokes.
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APPENDIX A: DIMENSIONLESS FORM

The density ϱ is driven by the variational derivative of the
Helmholtz free energy FH. This functional can be decomposed
into two contributionsFH = Fid + Fexc, where the ideal gas part
Fid is known and the excess free part unknown for general
systems,

FH[ϱ] = kBT


ϱ[ln(Λdϱ) − 1]dr + Fexc[ϱ],
with kB Boltzmann’s constant, T the temperature, Λ the ther-
mal de-Broglie wave-length, and d the space dimension.
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Inserting a parametrization ϱ = ϱ(ϕ) = ϱ̄(1 + ϕ) with the
density deviation ϕ and reference density ϱ̄ into the energy
and expanding the ideal gas part of the energy around ϱ̄ leads
to a polynomial form of Fid. Using a Ramakrishnan-Yussouff
approximation55 of the excess free part results in an expression
of the two-point correlation function c(2)(r,r′, ϱ),
Fexc = C +


(ϱ(r) − ϱL)c(2)(r,r′, ϱL)(ϱ(r′) − ϱL)drdr′,

with ϱL a reference liquid density. This corresponds to a convo-
lution of (ϱ − ϱL) with c(2) and can thus be transformed into
a product in Fourier space. Expanding c(2) around the wave-
number zero and transforming back lead to a gradient expan-
sion of Fexc that can be written in the variable ϕ,

1
kBT ϱ̄

(FH[ϱ(ϕ)] − F̄H) ≈


1
2
ϕ2 − 1

6
ϕ3 +

1
12
ϕ4dr

−


1
2
ϕ(C0 − C2∆ + C4∆

2)ϕdr

+


D0 + D1ϕdr,

with C0,C2,C4,D0,D1 expansion coefficients. For a detailed
derivation, see, e.g., Refs. 21–23. Since we take the gradient of
the variational derivative in the dynamical equations, all con-
stant and linear terms can be neglected in the energy without
changing the dynamics.

Fixing the lattice spacing L, the dimensionless bulk modu-
lus of the crystal B and introducing parameters r and ψ0, with

L2B
2|C4|
C2

, BB
C2

2

4|C4| =
ψ2

0

3
,

sign(C4)= −1, rB ψ−2
0

(
9
4
− 3C0

)
− 1,

scaling the length by L, i.e., r̂ = r̂(r) B r
L

, and introducing the
derivatives ∇̂ B ∂r̂, ∆̂ = ∇̂ · ∇̂ and a new variable ψ = ψ(r̂) as

ϱ(r) = ϱ̄(ψ0 · (ψ ◦ r̂)(r) + 1.5),
with (ψ ◦ r̂)(r) = ψ(r̂(r)), where ◦ acts as a function composi-
tion operator, result in the classical PFC energy

3
kBT ϱ̄ψ4

0

(FH[ϱ(ψ)] − F̄H) ≈ Ld


1
2
(1 + r)ψ2 +

1
4
ψ4

+ψ∆̂ψ +
1
2
ψ∆̂2ψ dr̂

C LdFsh[ψ].
We consider the variational derivative of FH and relate it

to the variational derivative of Fsh,

δFH[ϱ]
δϱ

=
1

Ld

(
δFH[ϱ ◦ r]
δ(ϱ ◦ r) ◦ r̂

)
≈ 1

Ld
*
,

δ
� 1

3 kBT ϱ̄ψ4
0LdFsh[ψ] + F̄H

�

δ(ϱ ◦ r) ◦ r̂+
-

=
1
3

kBT ϱ̄ψ4
0

(
δFsh[ψ]
δψ

δψ

δ(ϱ ◦ r) ◦ r̂
)

=
1
3

kBTψ3
0

(
δFsh[ψ]
δψ

◦ r̂
)
.

Inserting the parametrization of ϱ into dynamical equations
(1) and (2), fixing ψ0 = 1 for simplicity and using the length

scaling r̂ give

(1.5 + ψ)�∂tv + 1
L
(v · ∇̂)v + γv

�
=

kBT
3mL

∇̂ δFsh[ψ]
δψ

+
η

m ϱ̄L2 ∆̂v,

∂tψ = −
1
L
∇̂ ·

�(1.5 + ψ)v�
.

Introducing the dimensionless variables t̂ B tV0/L and v̂ B v/
V0 finally gives the dimensionless dynamical equations

(1.5 + ψ)�∂t̂v̂ + (v̂ · ∇̂)v̂ + γL
V0

v̂
�
=

kBT
3mV 2

0

∇̂ δFsh

δψ

+
η

m ϱ̄LV0
∆̂v̂,

∂t̂ψ = −∇̂ ·
�(1.5 + ψ)v̂�

.

By defining the dimensionless numbers

Pe =
3mV 2

0

kBT
, Re =

m ϱ̄LV0

η
and Γ =

γL
V0

as above, we find Eqs. (4)–(5), where we have neglected the
hat symbol on the derivatives for readability.

APPENDIX B: ENERGY DISSIPATION

To demonstrate thermodynamic consistency of the model,
we assume that the total energy of the system is composed
of the Helmholtz free-energy FH, respective to an appropriate
approximation of this functional and the kinetic energy

Fkin =
ρ f

2


∥u∥2 dr

of the surrounding fluid. To be consistent with dynamical
equations (28), we focus on the dimensionless energies by
introducing length and time scales as above and by defining
dimensionless variables denoted by a hat symbol. Additionally,
we normalize the energies

r̂ = r/L, t̂ = tV0/L, û = u/V0, F̂∗ = F∗/(V0L2η̄ f ).
This gives us the dimensionless kinetic energy

F̂kin =
Re f

2


∥û∥2 dr̂

and by considering the correct scaling of the Swift-Hohenberg
energy FH ≈ kBT ϱ̄ L3

3 Fsh (see Appendix A), we find

F̂H =
1
Sc


1
4
ψ4 +

1
2
ψ

�
r + (q2

0 + ∆)2
�
ψ dr̂,

with the Schmidt number Sc given by

Sc =
Pe

Re f

¯̄ϱ, with ¯̄ϱ B
ρ f

m ϱ̄
.

The total dimensionless energy, to be considered, now
reads

F̂tot = F̂kin + F̂H.

In the following, we consider only nondimensional variables
and for readability drop the hat symbols.
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We assume that the evolution equations for momentum
and mass conservation read

∂tu + (u · ∇)u = ∇ · σ̃ + F,
∇ · u = 0,

∂tψ + u · ∇ψ = −∇ · j,
(B1)

where the volume force F and the flux j need to be determined
to justify thermodynamic consistency. LetΩ be a fixed domain
with Lipschitz-boundary Σ. The time-evolution of the energy
Ḟtot can be split into

Ḟkin = Re f


Ω

u · ∂tu dr

= Re f


Ω

u · (−(u · ∇)u + ∇ · σ̃ + F) dr,

ḞH =
1
Sc


Ω

δFsh[ψ]
δψ

∂tψ dr.

(B2)

Using incompressibility and integration by parts and the rela-
tions

1
2
∇

�∥u∥2�
= (u · ∇)u − (∇ × u) × u,

�
f ∇u, D(u)�

Ω
=

�
f D(u), D(u)�

Ω
,

for a scalar field f = f (r) and the inner product (A,B)Ω
=

Ω

A : B dr, we get
Ω

u · (u · ∇)u=

Ω

1
2

u · ∇
�∥u∥2�

+ u ·
�(∇ × u) × u

�
dr

=
1
2


Σ

(u · nΣ)∥u∥2 dΣ

= 0 for



u · nΣ = 0, (no-penetration),

u = 0, (no-slip),
Ω

u · ∇ · σ̃ dr=

Ω

−∇u : σ̃ dr                        
≤0

+


Σ

u · σ̃ · nΣ dΣ                          
(∗)

(∗)= 0 for



σ̃ · nΣ = 0, (no-flux),

u = 0, (no-slip).

Thus, we get for the kinetic part of the energy, in case of no-slip
boundary conditions, the estimate

Ḟkin ≤ Re f


Ω

u · F dr.

The derivative of the PFC-part of the energy evolution reads

ḞH =
1
Sc


Ω

j∇ δFsh[ψ]
δψ

− u · δFsh[ψ]
δψ

∇ψ dr.

By choosing the flux j proportional to −∇δFsh[ψ]/δψ, e.g.,

j = −M(ψ)∇ δFsh[ψ]
δψ

,

with M(ψ) any positive definite function, we find for the total
energy evolution

Ḟtot ≤

Ω

u ·
�
Re fF −

1
Sc
δFsh[ψ]
δψ

∇ψ
�

dr

and can choose F so that this integral vanishes, i.e.,

F =
1

Re fSc
δFsh[ψ]
δψ

∇ψ =
¯̄ϱ

Pe
δFsh[ψ]
δψ

∇ψ.

Using incompressibility again, we get the relation to the
force and flux terms derived before. For no-slip boundary
conditions, we have

Ω

− 1
Sc

u · δFsh[ψ]
δψ

∇ψ dr =

Ω

1
Sc

u · ψ∇ δFsh[ψ]
δψ

dr

and thus, the force

F = −
¯̄ϱ

Pe
ψ∇ δFsh[ψ]

δψ
(B3)

and with M1 = ¯̄ϱ/Pe, the above set of Eq. (28). Our derived
continuum model thus fulfills thermodynamic consistency.
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