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FOR THE PHASE-FIELD CRYSTAL EQUATION*
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Abstract. We develop a preconditioner for the linear system arising from a finite element dis-
cretization of the phase-field crystal (PFC) equation. The PFC model serves as an atomic description
of crystalline materials on diffusive time scales and thus offers the opportunity to study long time
behavior of materials with atomic details. This requires adaptive time stepping and efficient time-
discretization schemes, for which we use an embedded Rosenbrock scheme. To resolve spatial scales
of practical relevance, parallel algorithms are also required, which scale to large numbers of proces-
sors. The developed preconditioner provides such a tool. It is based on an approximate factorization
of the system matrix and can be implemented efficiently. The preconditioner is analyzed in detail
and shown to speed up the computation drastically.
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1. Introduction. The phase-field crystal (PFC) model was introduced as a phe-
nomenological model for solid state phenomena on an atomic scale [26, 27]. However,
it can also be motivated and derived through classical dynamic density functional the-
ory (DDFT) [28, 66] and has been used for various applications in condensed and soft
matter physics; see the review [31] and the references therein. Applications include
non-equilibrium processes in complex fluids [7, 53], dislocation dynamics [19], nucle-
ation processes [12, 9, 35, 13], (dendritic) growth [32, 72, 63], and grain growth [10].

The main solution methods for the PFC model, which is a nonlinear sixth order
parabolic partial differential equation, are finite-difference discretizations and spectral
methods, which are combined with an explicit or semi-implicit time-discretization.
Numerical details are described in [20, 37, 38, 64, 29].

Recently, the PFC model has been coupled to other field variables, such as flow
[53, 54], orientational order [1, 55], and mesoscopic phase-field parameters [45]. This
limits the applicability of spectral methods due to the lack of periodic boundary con-
ditions in these applications. On the other hand, simulations in complex geometries
have been considered, e.g., colloids in confinements motivated by studies of DDFT [5],
crystallization on embedded manifolds [14, 11, 4, 61], or particle-stabilized emulsions,
where the PFC model is considered at fluid-fluid interfaces [2, 3]. These applicabil-
ities also limit the use of spectral and finite-difference methods or sometimes make
them even impossible. The finite element method provides high flexibility concerning
complex geometries and coupling to other partial differential equations, which is the
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motivation to develop efficient solution methods for the PFC model based on finite
element discretizations.

Basic steps of finite element methods include refinement and coarsening of a mesh,
error estimation, assembling of a linear system, and solving the linear system. Most
previous finite element simulations for the PFC model [12, 14, 53] have used direct
solvers for the last step, which, however, restrict the system size due to the high mem-
ory requirements and only allow computations in two dimensions. Well-established
solution methods for linear systems, such as iterative Krylov-subspace solvers, like
CG, MINRES, GMRES, TFQMR, and BiCGStab, are not directly applicable for the
PFC equation or do not converge, respectively, converge very slowly, if used without
or with standard preconditioners, like Jacobi or ILU preconditioners.

In this paper, we propose a block-preconditioner for the discretized PFC equations
and analyze it with respect to convergence properties of a GMRES method. We
have organized the paper as follows. In the next section, we formulate the PFC
model in terms of a higher order nonlinear partial differential equation. Section 3
introduces a space- and time-discretization of the model, including the treatment
of the nonlinearity. In section 4, the preconditioner is introduced and an efficient
preconditioning procedure is formulated. The convergence analysis of GMRES is
introduced in section 5, and section 6 provides an analysis of the preconditioner in
terms of a spectral analysis. Finally, in section 7 we examine the preconditioner
in numerical examples and demonstrate its efficiency. Conclusions and outlook are
provided in section 8.

2. Modeling. We consider the original model introduced in [26], which is a
conserved gradient flow of a Swift—-Hohenberg energy and serves as a model system for
a regular periodic wave-like order-parameter field that can be interpreted as particle
density. The Swift-Hohenberg energy is given here in a simplified form:

(21) F) = [ 304+ 30+ (4 )i da,

where the order-parameter field ¢ describes the deviation from a reference density, the
parameter r can be related to the temperature of the system, and 2 C R™, m = 1,2, 3,
is the spatial domain. According to the notation in [66] we consider the H ~!-gradient
flow of F', the PFC2-model,

SF )]
2.2 Opp = A———=|
(22) o= AT
respectively, a Wasserstein gradient flow [43] of F, the PFCl-model, as a generaliza-
tion of (2.2),
oF
(2.3) Oup =V - (wvﬂ)’
oy
with a mobility coefficient ¥+ = 9 — ¢uin > 0 with the lower bound! ¥, = —1.5.
By calculus of variations and splitting of higher order derivatives, we can find a set
of second order equations, which will be analyzed in this paper:

=1+ (147 + 240 + Aw in Q x [0,7],

(2.4) ob =V - (6 V),
w = A,
IThe lower bound %min = —1.5 is due to the scaling and shifting of the order-parameter from a

physical density with lower bound 0.
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for a time interval [0, 7] and subject to initial condition ¥(t = 0) = 1 in Q and
boundary conditions on 0f2, e.g., homogeneous Neumann boundary conditions

Opth) = Opw =0, u=0 on ON.

3. Discrete equations. To transform the partial differential equation (2.4) into
a system of linear equations, we discretize in space using finite elements and in time us-
ing a backward Euler discretization, respectively, a Rosenbrock discretization scheme.

Let  C R™ be a regular domain (m = 1,2,3) with a conforming triangulation
Trn(2) with h = maxper, (hr) a discretization parameter describing the maximal el-
ement size in the triangulation. We consider simplicial meshes, i.e., made of line
segments in one dimension, triangles in two dimensions, and tetrahedra in three di-
mensions. Let

Vi = {v e HY Q) ; vlr € P,(T) VT € Tn(Q)}

be the corresponding finite element space, with P,(7") the space of local polynomials
of degree < p, where we have chosen p = 1,2 in our simulations. The problem (2.4)
in discrete weak form can be stated as follows: Find up, ¥p,wn € Lao(0,T; V3,) with
Yn(t = 0) =10 € L2(2), s.t.

(,uh — ’l,/)}?.’b — (1 + T)?/)h, 19}1)(3 + (2V’l/)h + Vwp, Vﬁh)g
(3.1) + (Oetbn, O ) + (V5 Vin, Vo

+ (wh, ) + (Vipr, VI )o =0 VO, 05,0 € Vi

with (u,v)q == [qu-vdz.

In the following let 0 =ty < t; < --- < ty = T be a discretization of the time
interval [0,T]. Let 7 := tx41 — tx be the timestep width in the kth iteration, and let
Ui = Up(tr), respectively, ur = pp(tx) and wr = wp(tx), be the discrete functions at
time . Applying a semi-implicit Euler discretization to (3.1) results in a time and
space discrete system of equations, as follows.

Let ¢ € LQ(Q) be given. For k =0,1,..., N — 1 find pgi1,Vg41, W1 € Vi, s.t.
(3.2)

a(E) ((/Lk+17 ’lr/)k—i—l ) wk+1)7 (ﬁha ;17 19/%;))
= (pr+1 — (L +7)%rs1,9n)a + 2Ver1 + Vwii1, Vi )a
+ (Yrr1,93) g, + (TR Vikg, VO, o
+ (Wrt1, 93)a + (Viry1, VO7)o
= (¢l§a’0h)9 + (’lr/)kvﬁ;z)g = <F(6)7 (ﬁhv ;1319;{)> Vi, ;17 /f; € Vh.
Instead of taking 97 explicitly, it is pointed out in [12] that a linearization of this

nonlinear term stabilizes the system and allows for larger timestep widths. Therefore,
we replace (V3,95)q by (3Y2¢kr1 — 293, 95)o. Thus (3.2) reads

a((prs1, Vo1, Wet), (On, 97, 07))
= (g1 — (L4 7)rr1 = 3Y5ks1, On)a + (2Vei1 + Vwrgr, Vin)a
(3.3) + (Yrt1,93) o, + (TR0 Viksr, VO, )a
+ (Wit 1, ) + (Virt1, VI )
= (=203, 9n)a + (Vr,93) o =: (F, (00,9, 07))  VIu, 05,9 € Vi,
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Let {®;} be a basis of V},; then we can define the system matrix A and the
right-hand-side vector b, for the linear system Ax = b, as

AOO AOl AOQ bO
A= AlO All A12 b= bl
AQO A21 A22 ’ b2 ’

with each block defined via
[AY] = alejor,eipon), [l = (F eip;),

where e; is the ith Cartesian unit vector.

Introducing the shortcuts M := ((gﬁj,(ﬂi)Q)ij and K := ((chj,chi)Q)ij for the
mass- and stiffness-matrix, K (¢) := ((z/JJerpj,V@i)Q)ij for the mobility-matrix,
and for the nonlinear term the short cut N(v) := ((—3v?¢;, goi)g)ij, we can write A
as

M ~(1+7M+N() +2K K
(3.4) A= TkK+(1/)k) M 0
0 K M

We also find that b® = ((—21/1;3,%)9)],, b! = My, , and b? = 0. Using this, we can
define a new matrix B := KM 'K to decouple the first two equations from the last
equation, i.e.,

(3.5) /:[ M —(1+7)M+ N(¢y) + 2K - B|

7 K4 (V) M

: _ T _ T _ T :
With x = (Hk+1’£k+1’gk+l) x| = (Hk+1’ﬁk+l) b = (bO’bl) , where the dis-
crete coefficient vectors correspond to a discretization with the same basis functions
as the matrices, i.e.,

Wy = Zw(i)% with coefficients 1 = (¢;))s,

and p,w in a same manner, we have

(33) & Ax=b & AX'=b',Muw, = Ky, .

The reduced system can be seen as a discretization of a partial differential equation
including the bi-Laplacian, i.e.,

Op =V - (WTVp) with g =193+ (1 + 7)Y + 244 + A2,
In the following, we will drop the underscore for the coefficient vectors for ease of
reading.

3.1. Rosenbrock time-discretization. To obtain a time-discretization with
high accuracy and stability with an easy step size control, we replace the discretization
(3.2), respectively, (3.3), by an embedded Rosenbrock time-discretization scheme; see,
e.g., [36, 46, 56, 41, 42].

Therefore consider the abstract general form of a differential algebraic equation,

Mo:x = F[x],
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TABLE 1
A set of coefficients for the Ros3Pw Rosenbrock scheme translated into the modified form of
the Rosenbrock method used in (3.6). All coefficients not given explicitly are set to zero.

v = 0.78867513459481287 | c11
az1 =2 c21
age = 1.57735026918963 c31
a31 = 0.633974596215561 c32
azz = 0.5 c33 = —0.0528312163512967
m1 = 1.63397459621556 mi 1.99444650053487

ma = 0.294228634059948 m2 = 0.654700538379252
m3 = 1.07179676972449 m3 = ms3

—C22 =7
—2.53589838486225
—1.62740473580836
—0.274519052838329

with a linear (mass-)operator Ml and a (nonlinear) differential operator F. Using the
notation Jr(x)[y] := LF[x + ey]L:O for the Gateaux derivative of F at x in the

direction y, one can write a general Rosenbrock scheme

i—1
1 Cii
3.6 —My? — Jp(x")[yF] = F[x}] + I My
(3.6) My F(x")[yi] = F[x;] ;m Y

fori=1,...,s,

i—1
xF=xF 4 Z aijyf (ith stage solution),
j=1
(3.7) s s
Xt = xk ijyf, L — ik o ijyf,
j=1 Jj=1

with coefficients v, a;;, ¢;5, m;, m; and timestep 7. The coefficients m; and m; build
up linear combinations of the intermediate solutions of two different orders. This
can be used in order to estimate the timestep error and control the timestep width.
Details about step size control can be found in [36, 46]. The coefficients used for
the PFC equation are based on the Ros3Pw scheme [56] and are listed in Table 1.
This W-method has three internal stages, i.e., s = 3, and is strongly A-stable. As
the Rosenbrock method it is of order 3. It avoids order reduction when applied to
semidiscretized parabolic PDEs and is thus applicable to our equations.

In case of the PFC system (2.4) we have x = (p,%,w)" and M = diag(0, 1,0).
The functional F applied to x is given by

—p+ (1 + 7)Y + 2A¢ + Aw 3
(3.8) Flx] = 0 + |V (vTVp)
—w+ Ay 0
Frin[X]
For the Jacobian of F in the direction y = (du, di, dw) T we find
i 3Y2dip
Jr(x)[y] = FLinly] + |V - (" Vdp) + V- (dpdy () V)
0
(assuming ¥ = ¢ — Yin)
i 3U2dip
=Frinly] + | V- (¥FVdu) + V- (dpVp)
0
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By multiplication with test functions ¥ = (9,9’,9") T and integration over 2, we can
derive a weak form of (3.6): For i =1,...,s find y¥ € (L2(0,T; Vh))B s.t.
i1
1 Cij
(3.9) — My}, 9o ~Te(x")yi 9] = Fe) 0]+ Y~ (Myf,9)a ¥ € (Vi)’,

T j=1 Tk

with the linear form F(-)[-],

F(x)[0] = [(—p + (1 + ), 9)a — 2V + Vo, Vg — (w, ") — (Vb w")g}

+ @9 — (VR VI )e
= Frin(¥)[9] + (¢¥°,9)a — (¥ V, VI')a,

and the bi-linear form Jg(-)[-, ],
Jr(x)[y, 9] = FLin(y)[9] + (30%dep, 9)q — (¥ Vdu + dipV i, VI )g.

Using the definitions of the elementary matrices M, K, K, and N, as above, and
introducing F(u) := ((¢;Vp, v%’)ﬂ)zj’ we can write the Rosenbrock discretization in
matrix form for the ¢th stage iteration:

M —(1+r)M+2K+N(¥) K
(3.10) K () M + 7. F (k) 0| y;=bf,
0 K M
AR

with b the assembling of the right-hand side of (3.9), with a factor 7, multiplied
to the second component. The system matrix A in each stage of one Rosenbrock
time iteration is very similar to the matrix derived for the simple backward Euler
discretization in (3.4), up to a factor L in front of a mass-matrix and the derivative
of the mobility term F. The latter can be simplified in the case of the PFC2 model

(2.2), where F =0 and K; = K.

4. Precondition the linear systems. To solve the linear system Ax = b,
respectively, Ay = bf, linear solvers must be applied. As direct solvers, like
UMFPACK [21], MUMPS [6], or SuplerLU_DIST [47], suffer from fast increase of
memory requirements and bad scaling properties for massively parallel problems, it-
erative solution methods are required. The system matrix A, respectively, AR, is
nonsymmetric, nonpositive definite, and nonnormal, which restricts the choice of ap-
plicable solvers. We here use a GMRES algorithm [60], respectively, the flexible
variant FGMRES [59], to allow for preconditioners with (nonlinear) iterative inner
solvers, like a CG method.

Instead of solving the linear system Ax = b, we consider the modified system
AP~ (Px) = b, i.e., a right preconditioning of the matrix A. A natural requirement
for the preconditioner P is that it should be simple and fast to solve P~!v for arbitrary
vectors v, since it is applied to the Krylov basis vectors in each iteration of the
(F)GMRES method.

We propose a block-preconditioner P for the 2 x 2 upper left block matrix A’
of A based on an approach similar to a preconditioner developed for the Cahn-—
Hilliard equation [17]. Therefore, we first simplify the matrix A’, respectively, the
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corresponding reduced system AR’ of AR, by considering a fixed timestep 7, = 7
and using a constant mobility approximation, i.e., Ky ~ MoK, with My = (1)
the mean of the mobility coefficient ¢, and F = 0. For simplicity, we develop the
preconditioner for the case My = 1 and v = 1 only. For small timestep widths 7 the
semi-implicit Euler time-discretization (3.2) is a good approximation of (3.10), so we
neglect the nonlinear term N(¢). What remains is the reduced system
A {M —(147r)M+2K — B]
7K M '

By adding a small perturbation to the diagonal of A”, we can find a matrix having
an explicit triangular block-factorization. This matrix we propose as a preconditioner
for the original matrix A’:

(4.1)

p._ | M 2K — B ]:[M 0 HI M~!(2K — B)

7K M- K + 6B 7K M+6K || 0 M~} (M — 20K + 6B)

with § := /7. In each (F)GMRES iteration, the preconditioner is applied to a vector
(bg,b1) T, which means solving the linear system Px = b in four steps:

(1) Myo = by, (2) (M + 6K)y1 = b1 — 7Kyo,
1
(3) (M — 20K + dB)x; = My, (4)xo =yo+ g(yl —X1).

Since the overall system matrix A has a third component, which was removed for
the construction of the preconditioner, the third component bs of the vector has
to be preconditioned as well. This can be performed by solving the following: (5)
MX2 = b2 — KXl.

In step (3) we have to solve

(4.2) Sx; := (M — 20K + KM 'K)x; = My,

which requires special care, as forming the matrix S explicitly is no option, as the
inverse of the mass-matrix M is dense and thus the matrix S is as well. In the
following subsections we give two approximations to solve this problem.

4.1. Diagonal approximation of the mass-matrix. Approximating the mass-
matrix by a diagonal matrix leads to a sparse approximation of S. Using the ansatz
M~ ~ diag(M) ' =: Mp! the matrix S can be approximated by

Sp = (M — 26K + §KM},'K).

By estimating the eigenvalues of the generalized eigenvalue problem ASpx = Sx we
show, similarly as in [16], that the proposed matrix is a good approximation.
LEMMA 4.1. The eigenvalues \ of the generalized eigenvalue problem ASpx = Sx
are bounded by bounds of the eigenvalues p of the generalized eigenvalue problem
uMpy = My for mass-matriz and diagonal approzimation of the mass-matriz.
Proof. We follow the argumentation of [16, section 3.2].
Using the matrices D = M%M;M% and K :== M—2KM~? we can reformulate
the eigenvalue problem ASpx = Sx as

(4.3) AM? (I — 26K + sKDK)M?x = M= (I — 26K + sKK)M?x.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Multiplying from the left with x ", dividing by |[MZ2x]|? and defining the normalized
vector y := Mzx/|Mzx|| results in a scalar equation for \:

M1 — 20k + 0k?d) = 1 — 26k + 0k>

with the Rayleigh quotients k = y Ky/(y'y) and d = y Dy/(yy). Assuming
that (1 — 20k + 0k%d) # 0 we arrive at

5= 1 — 25k + 6k?
1 — 20k + 6k2d’

where the difference in the highest order terms of the rational function is the factor
d. From the definition of d and D, bounds are given by the bounds of the eigenvalues
of uMpv =Mv. O

In [68] concrete values are provided for linear and quadratic Lagrangian finite
elements on triangles and linear Lagrangian elements on tetrahedra. For the latter,
the bound d € [0.3924, 2.5] translates directly to the bound for A, i.e., A € [0.3924,2.5],
and thus Sp provides a reasonable approximation of S.

Remark 4.2. Other diagonal approximations based on lumped mass-matrices
could also be used, which however would lead to different eigenvalue bounds.

4.2. Relation to a Cahn—Hilliard system. An alternative to the diagonal
approximation can be achieved by using the similarity of step (3) in the precondition-
ing with the discretization of a Cahn-Hilliard equation [18, 17]. This equation can be
written using higher order derivatives:

ore = A(c?) — Ac — nAZc

with 7 a parameter related to the interface thickness. For an Euler discretization in
time with timestep width 7/ and finite element discretization in space as above, we
find the discrete equation

(M — 7K+ 7'nB — 7'N'(ci)) cp1 = M.

Setting n := % and 7' := 2§, and neglecting the Jacobian operator N’, we recover

(4.2). A preconditioner for the Cahn-Hilliard equation (see [17, 16, 8]) thus might
help to solve the equation in step (3), which we rewrite as a block system

(4.4) [Tl/\;lg MK/IHK} (::1) B <1\/Py1>

with Schur complement S. Using the proposed inner preconditioner ;&0 of [17, p. 13],

A | M —nK
O |PK M+ 27K

with Schur complement Scy := M+2/77K+7nKM™'K as a direct approximation
of (4.4), respectively (4.2), i.e.,

(4.5) Scux1 = (M + 2VK + KM 'K)x; = My,
we arrive at a simple two step procedure for step (3):

(3.1) (M +V6K)z =My,  (3.2) (M + V6K)x; = Mz.
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LEMMA 4.3. The eigenvalues A of the generalized eigenvalue problem \Scpx =
Sx satisfy A € [(1 —/5)/2,1].

Proof. We follow the proof of [52, Theorem 4] and denote by A the eigenvalue
of 8611{8 with the corresponding eigenvector x. We have M symmetric and positive
definite and hence I 4+ VMK positive definite and thus invertible.

SciSx = Ax
= (M + 2V0K 4+ 0KM'K) ™ (M — 20K + dKM 'K)x = Ax
= I+ VoM 'K)"3(I-20M 'K + §(M'K)?)x = \x.
Thus, for each eigenvalue p of M™'K we have 1 € R and

AMp) = (1 + 20+ 8) (u + V)

an eigenvalue of S;;S and since M™'K is similar to MY2M~'KM~Y/2, that is,
symmetric, all eigenvalues are determined.
With algebraic arguments and v/& > 0 we find

12 + (Vo)
A(“)Si(wr\/g)? <

and VA =0 for p,6 \, 0. This leads to the lower bound 1_7‘/3 < Aw). 0O

With this lemma we can argue that Scy provides a good approximation of S, at
least for small timestep widths 7 = 62 < 1.

We can write the matrix P = P(S) in terms of the Schur complement matrix S:

(4.6) P(S) = [ ~ 57;%M+_SS) } .

Inserting Scu instead of S gives the precondition-matrix for the Cahn-Hilliard ap-
proximation

Pci == P(Scu) = [ M ~2V0K - B ] |

K M+ (0 +2V0)K + 0B

5. Convergence analysis of the Krylov-subspace method. To analyze the
proposed preconditioners for the GMRES algorithm, we have a look at the norm of
the residuals rix(A) = b — Axy, of the approximate solution xj; obtained in the kth
step of the GMRES algorithm. In our studies, we are interested in estimates of the
residual norm of the form

A
||rk||2 — min ||p( )rOHQ < min ||p(A)||2
[roll2 »pellc  [Iroll2 i

(5.1)

with II, := {p € Py, : p(0) = 1} and r( the initial residual. The right-hand side corre-
sponds to an ideal GMRES bound that excludes the influence of the initial residual.
In order to get an idea of the convergence behavior, we have to estimate/approximate
the right-hand-side term by values that are attainable by analysis of A. Replacing A
by AP~! we hope to get an improvement in the residuals.

A lower bound for the right-hand side of (5.1) can be found by using the spectral
mapping theorem p(c(A)) = o(p(A)), as

5.2 i A)l < min [|p(A
(5.2) min max, Ip( )I_;ggi Ip(A)]l2
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(see [65, 23]) and an upper bound can be stated by finding a set S(A) C C associated
with A, so that

5.3 in [p(A)[ls < C mi A
(5.3) min [[p(A)ll: < C min max [p(A)],

where C'is a constant that depends on the condition number of the eigenvector matrix,
the e-pseudospectra of A, respectively, on the fields of values of A.

Both estimates contain the min-max value of p(A). In [57, 23] it is shown that
the limit

1/k
li i A =
i, | bV = s

exists, where ps is called the estimated asymptotic convergence factor related to the
set S. Thus, for large k we expect a behavior for the right-hand side of (5.1) like

Phay S ;Iel%ﬁ Ip(A)ll2 S CP§ay-

The tilde indicates that this estimate only holds in the limit £ — oo.

In the next two sections, we will summarize known results on how to obtain the
asymptotic convergence factors ps and the constant C' in the approximation of the
relative residual bound.

5.1. The convergence prefactor. The constant C' plays an important role in
the case of nonnormal matrices, as pointed out by [30, 65], and can dominate the
convergence in the first iterations. It is shown in section 6 that the linear part of
the operator matrix related to A is nonnormal and also the preconditioned operator
related to Q := AP~! is nonnormal. Thus, we have to take a look at this constant.

An estimate of the convergence constant, applicable for general nonnormal ma-
trices, is related to the e-pseudospectrum o (A) of the matrix A. This can be defined
by the spectrum of a perturbed matrix [65, 30]

0 (A):={z€Clze€a(A+E), |Elz <¢}.

Let T'c := do. be the boundary of o, respectively, an union of Jordan curves
approximating the boundary; then

i T . T .
4 A < == M| < — A
(54)  min flp(A)lle < o min max|p(N)| < o min max |p(A)]

and thus C = < with [T¢| the length of the curve I'. [65]. This estimate is approx-

- 2me’
imated, using the asymptotic convergence factor for large k, by

. el Tl
(5.5) min [|p(A)[[2 S < 5 Po.(a)

k
2 X <
pEIly, o2me’ L 2

TE

This constant gives a first insight into the convergence behavior of the GMRES
method for the PFC matrix A, respectively, the preconditioned matrix Q.
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5.2. The asymptotic convergence factor. The asymptotic convergence fac-
tor ps, where S is a set in the complex plane, e.g., S = o(A), or S = 0.(A), can
be estimated by means of potential theory [23, 44]. Therefore, we have to construct
a conformal mapping ® : C — C of the exterior of S to the exterior of the unit disk
with ®(c0) = co. We assume that S is connected. Otherwise, we will take a slightly
larger connected set. Having S C C\ {0} the convergence factor is then given by

1

(5.6) pPs = W

Let S = [a, f] be a real interval with 0 < o < f and k := g; then a conformal
mapping from the exterior of the interval to the exterior of the unit circle is given by

22—k—1-2/22—(k+1)2+k
B k—1

(5.7) B(2)

(see [23]?) and gives the asymptotic convergence factor
Ve -1
Plefl = ey 1
+1

which is a well-known convergence bound for the CG method for symmetric positive
definite matrices with k = im" the spectral condition number of the matrix A. In

(5.8)

min

the case of nonnormal matrices, the value x is not necessarily connected to the matrix
condition number.

In the next section, we will apply the given estimates for the asymptotic conver-
gence factor and for the constant C' to the Fourier transform of the operators that
define the PFC equation, in order to get an estimate of the behavior of the GMRES
solver.

6. Spectral analysis of the preconditioner. We analyze the properties and
quality of the proposed preconditioner by means of a Fourier analysis. We therefore
consider an unbounded, respectively periodic domain €2 and introduce continuous
operators A, Ay, and [P associated with the linear part Fr;, of (3.8), of the linear part
of the sixth-order nonsplit version of (2.2) and the preconditioner, for ¥+ = 1:

w— (14 r) —2A¢0 — Aw
Alx] == —TAp+ ,
w—AY

Aq[y)] i= ¢ = TA((1+ r)y + 244 + A%Y),

with x = (i, 1, w). The operator that represents the preconditioner reads

=209 — A%
Plx] := |—TAp+ v — §AY + 6A?%)
w— Ay

Using the representation of P(S) in (4.6), we can also formulate the operator that
determines the Cahn—Hilliard approximation of P by inserting Scy:

A+ 2VAY — A%
Pou[X] := | —7Ap+ ¢ + (8 + 2V8) Ah + §A%)
w— A

2In [23] the sign of the square root is wrong and thus the exterior of the interval is mapped to
the interior of the unit circle. In formula (5.7) this has been corrected.
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We denote by k = (k1, k2, k3) the wave vector with k? = kf +k3 +k3. The Fourier
transform of a function v = u(r) will be denoted by u = @(k) and is defined as

Fu(r) (k) = /R ) eIk Ty () dr.

Using the inverse Fourier transform, the operators A, Ao, P, and Pcy applied to x,
respectively, 1, can be expressed as A[x] = F~1(AX), Ag[y] = FH(Apv), Plx] =
FYPR), and Pcu[x] = F~(PcuX) with X = (4, 9,®) and Ay, A, P, and Pcy the
symbols of Ay, A, P, and Pcy, respectively. These symbols can be written in terms of
the wave vector k:

(1 (47 +2k* K] (1
(6.1) Ax = |7k? 1 0ol {v],
0 k2 1] \@
(6.2) Ao = (14 7](1 +1)k? — 2k* + k%)),
[ 1 2k —k* 0] (R
(6.3) Px=|7k? 1-0k*+dk* 0| (v ],
0 k2 1l \&
1 —2v/0k? — k! 0] /A
(6.4) Pceux = [7k® 1+ (0+2V0)k? +0k* 0| (o
|0 k2 1] \@

In Figure 1 the eigenvalue symbol curves of A restricted to a bounded range of
frequencies, together with the distribution of eigenvalues of an assembled matrix® A,
using quadratic finite elements on a periodic tetrahedral mesh with grid size h = /4,
is shown. The qualitative distribution of the eigenvalues is similar for symbol curves
and assembled matrices and changes as the timestep width increases.

For small 7, the origin is excluded by the Y-shape profile of the spectrum. In-
creasing 7 leads to a surrounding of the origin. This does not necessarily imply a bad
convergence behavior.

6.1. Critical timestep width. For larger timestep widths 7 we can even get the
eigenvalue zero in the continuous spectrum, i.e., the time-discretization gets unstable.
In the following theorem this is analyzed in detail and a modification is proposed,
that shifts this critical timestep width limit. This modification will be used in the
rest of the paper

LEMMA 6.1. Let Ay be given as in (6.2) and r < 0; then the spectrum o(Ao)
contains zero in case of the critical timestep width

27
(Va-1)(Va+2)?

6.5 > 7%=
(6.5) T>T 5

with « =1 — 3r.

3Since a finite element mass-matrix has eigenvalues far from the continuous eigenvalue 1, de-
pending on the finite elements used, the grid size and the connectivity of the mesh, the overall
spectrum of A (that contains mass-matrices on the diagonal) is shifted on the real axis. In order
to compare the continuous and the discrete spectrum, we have therefore considered the diagonal
preconditioned matrix A = diag(A)~!A that is a blockwise diagonal scaling by the inverse of the
diagonal of mass-matrices.
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o eigenvalues of an assembled FEM matrix
continuous operator spectrum

—-1.5

72920 -10 0 10 20 30 40 7260 —-40—-20 0 20 40 60 80 100

e e

Fic. 1. FEigenvalues of the diagonally preconditioned finite element matriz A= diag(A)"1A,
i.e., a discretization of the continuous operator A multiplied with the inverse of its diagonal, and the
three eigenvalues of the symbol A visualized as restricted symbol curves. Left: spectrum for timestep
width T = 0.1, Right: spectrum for timestep width T = 1.

Let ¢ € R. The spectrum of the modified operator Ao, given by
(6.6) Ao == (1+7[(3¢° + 1+ 7)k? — 2k* + k%),

contains zero only in the case of Y? < =-- Then the critical timestep width is given

by (6.5) with a =1 — 3r — 92,

Remark 6.2. The modified operator Ag can be derived by linearizing ¥* around

a constant reference density 1:

U? m 39 — 29°.
Adding this as an approximation of the nonlinear term to the system (6.2) leads to
the operator symbol (6.6).

Remark 6.3. If we take 1) as the constant mean value of 1) over €, where r has the
physical meaning of an undercooling of the system, then the relation || = \/—7/3
is related to the solid-liquid transition in the phase-diagram of the PFC model, i.e.,
|| > \/—7/3 leads to stable constant solutions, interpreted as a liquid phase, and
|| < \/—7r/3 leads to an instability of the constant phase, interpreted as a crystalline
state. An analysis of the stability condition can be found in [20, 27], among others.

Remark 6.4. In [69, 38] an unconditionally stable discretization is provided that
changes the structure of the matrix, i.e., the negative 2k* term is moved to the right-
hand side of the equation. In order to analyze also the Rosenbrock scheme we cannot
take the same modification into account. The modification shown here is a bit similar
to the stabilization proposed in [29], but the authors have added a higher order term
Ck* instead of the lower order term C’k? in (6.6).

Proof of Lemma 6.1. We analyze the eigenvalues of Ay and get the eigenvalues of
Ay as a special case for ¢ = 0. The eigenvalue symbol Ao gets zero whenever

) 1
Ay=0 & 7= — .
0 T BRIk — 2K 1 KO

The minimal 7 € R+, denoted by 7%, that fulfils this equality is reached at

2 1 — 2 1
k2 =24 -4/1-3r—9¢92 == + -Va.
573 o9yt =g tava
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Inserting this into 7 gives
27
2(Va = 1)(Va +2)*

We have v > 0 for [¢)| > 2y/T=3rand 7 >0 < a>1 & ¢? > =L by simple
algebraic calculations. 0O

On account of this zero eigenvalue, we restrict the spectral analysis to small
timestep widths 7. For r = —0.35, as in the numerical examples below, we get the
timestep width bound 0 < 7 < 7* ~ 2.6548 for the operator Ay and with ¢ = —0.34
we have 0 < 7 < 7% ~ 312.25 for Ay, hence a much larger upper bound. In the
following, we will use the modified symbols for all further calculations, i.e.,

*
TN =

A 1 —(3Y2+1+7)+2k> k2
(6.7) A= |7k 1 01,
0 k2 1

and remove the hat symbol for simplicity, i.e., 4 — A, Ag — Ao.
Calculating the eigenvalues of the preconditioner symbol Q := AP~! respec-
tively, Qcp = AP(;}lI, directly gives the sets

(kS —2k* + (3Y? + 1+ r)k?) + 1

k6 + (T —27)k* — /Tk2 + 1
7(k® — 2k* + (3¢2 + 1+ 1r)k?) + 1

TKS + (/7 + 273/ 9k4 + (7 4+ 271 /4)k? + 1

(6.8) 7(Q) = {1,1,7 ‘keRm},

(6.9) o(Qcn) = {1, 1, ‘ k e Rm}
with values all on the real axis (for 7 > 0). Similar to the analysis of Ay we get
a critical timestep width, i.e., eigenvalues zero, for 7 > 7*. The denominator of the
third eigenvalue of o(Qcn) is strictly positive, but the denominator of o(Q) can reach
zero. This would lead to bad convergence behavior, since divergence of this eigenvalue
would lead to divergence of the asymptotic convergence factor in (5.8).

The critical timestep width, denoted by 79, that allows a denominator with value
zero is given by 7 = (—k* + 2k?)~2, which is minimal positive for [k| = 1 and gives
78 = 1. Thus, for the preconditioner P we have to restrict the timestep width to
7€ (0,7%) € (0,7*). This restriction is not necessary for the preconditioner Pcy.

6.2. The asymptotic convergence factor. Since the third eigenvalue of Q in
(6.8), respectively, Qcp in (6.9), is a real interval C Ry, for 7 in the feasible range
(0, min(7?, 7)), we can use formula (5.8) to estimate an asymptotic convergence factor
for the lower bound on min,eq, ||[p(Q.)|. For fixed » = —0.35 and various values of
¥ minimum and maximum of (6.8) and (6.9) are calculated numerically. Formula
(5.8) thus gives the corresponding estimated asymptotic convergence factor (see the
left plot of Figure 2). For step widths 7 less than 1 we have the lowest convergence
factor for the operator Q and the largest for the original operator Ag. The operator
Qcp has slightly greater convergence factor than Q but is more stable with respect
to an increase in timestep width.

The stabilization term 3?2 added to A and A in (6.6), respectively, (6.7), in-
fluences the convergence factor of Ay and Q only slightly, but the convergence factor
of Qcy is improved a lot, i.e., the critical timestep width is shifted toward positive
infinity.

The upper bounds on the convergence factor are analyzed in the next section.
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— p(A)  — P =00
— pQ  ——w=-03
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timestep width 7 timestep width 7

Fia. 2. Left: Asymptotic convergence factor for operators Ao, Q, and Qcpy. In dashed lines,
the dependence on the mean density -modification (6.6) is shown. Right: Comparison of the
convergence factor related to the spectrum and e-pseudospectrum is shown. This corresponds to
lower and upper bounds of the actual asymptotic convergence factor.

6.3. Analysis of the pseudospectrum. As can be seen by simple calculations,
the symbol A is nonnormal:

(ATA—AAT), =K (397 +1+7) —2Kk?) #0

for a matrix entry at row 2 and column 0. For slightly more complex calculations it
can be shown that also @ := AP~! and Qcy = A”PC_é are nonnormal:

(Q70-0Q7),, = (QlnQcn — QcnQly),, = k' #0.

For nonnormal matrices we have to analyze the e-pseudospectrum in order to
get an estimate of convergence bounds for the GMRES method, as pointed out in
section 5.1.

Using the MATLAB toolbox Eigtool provided by [71], we can calculate the pseu-
dospectra o, and approximations I'¢ of its boundaries with single closed Jordan curves
for all wave-numbers k; € [0, kmax|. The maximal frequency used in the calculations is
related to the grid size h of the corresponding triangulation, kyax = 7. In all the nu-
merical examples below, we have used a grid size h = 7 that can resolve all the struc-
tures sufficiently well, and thus we get kmax = 4, which leads to |K|max = v/Mkmax-

The e-pseudospectrum of Q and Qcy can be seen in Figure 3 for various values
of €. The pseudospectrum of Qcy gets closer to the origin than that of Q, since the
eigenvalues get closer to the origin as well. The overall structure of the pseudospectra
is very similar.

For the convergence factor corresponding to the pseudospectra, we compute the
inverse conformal map ¥ = ®~! of the exterior of the unit disk to the exterior of a
polygon Sy approximating the set S = o, by the Schwarz—Christoffel formula, using
the SC MATLAB toolbox [25, 24]. A visualization of the inverse map ¥ for the
pseudospectrum of A and @ can be found in Figure 4.

Evaluating the asymptotic convergence factor depending on the e-pseudospectrum
of the matrices is visualized in Figure 5. The calculation is performed for fixed
timestep width 7 = 0.1 and parameters 7 = —0.35 and 1) = 0.
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Fic. 3. e-pseudospectra of the preconditioned matrices for various values of €. Left: o¢(Q).
Right: 0e(Qcm), for 7 = 0.1 and k in the restricted range [0, |K|max|. The dashed lines correspond
to the zero-axis and indicate the origin.
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Fic. 4. Inverse conformal map ¥ of the unit disk to the exterior of a polygon enclosing the
e-pseudospectrum of A, respectively, Q, for one € and a restricted range of frequencies. For both
plots the € value is chosen small enough to have 0 in the exterior of the peudospectrum.

Increasing € increases the radius of the sphere like shape around point 1. For a
simple disc the convergence factor is proportional to the radius (see [23]); thus we find
increasing convergence factors also for our disc with the tooth. When € gets too large
the pseudospectrum may contain the origin that would lead to useless convergence
bounds, since then p,, > 11in (5.6). If € gets too small, the convergence constant C' in
(5.4) is growing rapidly, since |T'¢| is bounded from below by the eigenvalue interval
length, i.e., |[Ic| < 2(8 — a) = 2((max(c(Q)), min(s(Q))), and we divide by e. Thus,
the estimates also are not meaningful in the limit e — 0.

An evaluation of the constant C' for various values € can be found in the left plot
of Figure 5. It is a log-log plot with constants in the range [102, 10%].

For all € > 0 the upper bound (5.4) is valid, so we have chosen ¢ = 10~3 and
plotted the resulting estimated asymptotic convergence factor in relation to the lower
bound, i.e., the convergence factor corresponding to the spectrum of the matrices, in
the right plot of Figure 2. The upper bound is just slightly above the lower bound.
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Fic. 5. Left: Estimated convergence prefactor C := % for the matriz Q = AP~ and
QcH = APE}I with 1 = —0.35 and 7 = 0.12, plotted in logarithmic scale for € and C. Right:

Estimated asymptotic convergence factor ps (o) = \@ae(g)(O)rl

legend in the left plot is valid also for the right plot.

and po,(Qy) analogously. The

Thus, we have a convergence factor for Q that is in the range 0.2-0.3 (for 7 = 0.1 and
r = —0.35) and for the matrix Qcy in the range 0.45-0.55, that is much lower than
the lower bound of the convergence factor of Ay (approximately 0.99).

So both the preconditioner P and Pcy improve the asymptotic convergence factor
a lot and we expect fast convergence also in the case of discretized matrices.

7. Numerical studies. We now demonstrate the properties of the precondi-
tioner numerically. We consider a simple crystallization problem in two and three
dimensions, starting with an initial grain in a corner of a rectangular domain. The
solution of the PFC equation in the crystalline phase is a periodic wave-like field with
specific wave length and amplitude. In [27, 40] a single mode approximation for the
PFC equation in two and three dimensions is provided. These approximations show a
wave length of d := 47/+/3, corresponding to a lattice spacing in a hexagonal crystal
in two dimensions and a body-centered cubic crystal in three dimensions. We define
the domain €2 as a rectangle/cube with edge length, a multiple of the lattice spacing
Q =[N - d]*3, with N € N5g. Discretizing one wave with 10 gridpoints leads to a
sufficient resolution. Our grid size therefore is h = 1% ~ 7 throughout the numerical
calculations. We use regular simplicial meshes, with h corresponding to the length of
an edge of a simplex for linear elements and twice its length for quadratic elements,

to guarantee the same number of degrees of freedom (DOFs) within one wave.

7.1. General problem setting and results. As system parameters we have
chosen values corresponding to a coexistence of liquid and crystalline phases: two-
dimensional (2D) (¢ = —0.35, 7 = —0.35) and three-dimensional (3D) (¢ = —0.34,
r = —0.3). Both parameter sets are stable for large timestep widths, with respect to
Lemma 6.1. Figure 6 shows snapshots of the coexistence regime of liquid and crystal
for 2D and 3D calculations.

In steps (1), (2), (3), and (5) of the preconditioner solution procedure, linear sys-
tems have to be solved. For this task we have chosen iterative solvers with standard
preconditioners and parameters as listed in Table 2. The PFC equation is imple-
mented in the finite element framework AMDIS [67, 58, 70] using the linear algebra
backend MTL4 [33, 22, 34] in sequential calculations and PETSc [15] for parallel
calculation for the block-preconditioner (4.1) and the inner iterative solvers. As an
outer solver, a FGMRES method is used with restart parameter 30 and modified
Gram—Schmidt orthogonalization procedure. The spatial discretization is done using
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Fia. 6. Intermediate state of growing crystal, starting from one corner of the domain. Shown is
the order-parameter field 1. Left: Q = [20d]?, number of DOFs: 263,169, calculated on 1 processor.
Right: Q = [12d)3, number of DOFs: 101,255,427, calculated on 3.456 processors.

TABLE 2
Parameters for the inner solvers of the preconditioner with Cahn—Hilliard approximation Scp
and in the last line for the diagonal approximation Sp of the matriz S. The preconditioner named
“diag” indicates a Jacobi preconditioner. We have solved each inner system up to a relative solver
tolerance given in the last column of the table. Only in the case of the matriz Sp is it more efficient
to use a fized number of iteration.

Precon. steps | Matrix Solver | Precond. | Rel. tolerance
(1),(5) M PCG | diag 103

(2) M + 0K PCG | diag 1073

(3.1), (3.2) M + V6K PCG | diag 103

(3) M - 20K + KM 'K | PCG | diag 20 (iter.)

Lagrange elements of polynomial degree p = 1,2 and as time discretization the implicit
Euler or the described Rosenbrock scheme is used.

The first numerical test compares a PFC system solved without a preconditioner
to a system solved with the developed preconditioner. In Figure 7 the relative residual
in the first timestep of a small 2D system is visualized. For increasing timestep
widths the FGMRES solver without preconditioner (dashed lines) shows a dramatic
increase of the number of iterations up to a nearly stagnating curve for timestep
widths greater than 0.5. On the other hand, we see in solid lines the preconditioned
solution procedure that is much less influenced by the timestep widths and reaches
the final residual within 20 to 30 iterations. A detailed study of the influence of the
timestep width can be found below. For larger systems, respective systems in 3D, we
get nearly no convergence for the nonpreconditioned iterations.

Next, we consider the solution procedure of the subproblems in detail. Table 3
shows a comparison between an iterative preconditioned conjugate gradient method
(PCG) and a direct solver, where the factorization is calculated once for each
subproblem matrix per timestep. The number of outer iterations increases when
we use iterative inner solvers, but the overall solution time decreases since a few PCG
steps are faster than the application of an LU-factorization to the Krylov vectors.
This holds true in two and three dimensions for polynomial degrees 1 and 2 of the
Lagrange basis functions.

We now compare the two proposed preconditioners regarding the same prob-
lem. Table 4 shows a comparison of the approximation of the subproblem (3) by ei-
ther the diagonal mass-matrix approximation Sp or the Cahn—Hilliard preconditioner
approximation Scy. In all cases, the number of outer solver iterations needed to reach
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relative residual ||rg||/||rol|

1078 0 . 1 . 2 . 3 .4 5
10 10 10 10 10 10
solver iteration k

F1G. 7. Relative residual of the solver iterations. Solid lines show preconditioned solver itera-
tions and dashed lines iterations without a preconditioner. The systems is Q = [d]?, h = I

TABLE 3
Comparison of the number of iterations and time to solve the linear system averaged over
20 timesteps for the preconditioner matriz Sy with timestep width = = 0.1. Subproblems of the
preconditioner are solved with iterative solvers as in Table 2 or with the direct solver UMFPACK.
The benchmark configuration is a problem with approzimately 66,000 DOFs and grid size h = /4.

Direct Iterative
Dim. m || Poly. degree p | Time (sec) | # iterations || Time (sec) | # iterations
2D 1 6.11 14 1.65 14
2 5.89 14 3.04 15
3D 1 41.72 17 3.36 18
2 35.24 17 9.62 19
TABLE 4

Comparison of the number of iterations and time to solve the linear system averaged over 20
timesteps for the preconditioner with diagonal approximation Sp of S, respectively, Cahn—Hilliard
approxzimation Scr. Subproblems of the preconditioner are solved with iterative solvers as in Table 2.
The benchmark configuration is a problem with approzimately 66,000 DOFs, timestep width 7 = 0.1,
and grid size of h = /4.

Scu Sp
Dim. m || Poly. degree p | Time (sec) | # iterations || Time (sec) | # iterations
oD 1 1.65 14 2.72 16
2 3.04 15 7.03 20
3D 1 3.36 18 8.14 21
2 9.62 19 81.49 55

the relative tolerance and also the time for one outer iteration is lower for the Sch
approximation than for the Sp approximation.

In the following, we thus use the preconditioned solution method with Scu
and PCG for the subproblems. We analyze the dependence on the timestep width
in detail and compare it with the theoretical predictions and show parallel scaling
properties.
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Comparison of time to solve the linear system averaged over 20 timesteps for various timestep
widths T for a 2D and a 3D system. The benchmark configuration is a problem with polynomial

TABLE 5

degree p = 2 with approzimately 66,000 DOF's.

2D 3D
Timestep width 7 | Time (sec) | # iterations || Time (sec) | # iterations
0.01 2.50 13 8.01 17
0.1 3.05 15 9.62 19
1.0 4.53 19 14.29 24
10.0 10.81 47 34.94 58
—#— 2D domain —— p=1
—0— 3D domain --- p=2
35 o) 60
/ 55}
< 30 / % 50l
2 / g
— 25 fo S 457
G.J , g 4
g 20 / g 40r
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F1G. 8. Left: Solution time per timestep iteration for various timestep widths T averaged over
20 timesteps. Right: Number of outer iterations per timestep for various timestep widths T averaged
over 20 timesteps. The four curves show the dependence on dimension (2D or 3D) and on polynomial
degree p of the Lagrange basis functions.

7.2. Influence of timestep width. In Table 5 the time to solve the linear
system averaged over 20 timesteps is listed for various timestep widths 7. All sim-
ulations are started from the same initial condition that is far from the stationary
solution. It can be found that the solution time increases and also the number of
outer solver iterations increases. In Figure 8, this increase in solution time is visu-
alized for various parameter sets for polynomial degree and space dimension. The
behavior corresponds to the increase in the asymptotic convergence factor (see Figure
2) for increasing timestep widths.

We have analyzed whether a critical timestep width occurs in the two approxima-
tions of S (see Figure 9). The diagonal approximation Sp is spectrally similar to the
original preconditioner S that has shown the critical timestep width 7% = 1. In the
numerical calculations, Sp shows a critical value around the analytical value, but it
varies depending on the finite element approximation of the operators. For linear La-
grange elements we see 71 ~ 2 and for quadratic element 7% ~ 0.6. The Cahn-Hilliard
approximation Scy does not show a timestep width, where the number of outer it-
erations explodes, at least in the analyzed interval 7 € [1073,10!]. The difference in
the finite element approximations is also not so pronounced as in the case of Sp.
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F1G. 9. Increase in number of outer iterations when the timestep width increases. The red curves
(curcular dots) correspond to the diagonal approzimation Sp of S and the blue curves (asterisk dots)
to the Cahn—Hilliard approzimation Scp. All stimulations are performed in three dimensions in a
domain with grid size h = w/4. The solid lines correspond to simulations with polynomial degree
p =1 and the dashed lines with polynomial degree p = 2.

While in all previous simulations an implicit Euler discretization was used, we now
will demonstrate the benefit of the described Rosenbrock scheme, for which the same
preconditioner is used. Adaptive time stepping becomes of relevance, especially close
to the stationary solution, where the timestep width needs to be increased rapidly
to reduce the energy F'(i) further. In order to allow for large timestep widths the
iterative solver, respectively, preconditioner, must be stable with respect to an increase
in this parameter.

In Figure 10 the system setup and evolution for the Rosenbrock benchmark are
shown. We use 10 initial grains randomly distributed and oriented in the domain and
let the grains grow until a stable configuration emerges. When growing grains touch
each other, they build grain boundaries with crystalline defects. The orientation of
the final grain configuration is shown in the right plot of Figure 10 with a color coding
with respect to an angle of the crystal cells relative to a reference orientation.

The time evolution of the timestep width obtained by an adaptive step size con-
trol and the evolution of the corresponding solver iterations is shown in the left plot of
Figure 11. Small grains grow until the whole domain is covered by particles. This hap-
pens in the time interval [0, 200], where small timestep widths are required. From this
time, the timestep width is increased a lot by the step size control since the solution
is in a nearly stable state. The number of outer solver iterations increases with in-
creasing timestep width, as expected. Timestep widths up to 18 in the time evolution
are selected by the step size control and work fine with the proposed preconditioner.

In the right plot of Figure 11, the relation of the obtained timestep widths to the
solution time is given. Increasing the timestep widths increases also the solution time,
but the increasing factor is much lower than that of the increase in timestep width,
i.e., the slope of the curve is much lower than 1. Thus, it is advantageous to increase
the timestep widths as much as possible to obtain an overall fast solution time.

7.3. Parallel calculations. We now demonstrate parallel scaling properties.
Figure 12 shows strong and weak scaling results. All simulations are done in three
dimensions and show results for the time to solve the linear system in comparison
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Fia. 10. Grain growth simulation. Left: Initial grains that do not touch each other. Center:
Grown grains with different orientation and grain boundaries. Right: Coloring of the different
crystal orientations. The coloring fails at the boundary of the domain.
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Fic. 11. Left: Time series of timestep width (solid line) and outer solver iterations (dashed line)
for a simulation using a Rosenbrock scheme with automatic step size selection. Right: Evolution
of the solution time for increasing timestep widths. The time is measured relative to the time for
the minimal timestep width. The data is extracted from the simulation of the grain growth; see
Figure 10.

with a minimal number of processors that have the same communication and memory
access environment. The efficiency of this strong scaling benchmark is about 0.8-0.9
depending on the workload per processing unit. The efficiency of the weak scaling is
about 0.9-0.95, slightly better than the strong scaling.

TABLE 6
Average number of iterations and solution time for weak scaling computations.

# processors p | Total DOFs | Time (sec) | # iterations
48 1,245,456 13.62 24
96 2,477,280 13.57 24
192 4,984,512 13.83 25
384 9,976,704 14.97 25

In Table 6 the number of outer solver iterations for various system sizes is given.
The calculations are performed in parallel on a mesh with constant grid size but with
variable domain size. By increasing the number of processors respective the number
of DOF's in the system the number of solver iterations remains almost constant. Also
the solution time changes only slightly.

Larger systems up to 3.456 processors also show that the preconditioner does not
perturb the scaling behavior of the iterative solvers. All parallel computations have
been done on JUROPA at JSC.
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F1c. 12. Speedup of parallel simulation. Left: Strong scaling for fixred overall number of DOFs.
Right: Weak scaling for fixed number of DOFs per processor. The parameter q is a reference number
of processors, that is, ¢ = 24/32 for the calculation in the left plot and ¢ = 16/48 for the right plot.
The first number corresponds to the dashed lines and the second to the solid lines.

7.4. Nonregular domains. While all previous benchmark problems could have
also been simulated using spectral or finite difference methods, we now demonstrate
two examples, where this is no longer possible and the advantage of the proposed
solution approach is shown. We use parametric finite elements to solve the surface
PFC equation [14] on a manifold. The first example considers an elastic instability of
a growing crystal on a sphere, similar to the experimental results for colloidal crystals
in [49]. The observed branching of the crystal minimizes the curvature induced elastic
energy; see Figure 13. The second example shows a crystalline layer on a minimal
surface, the “Schwarz P surface” (Figure 14), which might be an approach to stabilize
such surfaces by colloidal particles; see [39].

Fic. 13. Crystalization on a sphere S120(0). Left: Visualization using OVITO [62], indicating
each wave as a colloidal particle, Right: order-parameter field 1. Number of DOFs: 397,584,
calculated on eight processors.

8. Conclusion and outlook. In this paper we have developed a block-precon-
ditioner for the PFC equation. It leads to a precondition procedure in five steps
that can be implemented by composition of simple iterative solvers. Additionally,
we have analyzed the preconditioner in Fourier space and in numerical experiments.
We have found a critical timestep width for the original preconditioner and have
proposed a variant with an inner Cahn—Hilliard preconditioner, which does not show
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Fic. 14. Crystal structure on a ‘Schwarz P surface’. Left and Center: Visualization using
OVITO [62] in two different perspectives, indicating each wave as a colloidal particle, Right: order-
parameter field 1. Number of DOFs: 250,000, calculated on 1 processor.

this timestep limit. Since most of the calculations are performed in parallel, a scaling
study is provided that shows that there is no negative influence of the preconditioner
on the scaling properties. Thus, large-scale calculations in two and three dimensions
can be performed.

Recently extensions of the classical PFC model have been published, toward lig-
uid crystalline phases [55], flowing crystals [50, 53, 54], and more. Analyzing the
preconditioner for these systems, which are extended by additional coupling terms, is
a planned task.

Higher order models, to describe quasi-crystalline states, respectively, polycrys-
talline states, based on a conserved Lifshitz—Petrich model [48], respectively, a multi-
mode PFC model [51], are introduced and lead to even worse convergence behavior in
finite element calculations than the classical PFC model. This leads to the question of
an effective preconditioner for these models. The basic ideas, introduced here, might
be applicable for the corresponding discretized equations as well.
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