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*S Supporting Information

ABSTRACT: Several crystalline structures are metastable or
kinetically frozen out-of-equilibrium states in the phase space.
When the corresponding lifetime is sufficiently long, typical
equilibrium features such as regular and extended faceting can
be observed. However, interpreting the extension of the facets
and the overall shape in terms of a standard Wulff analysis is
not justified. Here, we introduce a convenient general
formulation of the anisotropic surface energy density,
combined with a suitable phase-field model of surface
diffusion. This allows for the investigation of the evolution
toward equilibrium of realistically shaped nanostructures, describing an actual kinetic path and including the proper faceting.
Numerical solution by the finite element method allows for efficient simulations even for the so-called strong anisotropy condition.
After illustrating applications yielding equilibrium crystal shapes (corresponding to the Wulff construction), we focus our
attention on faceting of structures in long-lived metastable states. The generality and numerical robustness of the approach is
proven by a few applications to crystalline systems of great importance (quantum dots, quantum wires, patterned substrates) in
present materials science.

■ INTRODUCTION

The investigation of crystal morphologies is an interdisciplinary
topic that plays an important role in the understanding of
growth and processing of advanced crystalline materials. This
applies, for instance, to metallic nanoparticles where shapes
control can improve optical, electrical, and catalytic proper-
ties.1−3 This is also observed for a large variety of semi-
conductor structures,4−6 where the control of morphology and
crystalline quality allows for the optimization of devices.7

Moreover, crystal faceting and morphology-dependent proper-
ties are also interesting for organic compounds used, e.g., in
molecular recognition and in medical applications.8,9

The observed crystal shapes are often interpreted in terms of
surface energy minimization which implies the formation of
facets corresponding to the minima in the surface energy
density function γ = γ(n̂), where n̂ is the direction of the
surface normal. The widely used Wulff construction10,11 offers a
simple method to determine the equilibrium crystal shape
(ECS) with the constraint of a constant volume. This
construction is identified as the convex hull of all the planes
perpendicular to the nγ ̂(n̂) vectors. Several numerical
implementations of this procedure are available in the
literature12−14 allowing the ECS corresponding to a given
γ(n̂) to be effectively depicted. Such a description is appropriate
when considering homogeneous systems close to the
thermodynamic equilibrium, while it generally does not hold
when considering far-from-equilibrium conditions.15 If the

crystal evolution is fully dominated by kinetics, facet velocities
v(n̂) can be considered in place of γ(n̂), and a kinetic Wulff
construction can still be used in order to predict the crystal
morphology.16−18 Here we are interested in the regime where
the system tends to minimize free energy, but kinetics poses
constraints on the actual evolution, and/or the initial
morphology leads to a local free-energy minimum.
A continuum model of surface diffusion, driven by the

tendency to minimize the surface area, was already proposed in
the 50s by Mullins19 and further extended in order to include
the effects of anisotropic γ(n̂).20,21 Its advantage mainly consists
in providing a kinetic path for the evolution toward equilibrium,
including all the intermediate stages. Unlike the morphology
given by the ECS, which is uniquely determined by γ(n̂), this
approach may predict different final configurations, depending
on the initial geometry.
However, the implementation of surface diffusion simu-

lations including anisotropic surface energy is far from trivial.
One of the most relevant issues is due to the stiffness of the
corresponding partial differential equation (PDE) system. In
particular, this is critical in the so-called strong anisotropy
regime, when deep minima are present in γ(n̂) producing
missing orientations and sharp corners in the ECS.22−24
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Another limit in describing realistic structures consists of the
representation and tracking of the surface profile. In this
respect, level-set or phase-field (PF) approaches take advantage
of the implicit description of the geometry, allowing researchers
to easily manage three-dimensional (3D) domains and complex
topologies eventually changing in time.21 Several applications of
PF methods to the study of anisotropic systems are available in
the literature (see ref 21 for a review). However, in most cases,
only simplified γ(n̂) are considered with no claim on describing
the complexity of realistic morphologies.
In the present work we introduce a convenient form for γ(n̂)

within a suitable PF model of surface diffusion. The finite
element method (FEM) toolbox AMDiS,25,26 optimized for PF,
was used. This way, we are able to provide a description of the
evolution of 3D morphologies with an arbitrary faceting
resulting from the choice of γ(n̂), even in the cases of strong
anisotropy. As we shall show, this description is fully consistent
with the standard Wulff approach when considering equilibrium
conditions leading to the expected ECS. Furthermore, time
evolution including major changes in faceting can be readily
tackled, thus allowing for a proper description of metastable or
out-of-equilibrium states. The efficacy of our approach in
reproducing realistic structures is proved by comparing
simulation results with experimental morphologies found in
the literature.

■ MODEL DESCRIPTION
In order to reproduce the surface morphology of 3D
geometries and their time evolution, we consider a diffuse-
interface approach21 based on a PF model of surface diffusion
including surface energy anisotropy as proposed by Torabi et al.
in ref 27. Within such a framework the profile evolution is
implicitly tracked by considering an auxiliary analytic function
φ, i.e., the phase field, smoothly varying from φ = 1 in the solid
phase to φ = 0 in the vacuum. Its expression is given by

φ = −
ϵ
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where ϵ is the interface width and d(r) is the signed distance
from the (sharp) interface profile (nominally corresponding to
the φ = 0.5 iso-surface) which consists of the surface of the
solid phase. Figure 1 shows a spherical shape defined implicitly

by means of φ, embedded in a φ = 0 domain, i.e., the vacuum,
which is chosen cubic in shape. Every geometrical property of
the surface can be derived directly from φ. In particular, the
outer surface normal, which defines the local surface
orientation, is n̂ = −∇φ/|∇φ|.
In order to consider an equation for the dynamics of φ, we

introduce the surface energy Fs as given by the Ginzburg−
Landau energy functional,21,28
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with B(φ) = 18φ2(1 − φ)2, i.e., the double well potential which
promotes the state φ = 0 and φ = 1. According to the Onsager
linear law, material flow is driven by the gradient of the local
chemical potential μ, i.e., the variational derivative of eq 2:
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where in the last term we used the asymptotic limit (1/ϵ)B(φ)
→ (ϵ/2)|∇φ|2 for ϵ → 0 and ∇∇φ is the gradient which takes
effect along the ∇φ direction. This definition of μ corresponds
to the well-known Gibbs−Thomson chemical potential.15 The
profile evolution is then defined by tracking the changes of φ
according to the continuity law

φ φ μ∂
∂

= ∇· ∇
t

M[ ( ) ]
(4)

where the mobility function is set as M(φ) = D(36/ϵ)φ2(1 −
φ)2 to restrict the diffusion at the surface, and D sets the time
scale of the evolution. The dynamics described by eq 3 is well-
posed only for weak anisotropy.
If γ(n) yields to strong anisotropy, the so-called Willmore

regularization27,29 must be included in the free energy
definition as an additional term Freg, approximating the integral
of the squared local curvature:
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Such regularization is a penalizing term which increases the
energy of high curvature regions, healing the expected
instabilities in the surface diffusion. Its effect on the
morphology consists of a rounding of the corners controlled
by the β parameter. From a physical point of view, this term can
also be interpreted as an edge/corner energy.22 In the presence
of the regularization, μ must include also a δFreg/δφ term
leading to

μ μ β κ φ κ= + −∇ +
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where μs is given by eq 3 and κ = −ϵ∇2φ + (1/ϵ)B′(φ). Notice
that, when including the regularization, a 6th order PDE has to
be solved. This is quite demanding from a numerical point of
view, and accurate space and time discretization is required.
The FEM toolbox AMDiS,25,26 used in the present work, allows
one to efficiently manage the numerical integration of the
reported equations. In fact, space adaptivity is built-in, allowing
for a fine spatial resolution at the interface where φ varies
significantly and the surface diffusion is active (see Figure 1).
This ensures describing the interface region with a good

Figure 1. Illustrative scheme of an implicit sphere definition by means
of φ. The spherical shape is embedded in the simulation domain (a
simple cube), whose outline is shown in a perspective view. A slice of
the simulation domain reveals its relative size with respect to the
sphere and the refined mesh grid when φ ≈ 0.5.
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enough accuracy while coarser resolution is used in the bulk
region, reducing the computational cost. Time adaptivity has
been also exploited to optimize the evolution time steps on the
basis of the maximum variation of the profile. Zero-flux
Neumann BCs are set at all the domain boundaries (faces of
the cubic box in Figure 1). For the sake of simplicity, in the
following the unit of length is dimensionless while the time
scale is given in 1/(γ0D) units by setting γ0 and D equal to 1.
The details about the integration scheme are reported in the
Supporting Information.
Surface Energy Density: A Convenient form. A fully

customizable formulation for the γ(n̂) function is here
introduced in order to account for the complexity of realistic
morphologies. The key point for such a function is to quantify
the difference between the local surface orientation n̂ and the
vectors which give minima in the surface energy density (m̂i).

30

This is achieved by considering the scalar product n̂·m̂i. Then
the surface energy can be parametrized as
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where N is the total number of energy minima. αi and wi are
positive coefficients setting the depth and the width of the
minima, respectively. wi ≥ 2 is required for differentiability. The
Heaviside step function Θ is introduced in order to exclude
energy contributions when the component of n̂ along the m̂i
direction is negative. This allows us to control ± m̂i facets
independently. The role of each term in the summation of eq 7
can be easily seen by considering how γ(n̂) behaves in the
presence of a single minimum along the m̂ direction. It is equal
to γ0(1 − α) if n̂ ≡ m̂, and it increases up to γ0 moving away
from m̂. It is worth to mention that our definition permits us to
recover some typical γ(n̂) functions used in the literature. In
particular, cubic symmetry resulting from γ(n̂) = γ0 [1 + α̃ (nx

4 +
ny
4 + nz

4) ],27,31 can be obtained from eq 7 by considering the six
minima along the orthogonal axes m̂1,2 = [±1 0 0], m̂3,4 = [0
±1 0], m̂5,6 = [0 0 ±1], with wi = 4 and constant αi for each
minimum.
In Figure 2a−c some illustrative 2D surface energy density

functions γ(θ) (with θ = −arctan(ny/nx) the angle between the
normal vector and the [10] direction) are reported. In
particular, a case with minima at θ̅i = i π/4 with i∈ (i.e.,
⟨10⟩ and ⟨11⟩ directions) is considered. In Figure 2a we show
the curves obtained with three different values of wi but the
same αi. Notice that the width of the energy minima is inversely
proportional to wi. Moreover, when wi = 8 a significant
superposition of different contributions in the summation of eq
7 is seen for all orientations, and γ(θ ̅i) results lower than γ0(1 −
αi). Increasing wi (see wi = 20 curve), no effective superposition
takes place at θ = θ̅i, but it still occurs for orientations in
between. For large enough wi (see wi = 100 curve), a full
decoupling of the energy minima is achieved and orientations
with γ(θ) = γ0 appear. Features of eq 7 can be also controlled in
order to localize a single minimum, as required in order to tune
independently the energy value corresponding to the minima
orientations, i.e., the energy of the facets. This is shown in
Figure 2b, where the same curves reported in panel a are
considered with w0 (width parameter for the θ0̅ minimum)
increased by a factor 10. Furthermore, we can enhance the
stability of the θ = θ̅0 orientation, by setting a deeper minimum
with higher αi, as shown in Figure 2c. Similar arguments hold
also when three-dimensional γ(n̂) functions are considered. In

this case the superposition of the minima contribution can be
more complex, but the qualitative behavior of the 2D case is
recognized. In Figure 2d, some γ(n̂)-plots are shown for
minima along ⟨100⟩ and ⟨111⟩ directions, αi = 0.5 and three
different wi values. The color map reveals the superposition and
decoupling effects observed by increasing wi value. From a
general point of view, eq 7 can then be considered as a
convenient way to construct a continuum γ(n̂) from discrete
values corresponding to energy minima.
With an arbitrary choice of eq 7 parameters, γ(n̂) can

become nonconvex (strong anisotropy), thus requiring the
regularization introduced in eq 5. A remarkable analytic
criterion has been developed in ref 31 in order to determine
if missing orientations occur in the ECS for a given γ(n̂). This
consists in evaluating when the product of the two Gaussian
curvatures K1K2 of the 1/γ-plot is negative. We used this
criterion in order to determine a priori what is the expected
regime related to the choice of the γ(n̂) parameters. For a
single minimum direction we evaluated the critical α coefficient
as a function of the w value, by numerically solving the K1K2 =
0 condition (see Supporting Information for the explicit
formulas). The resulting curve is shown in Figure 3 and it is
well reproduced by

α = +w
A
w

B
w

( )c 2 (8)

Figure 2. Examples of surface energy density from eq 7. (a−c) Plot of
2D γ(θ) function with minima at θ̅i = iπ/4 (⟨10⟩ and ⟨11⟩ directions)
with αi = 0.5 and γ0 = 1. (a) wi = 8 (dotted line), wi = 20 (dashed line),
and wi = 100 (solid line). (b) as in panel (a) with w0 increased by a
factor 10. (c) as in panel (a) with α = 0.75 for the θ̅0 minimum. (d)
Three-dimensional γ(n̂)-plot with minima along ⟨100⟩ and ⟨111⟩
directions, αi = 0.5 and γ0 = 1, for three wi values. γ(n̂) values are also
plotted as surface color map.
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where A = 2.26 ± 0.2% and B = −2.48 ± 0.4% deliver the best
fit. If minima contribution in eq 7 are decoupled, one can
directly assess what is the anisotropy regime only by comparing
the αi values with the data in Figure 3 or with eq 8. Conversely,
if minima contributions are superimposed for some orienta-
tions, the explicit numerical evaluation of K1K2 is required in
order to determine the anisotropy regime and the critical
parameters.

■ RESULTS AND DISCUSSION
Evolution from a Sphere toward the Equilibrium

Crystal Shape. As a first case study, we focus on obtaining the
ECS as the stationary state delivered by surface diffusion
simulations via the aforementioned PF model. Furthermore, we
inspect the customization of the final geometry by suitable
choices of the γ(n̂) in eq 7, tuning its parameters as well as the
strength of the Willmore regularization β. We consider a sphere
of radius 0.3 as initial profile, implicitly defined into the
integration domain, set as a cubic box with lateral size equal to
1, as shown in Figure 1. The interface width ϵ is arbitrarily set
equal to 0.04, in order to ensure an appropriate resolution of
the surface profile on the mesh. The profile evolution is then
obtained by integrating the surface diffusion equation for φ.
The local material transport, driven by ∇μ, finally leads to a
stable faceted shape which corresponds to the ECS.
Figure 4 provides some examples of simulation results

obtained starting from a spherical profile and evolving toward
equilibrium according to eq 4, for different definitions of γ(n̂).
In Figure 4a we consider minima directions corresponding to
the facet orientations of a tetrahedron. This shape does not
have an inversion center, and we select it to demonstrate the
possibility to obtain single facets without symmetry require-
ments. As made evident by the evolution sequence, facets are
gradually formed from the initial spherical profile leading to the
expected polyhedron as an equilibrium condition. In Figure 4b
a different γ(n̂) with two different families of minima directions,
along ⟨100⟩ and ⟨111⟩ is considered, and the resulting ECS is
shown. In Figure 4c the actual faceting of the final geometries
reported in Figure 4a,b is highlighted by showing γ(n̂) as a
color map at the surface. The large regions in uniform (blue)
color correspond to almost flat facets oriented according to the
minima in γ(n̂). Edges and corners in between, which smoothly
connect facets, have intermediate orientations with higher
energy values.
By tuning the parameters of eq 7, we can modify also the

features of the equilibrium shape for a given set of minimum
directions. Figure 5a shows the ECS obtained with the same

γ(n̂) used in Figure 4b with different anisotropy degrees, i.e.,
with different αi values. Both weak and strong anisotropy
conditions are considered. Notice that, even for weak
anisotropy, preferential orientations are present but with rather
large angular dispersion around minima so that an almost
rounded geometry is obtained. The selectivity on the minima
orientation increases for larger αi leading to more defined
facets. As a result, the stronger the anisotropy, the more
contracted are the (red) areas with high γ(n̂) between the
facets. It must be noticed that, due to the continuum
description of the profile, such rounded edges/corners cannot
be avoided. Polyhedron-like structures can then be obtained
only by restricting such regions as much as possible by
increasing α. However, when entering the strong anisotropy
regime, the Willmore regularization term introduces an
additional driving force toward rounding, depending on the
parameter β. The same γ(n̂) used in Figure 4b has been
considered in Figure 5b, by setting different β values. We notice
that the larger its value the more extended is the rounded area
between the different facets.22,25 Furthermore, the effect is
more dramatic at the corners than at the edges, as the local
curvature is larger. In order to obtain sharper facets, for a given
set of γ(n̂) parameters, one should then lower β as much as
possible. However, the lowest value which can be used for such
a parameter depends in general on the interface width and on
the spatial discretization of the FEM method. A trade-off

Figure 3. Critical α values as a function of w obtained by numerically
solving K1K2 = 0 for a γ(n̂) defined by eq 7 with a single minimum
orientation.

Figure 4. Surface diffusion evolution toward the ECS. (a) From a
sphere to a tetrahedron with minima of γ(n̂) along [1 ̅ 1̅ 1], [1 ̅ 1 1 ̅], [1
1 ̅ 1̅], and [1 1 1] directions with αi = 1.0, wi = 6, β = 0.002. (b) ECS
simulated by considering minima along the ⟨100⟩ and ⟨111⟩ directions
with αi = 0.3, wi = 20 and β = 0.001. (c) Color map, scaled by the γ[111]
value, showing the γ(n̂) for the geometries shown in (a) and (b),
respectively.

Figure 5. Dependance of ECS on (a) αi, both in weak (left) and
strong (right) anisotropy regime, (b) β values, (c) the radius of the
initial sphere, here considered doubled with respect to the one in panel
(b) with β = 0.01. Minimum directions are set as in Figure 4b. γ(n̂)
color map is shown as in Figure 4c.
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between the need to obtain sharp facets and the computational
cost is thus required. It must also be pointed out that, at
variance from the γ(n̂) contribution yielding self-similar
geometries when rescaling the crystal volume, the Willmore
regularization is set on an absolute length scale since β directly
defines the rounding radius, independently of the facets
extension.25 This is illustrated in Figure 5c where the radius
of the crystal is doubled, while using the same γ(n̂) of Figure 5b
with β = 0.01. The relative extensions of the rounded regions at
the edges are more localized, thus the shape looks more similar
to the case with lower β values, i.e., sharper facets are obtained.
More complex geometries can also be reproduced since our

definition of γ(n̂) does not rely on any imposed symmetry in
the surface energy, as shown with few examples in Figure 6. In

particular, Figure 6a illustrates the effect of setting different
energy values for the minima in γ(n̂). The same parameters of
Figure 4b are considered but αi corresponding to the minima
along ⟨111⟩ directions are lowered by a factor 2. As expected,
the resulting ECS exhibits much larger {1 0 0} facets, thanks to
their enhanced stability. Examples of more complex, asym-
metric ECS are shown in Figure 6b,c. From the reported results
we conclude that within our PF approach we can control the
ECS features, eventually matching the standard Wulff
construction in the limit β → 0.
This makes our method suitable to investigate realistic

systems which exhibit ECS-like structures, such as those shown
in refs 1−3 (where some morphologies recall the ones obtained

so far). An example where we reproduce a specific realistic
morphology is illustrated in Figure 6d, where theoretical data
for Ge surface energy32 are used to set γ(n̂) and predict the
corresponding ECS. Furthermore, another important applica-
tion may consist of matching simulated ECS with experimental
shapes in order to obtain estimates of γ(n̂).

Morphologies of Long-Lived, Metastable Structures.
The ECS can be considered as the ideal state providing the
global minimization of the surface energy. However, the
outcome of experiments may not correspond to it because of
the presence of sufficiently long-lived metastable, or kinetically
frozen out-of-equilibrium states. Present nanoscience and
nanotechnology widely exploit structures which do not
correspond to a global minimum in the phase-space (quantum
dots or nanowires being only two possible examples), as they
can display a peculiar behavior, absent in the lowest free-energy
state. Faceting of morphologies not corresponding to global
equilibrium can be described by suitable cutting of the ECS, or
by specific modifications in the Wulff construction proce-
dure,13,33 but care is needed in extracting actual details of γ(n̂)
by a simple comparison between model and experiments,
particularly when one is willing to account for the temporal
evolution of a faceted crystal.
A more appropriate description should be based on a unique

definition of γ(n̂) from experimental data at equilibrium (or
from theoretical calculations as in Figure 6d). Deviations from
the ECS could then be explained by considering the initial out-
of-equilibrium geometry and taking into account the time
evolution of the profile, driven by its tendency to the
equilibrium. Our approach allows us to tackle this additional
degree of complexity as it does not consist of a simple
minimization of the surface energy but provides the whole
evolution path toward it. In the following, we focus our
attention on a few peculiar nanostructure morphologies, by
setting γ(n̂) from data in the literature and considering suitable
initial profiles. As we shall show, the simulation results nicely
match the experimental morphologies referred to in the
literature.
Homoepitaxial islands34 or top-down designed patterns

produced by lithography35 belong to the description discussed
above as their shape can be substantially different from the
equilibrium configuration according to the specific fabrication
processing. For the sake of simplicity, we set the minimum
energy directions in γ(n̂), but we assume the same αi (large
enough to obtain sharp facets) and wi. Figure 7 shows
simulations reproducing the morphology of an island (in panels
a and b) and of a pit-patterned substrate (in panel c). Here, the
interface thickness is set equal to 0.1. More precisely, the island
morphology is obtained starting from a half ellipsoidal shape
intersecting a plane below which φ = 1 (for half of the cubic
domain), as shown in Figure 7a, with an height-to-base aspect-
ratio of 0.35 (in agreement with experimental ones34), and a
lateral size equal to 2.4. The surface energy minima orientations
are set according to theoretical data for GaAs.36,37 The
evolution of such an initial configuration, reported in Figure
7a, shows different faceted island structures resulting from
different stages of the surface diffusion evolution. Notice that all
these structures correspond to metastable configurations, as the
final state would be the flat surface. The shape obtained at t =
4.0, characterized in Figure 7b, closely matches the morphology
of GaAs nanometric islands observed in experiments, as in ref
34, where very similar island profiles can be found. The
simulation of a pit geometry illustrated in Figure 7c is obtained

Figure 6. ECSs obtained by arbitrary tuning of the γ(n̂). (a) As in
Figure 4b with halved value of αi along ⟨111⟩ directions. Perpective
3D view and γ(n̂) color map are shown. In (b) and (c) we show
asymmetric shape with perspective 3D views and with comparisons in
a central cross-section between the resulting shape and the initial
spherical profile. Parameters in (b): [0 0 1], [±1 ±1 1], [±1 0 1], [0
±1 1] minima directions with αi = 0.2 and wi = 60, [±1 ±1 1̅] minima
directions with αi = 0.4 and wi = 30, β = 0.002. Parameters in (c):
minima along [± 1 0 0] and [0 ± 1 0] with αi = 0.4, wi = 10, β = 0.002.
(d) Shape of a Ge crystal including {001}, {110}, {111}, and {113}
facets by considering energy minima as in ref 32 with β = 0.003, wi =
100 for minima along ⟨113⟩ direction and wi = 50 for the others, α{001}
= 0.3.
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by considering a pit with a flat (001) surface at the bottom and
a smooth connection with the surrounding flat substrate as
initial profile. The pit aspect-ratio is set to 0.3, to reproduce a
typical pit morphology resulting from etching,38 with a lateral
size of 2. The γ(n̂) minima orientations are set to reproduce the
Si minimum energy surfaces.32 ⟨30 0 46⟩ minima directions are
considered in order to mimic neighboring {15 3 23} facets
(e.g., [15 ±3 23]) recognized in experiments. Also in this case,
the results closely resemble the experimental morphology of
pit-patterned Si(001) substrates reported in refs 35 and 38. The
good match achieved in Figure 7 is granted by setting an initial
profile compatible with the experimental one. Indeed, different
morphologies could be obtained with the same conditions but
with different initial shapes and/or aspect-ratios.
Low-dimensional systems and elongated shapes can be

considered as well as nonequilibrium structures as their shapes
result from the growth mechanisms and are not due to extreme
differences in their γ(n̂) minima. Also in these cases, our
modeling is effective to describe the main morphological
features. Examples are shown in Figure 8, where realistic
nanowires are reproduced by means of surface diffusion
evolution starting from a simplified parallelepiped shape, placed
with the base in contact with the domain boundary in order to
mimic the continuation of the lateral facets. In Figure 8a the
morphology of a Ge nanowire grown along the [1 1 0]

direction is reproduced, closely resembling the experimental
structures reported in ref 5, including both top and sidewalls
faceting. γ(n̂) values are selected according to the data reported
in ref 32 for the energy minima along the ⟨100⟩, ⟨110⟩, and
⟨111⟩ directions. Another example is provided in Figure 8b,
where the morphology of an Ag nanowire with pentagonal
symmetry, reported in ref 39, is well matched by simulations.
This peculiar experimental morphology results from twinning
of five single crystal subunits exposing only {111} facets, so that
the selected 5-fold γ(n̂) minima are not meant to reproduce the
anisotropy of a single Ag crystal, but include the rotation
around the nanowire axis of each subunit. Notice that the
elongation of the morphologies shown in Figure 8 directly
result from the definition of the initial profiles and not from a
tuning of γ(n̂) as done in Figure 6c.
So far we considered systems where the evolution dynamics

consisted only in a rearrangement of facets. Different initial
conditions can however lead to more dramatic effects changing
the topology of the system. This happens for instance in solid-
state dewetting phenomena,40−42 where separation occurs in a
few subunits, leading to a local energy minimum. This
metastable state can be reproduced only when considering a
kinetic pathway not leading to the global energy minimization.
Illustrative simulations reporting a similar mechanism are
shown in Figure 9, where the evolution of an initial high aspect-
ratio paralleleliped, completely embedded in the φ = 0 phase, is
considered. Surface diffusion induces a strong flow of material
toward the borders up to the separation of the initial profile in
two distinct crystals, an outcome which is clearly far from the
ECS. The occurrence of such a dramatic change in the
morphology, is directly determined by the aspect-ratio of the
initial configuration.21 As shown by the simulations, this
happens for both isotropic and anisotropic surface energy
density (in the latter case γ(n̂) is set as in Figure 5a with αi =
0.2). Notice that such a dynamics is naturally included in the
PF description,21 thus representing an advantage over other
methods, allowing topological changes to be simulated also in
the case of highly anisotropic surface energy density.

Figure 7. Faceting of structures on surfaces. (a) Evolution from the
initial configuration (half-ellipsoidal) by including [0 0 1], [±1 ±1 1],
[±1 ±1 3], [±1 0 1], and [0 ±1 1] minima directions,36,37 αi = 0.3, β =
0.006. wi are set as in Figure 6d. (b) Detailed view of the t = 4.0 stage
of the evolution in panel (a) revealing an island faceting similar to the
one obtained with GaAs in ref 34. (c) Faceting reproducing the one
occurring in Si pit-patterned substrates as in ref 35 obtained by
imposing minima at [0 0 1], [±1 ±1 1], [±1 ±1 3], [±30 0 46] and [0
±30 46] directions,32 αi = 0.3, β = 0.006. wi are set as in Figure 6d and
w{30 0 46} = 100.

Figure 8. Morphology of far-from-equilibrium elongated shapes. (a)
[1 1 0] Ge nanowire morphology including {100}, {110}, and {111}
facets as in ref 5, obtained by selecting minima energy ratio of the Ge
crystal32 and α[001] = 0.15. (b) Ag nanowire with pentagonal
symmetry39 obtained by considering γ(n̂) in an effective way with
minima along [sin(2 i π/5) cos(2i π/5) 0] and [sin(2 i π/5) cos(2 i π/
5) 1] directions with 0 ≤ i ≤ 4, αi = 0.15, wi = 30, β = 0.002.
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■ CONCLUSIONS
In this work we have introduced a convenient definition of an
orientation-dependent surface energy, which, when considered
together with a proper regularization term and implemented
within a suitable PF framework, allows one to obtain arbitrary
faceted shapes by surface diffusion. If no free-energy barriers are
present, our approach leads, for long-enough evolution times,
to the ECS corresponding to the Wullf construction. However,
the main advantage stems from the possibility of describing
faceting on out-of-equilibrium shapes, resulting in their time-
dependent morphological evolution, eventually leading to a
local free-energy minimum. In both cases, however, the
simulations offer a description of the kinetic path from the
initial to the final state thus describing the material flow in the
out-of-equilibrium condition, resulting in a deeper under-
standing of such mechanisms in real systems.
Applications to relevant metastable nanostructures such as

nanowires or dots were illustrated, revealing several features
observed in experiments and pointing out the importance of
the initial configuration in determining the observed facets
extension in long-lived metastable states. In particular, the
possibility to handle features at the nanoscale could be of great
importance to provide coarse-grained investigations of a few
tens of nanometers wide crystals, not directly accessible by
atomistic calculations. Indeed, the model can be in principle
applied to any size scale, provided that a continuum description
exists and γ(n̂) is defined.
Importantly, the here provided methodology can be

extended to other PF models tackling additional energy
contributions affecting the profile evolution, such as elasticity,44

intermixing effects for alloys and multicomponent systems,45 as
well as peculiar boundary conditions, e.g., contact angles at the
interface of two materials.46 The implementation of such
further contributions would result in an unprecedented ability
in modeling the time-evolution of complex nanostructures.
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