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a b s t r a c t

Sclereid formation in addition to or in gaps of fragmented fibre rings is common in dicotyledonous plant
stems. Whether this sclereid formation is force-triggered remains open so far. In fruit peduncles of
several Malus species as modified plant stems, for example, the persistent fibre ring is displaced to the
centre by formation of cortex parenchyma during growth. Parenchyma cells subsequently differentiate
into an additional layer of brachysclereids, previously interpreted as an adaptation to continuously rising
fruit loads. The present study pursues a multi-scale numerical modelling approach, to verify the impor-
tant effect for different cellular architectures in both sclerenchyma categories on the stiffness of these tis-
sues and the entire peduncle. First, different material properties are simulated analogue to plant tissues
on the basis of three cell types. A regular three-dimensional and a random Voronoi microstructure com-
bined with various mechanical cell wall parameters are applied. Using homogenisation simulations based
on HILL’s principle, numerical calculations predict a lower effective homogenised tissue stiffness of
isodiametric brachysclereids compared to those of fibres, confirming experimentally obtained data from
Malus fruit peduncles. Furthermore, a curved peduncle model with a complex arrangement of different
material layers is generated. Diverse material sets are tested under three representative loadings, using
an adaptive diffuse domain approach (AMDiS). The model explains the function of sclereids as consider-
able contributors to the stiffness against bending and tensile deformations, as well as torsion, especially
in consequence of superimposed load conditions in the case of a curved plant stem.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction The load bearing tissue of dicotyledonous plant stems is fre-
The hierarchical organisation enables plants in a fascinating
way to adjust mechanical properties of tissues in response to
environmental cues, such as mechanical loading (Speck and
Burgert, 2011; Niklas, 2009). These structural adaptations depend
on a multifactorial dynamical system. Cellulose microfibril orienta-
tion on the cell wall level determines stiffness and strength of plant
stems as well as compositional modifications (e.g.: Reiterer et al.,
1999; Köhler and Spatz, 2002; Burgert et al., 2004; Gindl et al.,
2004; Burgert and Fratzl, 2009). Cell shape, relative tissue density,
and especially tissue arrangement are crucial factors on tissue level
(e.g.: Niklas, 1992; Speck and Burgert, 2011).
quently located in the periphery, addressing constructional princi-
ples of a material efficient, bending-resistant design (Niklas, 1992;
Rees, 2009). Malus fruit peduncles, however, are highly modified
plant stems. Apart from a thin peripheral layer of lamellar col-
lenchyma, the peduncles possess a centrally located sclerenchyma
(Horbens et al., 2014). Furthermore, the xylem that usually con-
tributes to the flexural rigidity of young branches is strongly
reduced. Nevertheless, the peduncle has to resist increasing fruit
weight (up to 1600-times), resulting in rising static and dynamic
stresses e.g. under oscillating wind loads. In addition to tensile
forces, fruit peduncles attached to the branches in various
orientations are exposed to considerable bending moments. The
sclerenchyma comprises a ring of fibres that becomes relatively
displaced towards the centre, due to radially expanding and divid-
ing cortical parenchyma cells during growth, especially in species
with heavy fruits (see Fig. 7 in Horbens et al., 2014).
Simultaneously, brachysclereids differentiate outside the fibre
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ring. Cell walls of such sclereids differ in thickness. Massive sec-
ondary walls were observed especially in the wild species Malus
sylvestris, thin secondary cell walls in species supporting lower
fruit weight e.g. Malus fusca. Based on a biomechanical study,
different mechanical functions and experimentally determined
Young’s moduli of fibres and brachysclereids have been found
(Horbens et al., 2014). Besides variations in cell wall composition
of both tissues, mainly cell shape and arrangement are suggested
as functional explanation.

The present study takes up the geometrical differences between
the two sclerenchyma categories fibres and brachysclereids using a
numerical modelling approach. The model tests the effect of cell
geometry on the mechanical properties of an entire curved stem,
which is difficult to verify experimentally with acceptable preci-
sion. Fibres usually are long cells with tapered overlapping ends
forming dense bundles, which originate from meristematic cells
(Evert, 2006). By contrast, brachysclereids develop mostly from
belated sclerified parenchyma cells characterised by an isodiamet-
ric shape and maintained intercellular spaces between neighbour-
ing cells (Evert, 2006). The development of sclereids in gaps of a
fragmented sclerenchyma ring is common in dicotyledonous plant
stems (Wilson et al., 1983; Busch et al., 2010); also the formation
of scattered sclereids with various shapes among the parenchyma-
tous ground tissue of fruit pericarps (Romanov et al., 2011), leaves
(Heide-Jorgensen, 1990), or flowers (Zhang et al., 2010).

Mathematical modelling of cellular mechanics contributes to a
better understanding of structure–function-relationships of com-
plex organised plants (Bruce, 2003; Godin and Sinoquet, 2005).
Models serve as complements in addition to experimentally
obtained data, or if they are difficult to obtain (e.g.: Silva et al.,
2006; Nelson et al., 2012; Schwager et al., 2013; Joffre et al.,
2014; Wang et al., 2014). Since each model represents an idealised
system, predicted parameters are often not fully transferable to the
plant system, but useful to estimate trends. Up to nowmany differ-
ent approaches are suggested for different levels of hierarchy,
reviewed in Bruce (2003). Special focus is paid to the simulation
of the micromechanics of thin-walled, hydrated cells analogous
to fruit parenchyma. A mesh-free particle framework model con-
siders the interior liquid phase and viscoelastic properties of cell
walls including time-dependent behaviour and failure mechanisms
(Liedekerke et al., 2010a,b). Experimentally determined deforma-
tions of onion epidermal cells under tension are numerically
described in good agreement by modelling a fibre-reinforced
hyperelastic material (Qian et al., 2010). Ghysels et al. (2009) used
a multi-scale model based on a mass-spring approach combined
with a discretised macroscopic domain in standard finite elements
to simulate large elastic deformations of epidermal cells. The irreg-
ular distribution of plant cells in tissues can be simulated by ran-
dom cellular microstructures using the vectorisation of digital
images, an ellipse tessellation algorithm, or the Voronoi tessella-
tion method (e.g.: Li et al., 2005; Mebatsion et al., 2009; Béakou
and Ntenga, 2011; Pieczywek et al., 2011; Faisal et al., 2014).
Several simulations focused on secondary cell walls of wood
(reviewed in Hofstetter and Gamstedt, 2009) considering varying
orientations of microfibrils and chemical compositions within a
multi-layered system (e.g.: Persson, 2000; Hofstetter et al., 2005;
Béakou and Ntenga, 2011; Joffre et al., 2014). Stiffness and/or
hygroelastic properties of hierarchically structured wood have been
predicted within the elastic range using homogenisation procedures
(e.g.: Persson, 2000; Hofstetter et al., 2005; Joffre et al., 2014).

In the present study we pursue a multi-scale approach, combin-
ing numerical models for different levels of hierarchy: the cell, tis-
sue, and organ level. (1) Based on anatomical features of
M. sylvestris, three representative geometrical cell models are gen-
erated applying a regular three-dimensional and a random Voronoi
microstructure. (2) Combining these cell microstructures with
various mechanical cell wall parameters known from literature, five
different materials representing the peduncle tissues collenchyma,
parenchyma, fibres, thin-walled, and thick-walled brachysclereids
are simulated by linear elastic homogenisation procedures based
on HILL’s principle, performed using finite element analysis (FEA).
Calculated homogenised effective material parameters are compared
with experimentally obtained data of separate tissue layers of Malus
fruit peduncles. (3) The simulated materials are arranged in individ-
ual layers within a curved cylindrical structure analogous to a fruit
peduncle, considering changing cross-sectional areas of the specific
tissues along the longitudinal axis. (4) Using an adaptive diffuse
domain approach (AMDiS), an effective method to solve partial dif-
ferential equations of elasticity within complex geometries (Vey
and Voigt, 2007; Li et al., 2009), stress states under three representa-
tive load conditions (tensile, bending and torsion tests) are numeri-
cally calculated. The model of cell/tissue level provides the basis for a
simulated peduncle and is used to verify the postulated smaller
Young’s modulus of brachysclereids compared to fibres caused by
different cell geometries. The model of organ level tests different
material sets (model A–D) (i) to explain the reinforcing function
and importance of the sclereid layer at this position, and (ii) to verify
the effect of the cell geometry, cell wall thickness, and composition
within this layer on the stiffness of the entire curved plant stem
under different loadings. We assume the case that expanding and
dividing cortical parenchyma cells remain unchanged during
growth, the differentiation of thin-walled brachysclereids, and the
formation of an additional fibre layer for comparison.

2. Material, methods, and model description

2.1. Plant material and experimental data

Matured fruits of the wild applesM. sylvestris andM. fusca are col-
lected in the fruit gene bank of the Julius Kühn-Institute, Institute for
Breeding Research on Horticultural and Fruit Crops, Dresden-Pillnitz,
Germany. Anatomical features of the peduncle tissues parenchyma,
brachysclereids, and fibres are quantified by light microscopy and
image analyses of transverse sections. For more details see
Horbens et al. (2014). Additionally, cell details have been examined
by scanning electron microscopy (SEM) ‘Supra 40VP’ (Carl Zeiss
MicroImaging GmbH, Oberkochen, Germany) at 5 kV acceleration
voltages, after critical point drying and sputter-coating with gold
palladium. To determine mechanical properties of separate tissue
layers, at least 20 matured peduncles are successively bent in
three-point bending tests (Zwick/Roell BZ 2.5/TS1S universal testing
machine, Ulm, Germany) before and after the removal of individual
tissue layers. The rigidity and Young’s modulus of the removed lay-
ers are calculated, respectively, applying the Voigt model, which
assumes a multi-layered composite girder. Methodical details are
described in Horbens et al. (2014). These data serve for comparison
and validation with numerical calculated values of the tissue-model.

2.2. Numerical model of different cell types

Based on anatomical specifics, numerical models of three cell
geometries (cell level) are generated and developed in the finite
element software ABAQUS (Dassault Systèmes Simulia GmbH,
Aachen, Germany). The data set is presented in Table 1. Type I
are spherical, thin-walled cells as repeated units, representing
polyhedral, living parenchyma cells (Fig. 1a and d). This type is also
used to simulate thin-walled brachysclereids. The contact surfaces
of those spheres slightly merge into each other, resulting in a reg-
ular microstructure that forms a hexagonal package with a cell
wall area proportion of about 16%. Gaps between spheres are
treated as voids equipped with ‘no medium’ in conformity with
air-filled intercellular spaces between parenchyma cells. The



Table 1
Overview about anatomical specifics of different tissues determined in mature fruit peduncles of M. sylvestris and the chosen parameters of the corresponding simulated cell
model.

Parameter Cell-type I – parenchyma Cell-type II – brachysclereids Cell-type III – fibres

Model M. sylvestris Model M. sylvestris Model M. sylvestris

Cell shape Spherical Polyhedral,
isodiametric

Spherical Polyhedral,
isodiametric

Polyhedral,
fibrous

Polyhedral,
prosenchymatic

Intercellular conditions Voids, no
medium

Interc. spaces,
air-filled

Voids, no
medium

Interc. spaces,
air-filled

Without voids Without interc. spaces

Cell length (lm) Endless 430 ± 63
Cell diameter (lm) 31.0 31.4 ± 7.8 39.4 39.3 ± 11.8 10–16 13.4 ± 2.9
Cell wall thickness (lm) 1.8 1.9 ± 0.4 13.5 14.6 ± 3.2 3–8 5.8 ± 1.4
Cell lumen diameter (lm) 27.4 27.6 ± 5.2 12.4 9.2 ± 5.7 3.5 1.8 ± 0.6
Cell fluid Water* Water Water* Water Water* Water
Relative cell wall area

proportion (%)
16 14.7 ± 0.8 70 88.9 ± 1.2 93 94.1 ± 3.2

Interc., intercellular.
* The fluid inclusion was defined by a bulk modulus K = 2080 MPa and an assumed ratio between the bulk and shear modulus G of 1/1000.

Fig. 1. (a–c) Scanning electron micrographs of the plant tissues parenchyma, brachysclereids (thick-walled), and fibres in fruit peduncles of M. sylvestris, and (d–f) the
correspondingly simulated cell models. Abbreviations: cl, cell lumen; cw, cell wall; fb, fibres; ic, intercellular spaces; scl, brachysclereids; v, voids. Scale bars: (b) = 5 lm;
(a, c–f) = 20 lm.
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protoplasm inside of parenchyma cells contains a large (80–90% of
the cell volume), water-filled vacuole with ions whose inner
hydrostatic cell turgor pressure (0.1–1 MPa) accounts for a large
amount of the tissue stiffness (Niklas, 1992). According to in situ
conditions, simulated cells are filled with a nearly incompressible
aqueous medium. Type II are thick-walled brachysclereids as
repeated units representing spherical cells arranged in a hexagonal
package with a cell wall area proportion of about 70%
(Fig. 1b and e). This type provides also the basis to simulate a
simplified lamellar collenchyma.

Type III represents plant fibres with polyhedral cross-sections
and an aspect ratio of about 32 modelled as endless cells
(Fig. 1c and f). A two-dimensional cellular honeycomb-structure
with an irregular cell shape and wall thickness is simulated using
the Voronoi tessellation technique according to Li et al. (2005)
and Faisal et al. (2014). The growth of circles with randomly
distributed, hexagonally arranged nucleation points is simulated
applying the same linear rate using an irregularity-parameter a
of 0.145. The tool has been developed in MATLAB (MathWorks,
Ismaning, Germany). The Voronoi-pattern is extruded in normal
direction to obtain a three-dimensional structure. Originating from
the nucleation points, a constant, circular interior water reservoir
is assumed, resulting in a relative cell wall area proportion of about
93% without voids.

2.3. Numerical model of plant tissues

Five representative materials (tissue level) are generated to
simulate individual peduncle tissues, as follows: (i) Type I provides
the basis for the simulated parenchyma and thin-walled
brachysclereids. (ii) Thick-walled brachysclereids and lamellar
collenchyma are modelled applying type II. (iii) Type III is used
for fibres. A single-layered epidermis of natural peduncles has been
considered equal to collenchyma; the reduced xylem and the
phloem analogous to parenchyma. Primary cell walls (parenchyma,
collenchyma) are simulated using a Young’s modulus E of 550 MPa
and Poisson ratio m of 0.45, according to estimated cell wall moduli
of 500–600 MPa given in Gibson (2012). A Young’s modulus E of
8 GPa is chosen for lignified secondary cell walls (sclereids, fibres).
The solid cell wall modulus of such cells may vary over three
orders of magnitude from 0.1 to 45 GPa in lignified vascular
bundles of palms (Gibson, 2012; Rüggeberg et al., 2008, 2009), or



M. Horbens et al. / Journal of Structural Biology 192 (2015) 116–126 119
from 5 to 30 GPa in tracheids of spruce (Burgert et al., 2005;
Keunecke et al., 2008).

To calculate the engineering constants of each material
(effective Young’s modulus E*, shear modulus G*, and Poisson ratio
m*), a linear elastic homogenisation procedure according to Hill
(1963, 1972) is carried out using the finite element software
ABAQUS (Dassault Systèmes Simulia GmbH, Aachen, Germany).
The procedure is based on the equivalence of the stored stress
power in the representative volume element (RVE) at the
microscopic scale and the corresponding homogeneous region at
the macroscopic scale. Imposing periodic boundary conditions to
the RVE, the homogenised material properties are obtained by
analysing the local stress fields after applying macroscopic strain
states by means of local displacement fields.

The following assumptions are applied in the present model: (i)
All computed results pertain only within the framework of small
displacement gradients. The assumed linear elastic behaviour is
permissible, considering that elastic properties dominate the
viscous material behaviour in mature apple fruit peduncles
(Horbens et al., 2014). (ii) The predicted effective material proper-
ties are based on varying isotropic parameters of the cell wall. This
assumption is sustainable using the cell-types I and II, because the
effect of microfibril orientation within cell walls should be strongly
diminished by spherical cell geometries and the resulting
averaging over various spatial orientations of cell walls. Two-
dimensional imperfect honeycomb structures (basis for type III)
can be regarded as isotropic (Li et al., 2005). Helically reinforced
fibre cell walls, however, exhibit a strong anisotropy, distinctly
pronounced in longitudinal direction. The influence of microfibril
orientation, that result in orthotropic characteristics applying an
analytical model based on a three-dimensional framework (Joffre
et al., 2014), has not been considered in the cell-type III model,
but will be discussed in detail.

2.4. Numerical model of a curved fruit peduncle using an adaptive
diffuse domain approach

2.4.1. Geometry
Analogous to tissue arrangement in fruit peduncles of

M. sylvestris, a representative peduncle model (organ level)
comprising five different layers is prepared (Fig. 2a). Furthermore,
the varying tissue distribution at three distinct parts is considered:
Fig. 2. (a–b) Representative transverse sections of fruit peduncles of M. sylvestris with de
real tissue combination, the models B–D assume various material sets within layer thr
Curved peduncle model with three varying cross-sections along the longitudinal axis, rep
to fruits (3). (h) Peduncle segment embedded in a regular cuboidal domain with an im
epidermis; fb, fibres; p, phloem; pp, pith parenchyma; scl, brachysclereids; x, xylem. Sc
(1) the base connected to the branch, (2) the centre, and (3) the part
connected to the fruits (Fig. 2e). Three constructed representative
cross-sections are interconnected along a path within a curved
cylinder (radius R of 32.5 mm). The respective material is assigned
to each layer, where different materials are only selected for the
third layer providing the basis for the peduncle models A–D
(Fig. 2a–d). Model A with thick-walled brachysclereids represents
the real tissue combination in fruit peduncles of M. sylvestris.
Model B tests the case that cortical parenchyma cells remain
unchanged during growth. Model C assumes the differentiation of
thin-walledbrachysclereids andmodelDof an additionalfibre layer.
2.4.2. Diffuse domain approach
Deformations and the resulting stress states within a curved

peduncle are numerically calculated using the computed engineer-
ing constants of simulated tissues (cf. chap. 2.3) (1) under three
representative load conditions (tensile, bending, and torsion), and
(2) with varying material sets (model A–D). A diffuse domain
approach is used, introduced in Li et al. (2009) in a general math-
ematical setting. Instead of an explicit meshing of structures and
explicit description of the equations and boundary conditions in
a given domain, the geometry is only implicitly described
(Fig. 2f) by a phase field function taking the values 1 inside the
domain and 0 outside with a smooth transition, and the equations
to solve are extended to a larger simpler domain by multiplying
the equations with the phase field function. For methodical details
see Appendix A.
2.4.3. Numerical calculations of loading tests
The front surface of the peduncle end is (1) inclined by 1� rela-

tive around the x-axis at bending tests, (2) pulled by 0.01 mm per-
pendicular to the cross-section at virtual tension tests, and (3) the
ends twisted by 1� relative to centre of the face (along the y-axis) in
torsion tests, while the other end is fixed (Fig. 3).
2.4.4. Transformation of stress states
Simulated stress states are transformed to a polar coordinate

system adapted to the curved peduncle geometry, defining a radial
direction r and a circumferential direction #. For details see
Appendix B.
tails. (c–f) Peduncle models A–D based on five tissue layers. Model A represents the
ee for comparison. The corresponding material properties are given in Table 3. (g)
resenting tissue proportions at the centre (1), the connections to the branch (2), and
plicit volumetric mesh. Abbreviations: c, collenchyma; cp, cortical parenchyma; e,
ale bars = 250 lm.



Fig. 3. (a) Fruit peduncle ofM. sylvestris and (b–d) simulated bending, tensile, and torsion tests on the curved peduncle model. Arrows represent the direction of deformations
applied at the front surface of the free peduncle end.
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2.5. Data analyses

To quantify differences in simulated stress states between dif-
ferent peduncle models, the enclosed area of stress distribution
plots at the position of layer 3 is determined as auxiliary quantity
using an integration tool based on the trapezoidal rule (Software
OriginPro, OriginLab Corporation, Northampton, USA).

3. Results

3.1. Experimentally obtained data from Malus fruit peduncles with
isolated tissue layers

Experimentally obtained data, combined with the Voigt model
obtained Young’s moduli of individual peduncle layers of M.
Table 2
Experimental data obtained from three-point bending tests of fruit peduncles with
isolated tissue layers.

Plant tissues within the peduncle layer Young’s modulus (MPa)

M. sylvestris M. fusca

e, c, cp 155.7 ± 68.6
e, c, cp, scl (thin-walled) 581.7 ± 137.2
scl (thick-walled) 2021.1 ± 554.3
fb 6526.8 ± 1483.3 4071.4 ± 991.6

c, collenchyma; cp, cortical parenchyma; e, epidermis; scl, brachysclereids; fb, fibres.

Table 3
Calculated homogenised effective mechanical parameters of five materials to simulate diffe
materials to the corresponding layer of the peduncle models in Fig. 2.

Material 1 Material 2 Materi

Initial geometry and cell wall parameters:
Geometry Cell-type I Cell-type II Cell-ty
Young’s modulus, E (MPa) 550 550 8000
Poisson ratio, m 0.45 0.45 0.45

Calculated homogenised effective material parameters:
Young’s moduli (MPa)
Ex

* 46.4 398.4 654.9
Ey

* 46.5 398.4 656.6
Ez

* 45.1 395.5 637.3

Shear moduli (MPa)
Gx

* 19.6 144.7 281.9
Gy

* 19.5 144.7 281.7
Gz

* 18.2 142.6 261.8

Poisson ratios
myx*/mzx* 0.278/0.306 0.397/0.403 0.252/0
mxy*/mzy* 0.277/0.314 0.397/0.406 0.251/0
mxz*/myz* 0.315/0.314 0.406/0.406 0.288/0

Basis of modelling for:
Plant tissues Parenchyma Collenchyma Thin-w
Peduncle layers Layer 2, 3, 5 Layer 1 Layer 3
sylvestris and M. fusca (differentiate thick- or thin-walled sclereids,
respectively) are presented in Table 2. The respective outer layer of
peduncles contained several tissues. Hence, the Young’s modulus
must be considered as an effective value of different tissues. The
calculated Young’s modulus of the fibre layer is based on pure
cross-sectional areas of fibres.
3.2. Simulation of plant tissues based on different cell models

The numerically calculated homogenised engineering constants
of each simulated material are presented in Table 3. As expected,
the three-dimensional, regular spherical cell geometry results in
approximately isotropic effective material properties of materials
1–4. By contrast, the simulated fibres (material 5) exhibit trans-
verse isotropic characteristics pointing at one preferred direction,
resulting in an about 517 MPa higher effective Young’s modulus
along the longitudinal axis (z-coordinate). The plane normal to
the fibre axis is isotropic.

The increase in tissue density by 54% from material 1 to mate-
rial 2, simulating the thickening of primary walls in spherical cells,
results in about 8.7-fold higher effective tissue stiffness. Increasing
the Young’s modulus of cell walls from 550 to 8000 MPa in spher-
ical cells, which implies a virtual lignification, results in an about
14 times higher tissue stiffness. The simulated thickening of sec-
ondary cell walls of material 3 increases the effective tissue stiff-
ness of material 4 about 125 times (related to material 1). An
additional geometrical modification of material 4 into simulated
rent tissues obtained by the finite element analysis (FEA), and the assignment of these

al 3 Material 4 Material 5

pe I Cell-type II Cell-type III
8000 8000
0.45 0.45

5766.9 6998.4
5766.9 6995.2
5725.5 7511.7

2105.2 2440.1
2105.0 2441.5
2073.3 2413.7

.280 0.391/0.397 0.447/0.451

.287 0.391/0.400 0.447/0.420

.287 0.400/0.400 0.421/0.420

alled brachysclereids Thick-walled brachysclereids Fibres
Layer 3 Layer 3, 4
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endless fibres results in a 156 times higher effective Young’s mod-
ulus of the material 5 compared to material 1 or in 1.3 times higher
values compared to material 4. Similar ratios described for Young’s
moduli are observed for the effective shear moduli. In accordance
with a microscopic model of parenchyma and collenchyma tissue,
represented in Faisal et al. (2014), the differences between the
Poisson ratios are rather small.

3.3. Simulation of a curved peduncle with different material sets
loaded under three representative load conditions

In numerically calculated loading tests the predicted reaction
forces/moments at the clamp and load application are used to ver-
ify differences in stiffness among the peduncle models A–D.
Magnitudes of the respective forces/moments are normalised by
values of the model B, representing the most compliant tissue
combination. Simulated stress states within the central parts of
peduncles models serve additionally as a measure for the stiffness
(high stress magnitudes denote a high stiffness). However, these
stresses can only be interpreted as average, representative values
not providing conclusions about failure. Stress states are repre-
sented in distribution plots for each model and a given sectional
plane, as well as in coloured plots across the section.

The applied bending increasing the peduncle curvature provokes
reaction moments along the x-axis and an axial force at the load
application (Fyl) or radial force at the clamp (Fyc) (Fig. 4c and d).
The highest absolute values, which point to the strongest resistance
against flexural deformations, shows the peduncle model D
Fig. 4. Simulated bending tests performed on a curved peduncle model with different m
radial stresses rr for each model across the central section at a given sectional plane of
across the total section. The polar coordinate system (grey) is applied at the cross-sectio
note the varying scale). (c) Determined normalised reaction moments and (d) forces a
system (black).
characterised by an additional fibre layer. The model A with thick-
walled sclereids exhibits about 20% smaller reaction forces and
moments. As expected, the lowest resistance against flexural defor-
mations is assigned to the model B followed by model C.

Considering the stress distribution plots focussed on the third
peduncle layer, an equal tendency is observed in circumferential
and radial stresses at the given sectional plane of 22.5�
(Fig. 4a and b). While the respective difference in graphs between
model A and D, or B and C is small but clearly noticeable, the mate-
rial combinations in model A and D provoke significantly higher
stresses indicating a greater peduncle stiffness. Based on ratios of
the enclosed area segment of the stress curves at the position of
layer 3 (Fig. 4a and b, marked in grey), the following factors should
be used as auxiliary quantity, to compare differences among the
peduncle models. The material combination of model A results in
about 7.6-fold higher circumferential and radial stresses compared
with model C, whereas model D causes about 1.2-fold higher stres-
ses compared with those in model A. Differences in stress curves at
the interface between the third and fourth peduncle layer arise
from overlaps of the corresponding diffuse phase fields.
Circumferential stresses r0 are the dominant component
exceeding about three times the radial stresses rr. By contrast, act-
ing shear stresses rr0 at maximum reach 5–7% of circumferential
stresses. The maximum amounts of circumferential and radial
stresses are located at the tensile (convex) and compression
(concave) side within the fibre and sclereid layer of the model A,
whereas these stresses are zero at the neutral fibre (Figs. 4a1,b1
and 5).
aterial sets (Model A–D). Distribution plots of (a) circumferential stresses r0 and (b)
22.5� (black dotted line), and (a1 and b1) coloured plots for the peduncle model A
n. Positive stress values define tensile, negative values compressive stresses (please
t the load application and clamp, respectively, related to the Cartesian coordinate



Fig. 5. Circumferential stresses r0 in simulated bending tests represented in coloured distribution plots across the total middle section for different material sets (model A–
D). Positive stress values define tensile, negative values compressive stresses (please note the varying scale).
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The simulated stretching in direction of the y-axis evokes com-
parable ratios in reaction forces/moments between the individual
models (Fig. 6a and b) as described under bending. Accordingly,
the highest stiffness against tensile loading is found in the model
D followed by the model A. The stress states within the considered
cross-sections (Fig. 6a1 and b1) show the same trend, attributed to
high proportions of an acting bending moment due to stretching of
a curved structure. However, the curvature of the peduncle is
decreased under the present load conditions. Consequently, stres-
ses at the convex side possess a compressive character; those of
the concave side are tensile stresses. The considered differences
in area proportions of the stress curves within the third peduncle
layer at the given sectional plane expose similar factors compared
with those under bending.

In simulated torsion tests, the applied torsional moment along
the y-axis provokes an additional bending moment along the z-
axis, resulting in only small torsional reaction moments at the
clamp (Myc). Ratios of reaction forces/moments among the individ-
ual models are comparable to those determined in bending and
tension tests. Because the front surface can elude in y-direction,
also a transverse force component (Fxl) is induced upon loading.
Under the present load case, the shear stress rr0 is the dominant
component (Fig. 6d). The magnitudes exceed circumferential stres-
ses r0 (Fig. 6c) by 10–14% in model B and C; but in the stiffer mate-
rial compositions of the models A and D by 30–40%. The shear
stress component rrz reaches equally high values in model A and
D. When looking at the area proportions of the stress curves within
the peduncle layer 3 at the given sectional plane of 67.5�, it is
noticeable that the increase in shear stresses from model C to A
was higher (up to 10-fold) compared with those under bending
and stretching, while the rise from model A to model D comprises
a comparable factor of 1.2. Resulting from the obviously dominant
bending moment, the coloured stress distribution plots show also a
neutral axis, and perpendicular to that plane the stress maxima/
minima at the periphery (Fig. 6c1 and d1). While the highest
magnitudes of circumferential stresses in model A are recognisable
in layer 3 and 4, those of shear stresses are found in the periphery
of layer 3 only.
4. Discussion

The present multi-scale numerical modelling approach clearly
demonstrates the different effects for cellular architectures in both
sclerenchyma categories at the tissue level. Furthermore, the
considerable contribution of the sclereid layer on the stiffness of
the entire curved structure under three representative load condi-
tions is explained.

4.1. Validity of the used cell and tissue models

As expected, the calculated effective Young’s modulus
(399 MPa) of the material 1 exceeds experimentally obtained
values of 4–80 MPa for collenchyma of plant stems (Niklas, 1992,
1993), or 80–350 MPa for fruit skins comprising cuticle and various
epidermal cell layers (Bargel and Neinhuis, 2005), due to the over-
simplification of only tangentially thickened and slightly elongated
cells. The effective Young’s moduli for the simulated parenchyma
(46 MPa) are in agreement with known values of 1–14 MPa for
fruit parenchyma (Vincent, 1989; Niklas, 1993; Gibson, 2012),
and 0.4–1 GPa for cortical parenchyma in stems of Arundo donax
L. (Rüggeberg et al., 2009). Furthermore, the calculated effective
Young’s moduli for thin-walled brachysclereids (650 MPa)
correspond approximately to experimentally obtained data from
bending tests of fruit peduncles of M. fusca (Table 2). However,
the calculated effective Young’s modulus for thick-walled
brachysclereids (5.7 GPa) exceeds 2.5 times the values from
mechanical experiments (2 GPa) (Table 2, see Fig. 5 in Horbens
et al., 2014); data from the literature are not available. The effec-
tive Young’s modulus of simulated fibres (7 GPa) again matches
experimentally obtained data of fibres (Table 2), or the stiffness
of sclerenchyma strips (8–11 GPa) obtained from micro-tensile
tests (Rüggeberg et al., 2009). Consequently, the present models
provide a reasonable basis to estimate trends.
4.2. Influence of cell geometry and cell wall properties at the tissue
level

The present study underlines the well-known relationship
between stiffness of plant tissues and cell wall composition, espe-
cially the degree of lignification (e.g. Gindl et al., 2004; Rüggeberg
et al., 2008). Mechanical testing of lignin extracted sclerenchyma
strips of stems of Aristolochia, for example, revealed 1.7 times
smaller Young’s moduli (Köhler and Spatz, 2002). Hence, the
increase in the initial Young’s modulus of cell walls, which implies
a virtual lignification, exhibits the second largest influence on the
calculated effective tissue properties. A strong increase in the effec-
tive tissue stiffness results also from the simulated thickening of
thin-walled towards to thick-walled lignified sclereids (material
3 to 4), whereas the same increase in tissue density by 54 % assum-
ing primary cell walls (material 1 to 2) has a smaller effect
(Table 3). The density-specific relationship to the tissue stiffness
is particularly known from wood, where both the Young’s modulus
and strength directly correlate with density (Kollmann, 1951;
Gibson, 2012). Furthermore, a relationship between Young’s mod-
ulus and breaking stress has been demonstrated for fruit parench-
yma, collenchyma, tracheids, and sclerenchyma of plant stems,
although significance was only evident for parenchyma and wood
(Vincent, 1989; Niklas, 1993).

The performed numerical model of plant tissues confirms the
postulated smaller Young’s modulus of thick-walled brachyscle-
reids compared to fibres. However, the increase in the effective tis-
sue stiffness from thick-walled spherical cells towards long fibres
is comparatively small (factor 1.3), but distinctly visible. The
present model primarily emphasises the impact of the higher



Fig. 6. (a and b) Simulated tensile and (c and d) torsion tests performed on a curved peduncle model with different material sets (model A–D). Distribution plots of (a and c)
circumferential stresses r0, (b) radial stresses rr, and (d) shear stresses rr0 for each model across the central section at a given sectional plane of 22.5� or 67.5� (black dotted
line), and (a1–d1) coloured plots for the peduncle model A across the total section. The polar coordinate system (grey) is applied at the cross-section. Positive stress values
define tensile, negative values compressive stresses (please note the varying scale).
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relative density of fibre tissues (23 %) compared with thick-walled
brachysclereids, due to lacking intercellular spaces between fibre
cells. Even though the preferred direction in longitudinal axis of
the virtual fibre tissue with transverse isotropic characteristics is
taken into consideration, the significant impact of the microfibril
orientation is not included. Multi-lamellar secondary cell walls
are reinforced by cellulose fibrils with varying inclinations (e.g.
2–10� in flax and hemp fibres, or 5–20� in the S2 layer of wood tra-
cheids). Small microfibril angles with respect to the longitudinal
cell axis cause a high stiffness of secondary cell walls, resulting
in only minor deformations prior to fracture (Reiterer et al.,
1999; Köhler and Spatz, 2002; Burgert and Fratzl, 2009). This fact
explains the higher difference (factor 3) in Young’s moduli of
thick-walled sclereids and fibres, experimentally obtained from
fruit peduncles with isolated tissues (Table 2, see Fig. 5 in
Horbens et al., 2014). Consequently, it may be expected that these
differences in the effective elastic properties are more distinct
along the longitudinal axis considering of the helically reinforced
cell walls of fibres in the cell/tissue model.

4.3. Function of brachysclereids in simulated curved peduncles under
three representative load conditions

Apart from few other functions, such as light-guidance by foliar
sclereids in evergreen sclerophylls (Karabourniotis, 1998), or facil-
itated water conduction to the epidermis by osteosclereids in some
xeromorphic leaves (Heide-Jorgensen, 1990), the function of
sclereids commonly agreed on are: (1) sclereids in combination
with fibres result in mechanical strengthening and play a protec-
tive role (Eschrich, 1995; Evert, 2006). Frequently, only the term
‘‘sclerenchyma” is used without any further differentiation, proba-
bly because the root of the term (skleros, meaning ‘‘hard”) already
implies the function (Evert, 2006). (2) Brachysclereids absorb com-
pressive stresses, fibres tension stresses in plants. Both statements
are certainly not wrong, but they should be specified and substan-
tiated by data, as explained below. Comparing the performed
peduncle models A–D, we can explain the importance and reinforc-
ing function of thick-walled brachysclereids at this position in
curved peduncles.

The increase in the effective tissue stiffness frommaterial 1 to 5
is reflected in the successive strengthening of the entire peduncle.
The assumed differentiation of fibres, represented by model D,
causes the highest stress magnitudes and reaction forces/moments
(Figs. 4–6). Consequently, fibres are the most important reinforcing
tissue under all representative load conditions. However, due to a
lacking cambium in Malus fruit peduncles at this position, the dif-
ferentiation of additionally fibres is not possible. The model A
implies that the formation of thick-walled brachysclereid arising
from expanding and dividing cortical parenchyma cells during
growth results in a peduncle with an almost similar stiffness as
compared to a peduncle with fibres only. Significantly lower mag-
nitudes in stress distribution plots and reaction forces/moments
determined for model C, which assumes the formation of thin-
walled sclereids as observed in Malus species supporting lower
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fruit weight, points to a strong reduced stiffness of the entire
peduncle. The simulated case of unchanged remaining cortical par-
enchyma cells during growth (model B) demonstrates that only the
fibre sheaths (layer 4) show stress magnitudes and contribute to
the peduncle stiffness, which emphasise the importance of the
additional brachysclereid formation. The proposed stiffening by
brachysclereids and fibres mentioned above can be confirmed,
(1) for small deformations, and (2) within the limits of stiffness dif-
ferences due to cell shape and cell wall thickness. A comparable
chemical composition of the cell walls is required as well, which
has earlier been observed for fibres and brachysclereids in pedun-
cles ofM. sylvestris. Cellulose crystallinity index, however, is signif-
icantly lower in sclereids (Horbens et al., 2014).

The peripheral location of sclereids results in a fourfold higher
axial second moment of area as that of the fibre ring, which can
be considered as equal to the enlargement of the pre-existing fibre
ring during growth. Stresses within thick-walled brachysclereids
are of similar magnitudes as those in the fibre sheaths or exceed
these values, apparent in stress distribution plots of model A
(Fig. 4a and b). Hence, brachysclereid formation effectively stiffens
the entire peduncle structure against bending deformations.
Applying tension and torsion to a curved structure provokes also
a bending moment, recognised from the stress-free neutral plane
in cross-sections (Fig. 6a1–d1). Similar relations in predicted stress
magnitudes and reaction forces/moments between peduncle
model A and D suggest a comparable pertinent function of
sclereids under tensile loading as a consequence of superimposed
load conditions in curved structures. In experimental studies,
however, the sclereid layer contributed only 35% to the axial
rigidity, most probably explained by the exclusive application of
tensile loads to rather straight samples (Horbens et al., 2014).
Disproportionally higher shear stresses compared to circumferen-
tial stresses, provoked in simulated torsion tests of models A and
D only, point out that sclereids and fibres in the position of the
third layer effectively stiffen the peduncle structure also under tor-
sion loads. The ‘filling’ of gaps in the partly constricted fibre ring
results in a massive closed sclerenchyma ring, commonly con-
tributed to a higher torsional stiffness (Rees, 2009). With respect
to the second statement at the outset, the results of the present
study prove the crucial role of the spatial arrangement of sclereids,
since they contribute to the peduncle stiffness under all three load
conditions, absorbing tensile, compressive, as well as shear
stresses.

Fragmentation of peripheral fibre rings, caused by growth stres-
ses or after injuries, is common in many dicotyledonous plant
stems (Wilson et al., 1983). Brachysclereids differentiate from par-
enchyma cells adjacent to cracks, described as self-repair mecha-
nism in liana stems (Busch et al., 2010). Whether this process is
force-triggered remains open so far. Assuming small deformations,
the plant stem will be comparably rigid after this ‘repair’, due to
the relatively small difference in the effective Young’s moduli
between thick-walled brachysclereids and fibres. However, the
tensile strength, influenced by microstructural characteristics and
predictable only if a statistical description of flaws is available
(Bruce, 2003; Gibson, 2012), certainly cannot be re-established. A
spherical cell shape results in reduced intercellular connections
(Burgert et al., 2004). Numerous lignified middle lamellas as weak-
est link can induce flaws upon tensile loading. Interestingly, exper-
iments applying local injury to Ficus benjamina showed that even
the coagulation of latex significantly contributes to increased ten-
sile strength (Bauer and Speck, 2012). By combining the spherical
cell shape with the specific helicoidal cell wall architecture charac-
terised by gradually alternating longitudinally and transversely
oriented microfibrils (Roland et al., 1987; Reis and Vian, 2004),
tissues of brachysclereids possess a rather isotropic material beha-
viour (Table 3). Precisely, that characteristic makes brachysclereids
suitable for stiffening a plant stem under different or superim-
posed load conditions. Furthermore, the clustering of brachyscle-
reids directly adjacent to fibres may effectively prevent fibre
buckling under compression.
5. Conclusions

The presented numerical model at the macroscopic scale eluci-
dates the slightly lower effective, homogenised tissue stiffness of
thick-walled brachysclereids compared to those of prosenchymatic
fibres and confirms experimentally obtained data from Malus fruit
peduncles. That effect is based primarily on the spherical/isodia-
metric cell shape of brachysclereids and maintained intercellular
spaces. Simulation of a curved fruit peduncle model reflects the
same trend. The model explains that additional formation of
thick-walled brachysclereids considerably contributes to the stiff-
ness under all three load conditions, absorbing tensile, compres-
sive, as well as shear stresses, especially in consequence of
superimposed load conditions at curved plant stems. The more iso-
tropic material properties of brachysclereids seem to be effective in
stiffening a plant stem under various loads. The previously used
term ‘accessory’ cells for brachysclereids is justified concerning
both, the limited effective tissue stiffness compared to fibres and
the possibility of a fast differentiation of parenchyma cells into
brachysclereids independent of an existing cambium in plants,
which is essential for new fibre initials. The presented mechanism
of a ‘self-reinforcing’ foam structure bears high biomimetic
potential.
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Appendix A. Diffuse domain approach

Boundary conditions of the phase field function are incorpo-
rated as penalty terms into the equation, with the penalty param-
eter related to the diffuse interface width of the smeared out
boundary. By matched asymptotic analysis convergence to the
original problem can be established if the diffuse interface width
turns to zero. Numerical experiments even demonstrate second
order convergence (Franz et al., 2012), which makes the approach
computationally efficient. The approach has been successfully
applied for various problems, e.g. elasticity and chemotaxis in
complex biological structures (Aland et al., 2014; Landsberg
et al., 2011). We here consider the same problem as in Aland
et al. (2014), where the mathematical setting for linear elasticity
and the different load conditions for tensile, bending, and torsion
are described in detail. The only modifications are different
material sets, a different geometry, and the use of five different
phase field functions instead of one, to account for the five differ-
ent layers with different elastic properties. We therefore do not
write the equations here, but refer to Aland et al. (2014) for details.
The resulting system is solved using the adaptive Finite Elements,
with a fine grid resolution within the diffuse interface, such that
approximately 5 grid points are within a cross-section of the
interface. The resulting system of linear equation is solved by
the iterative solver BiCGStab, implemented in the software
AMDiS (Adaptive MultiDimensional Simulation) (Vey and Voigt,
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2007; Witkowski et al., 2015), and solved in parallel on the high
performance computer TAURUS.

Appendix B. Transformation of stress states

The position of the clamp is fixed to # = 0�, the load application
to # = 90�. To recalculate the stress states from the original
Cartesian coordinates x, y, and z in the adapted polar coordinate
system, the following equations are used

rr ¼ rxx þ ryy

2
þ rxx � ryy

2
cos 2#þ rxy sin 2#; ð1Þ

r# ¼ rxx þ ryy

2
� rxx � ryy

2
cos 2#� rxy sin 2#; ð2Þ

rr# ¼ �rxx � ryy

2
sin 2#þ rxy cos 2#; ð3Þ

To minimise disturbing effects due to boundary conditions at
the clamp and load application, the stress states are compared
between different peduncle models, only considering cross-
sections of the middle peduncle position (# = 45�). The equations
of stress transformation (1)–(3) are simplified to

rr ¼ rxx þ ryy

2
þ rxy; ð4Þ

r# ¼ rxx þ ryy

2
� rxy; ð5Þ

rr# ¼ �rxx � ryy

2
: ð6Þ
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