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Abstract – A two-dimensional crystal on the surface of a sphere experiences elastic stress due to
the incompatibility of the crystal axes and the curvature. A common mechanism to relax elastic
stress is the Asaro-Tiller-Grinfeld (ATG) instability. With a combined numerical and analytical
approach, we demonstrate that also curvature-induced stress in surface crystals can be relaxed by
the long-wavelength ATG instability. The numerical results are obtained using a surface phase-
field crystal (PFC) model, from which we determine the characteristic wave numbers of the ATG
instability for various surface coverages corresponding to different curvature-induced compressions.
The results are compared with an analytic expression for the characteristic wave number, obtained
from a continuum approach which accounts for hexagonal crystals and intrinsic PFC symmetries.
We find our numerical results in accordance with the analytical predictions.

Copyright c© EPLA, 2015

Introduction. – In material sciences nanostructures
are of crucial importance, as they often define the macro-
scopic properties of the material. The kinetic effects oc-
curring upon the formation of these structures are widely
studied, well understood and often used to control the
formation process. However, under elastic stress also an
interface at rest can develop an instability and lead to
the formation of nanostructures. This stress-driven insta-
bility, known as Asaro-Tiller-Grinfeld (ATG) instability,
was first studied by Asaro and Tiller [1] and later inde-
pendently by Grinfeld [2] and Srolovitz [3]. These au-
thors studied the linear instability of a planar interface of
a stressed solid and found that the surface is unstable for
perturbations with wave numbers less than a critical value.
The instability is manifested by mass transport. The elas-
tic stress in the solid is a destabilizing factor, while the
interfacial energy is a stabilizing one and their interplay
leads to interface modulations relaxing the elastic stress.
It has been extensively studied theoretically and numeri-
cally for a wide range of different stress-driven rearrange-
ment instabilities, see, e.g., [4–11]. More recently, the
connection between the original continuum formulation
and a crystal of discrete constituents has been successfully
established [12–15].

Less understood is the role of elastic stress, which arises
from curvature effects for crystals on curved surfaces. Such
a situation can be found, e.g., in the cases of coatings,
the assembly of biomembranes, the formation of molecular
monolayers or in the packing of filament bundles [16–18].
The natural lattice packing of these two-dimensional crys-
tals is incompatible with the curvature of the surface, since
the symmetry axes of the crystals are bent by the cur-
vature, leading to stressed crystals. The influence of this
curvature-induced elastic stress and its relaxation is under
investigation in this letter. In [19] an elastic instability of
a growing colloidal crystal is considered experimentally on
a spherical droplet and the behaviour is analysed using a
continuum theory. Here, we will instead consider a two-
dimensional crystal surrounded by its melt on a spherical
surface at rest and account for discrete constituents of the
crystal by using the phase-field crystal (PFC) approach
introduced in [20,21], see also the review [22] for the wide
applicability of the modeling approach in hard- and soft-
matter systems. The PFC model was also successfully
applied to crystals on curved surfaces [23–26], but mainly
focusing on defects describing grain boundary scars [27]
and pleats [28], or properties of Pickering emulsions and
Bijels [29]. A comprehensive investigation of curvature
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induced stress relaxation using the PFC model is missing
and will be provided in this letter.

We will briefly introduce the PFC model and the numer-
ical approach and numerically investigate the relaxation of
curvature-induced stress. The results are compared with
an analytical continuum model taking into account the
hexagonal structure of the crystal and the intrinsic sym-
metry of the PFC approach. The comparison allows us to
identify the relaxation as an ATG instability.

Phase-field crystal model. – The phase-field crystal
(PFC) approach as model for elasticity [21] results from an
energy functional in terms of the reduced particle density
ψ [23],

F [ψ] =
∫

Γ

[
−|∇Γψ|2 +

1
2
|ΔΓψ|2 + f(ψ)

]
dΓ, (1)

where Γ denotes the curved surface and ∇Γ and ΔΓ are
the corresponding surface gradient and surface Laplacian.
Within our numerical consideration Γ will be a sphere.
The negative gradient term −|∇Γψ|2 together with the
Laplacian term 1

2 |ΔΓψ|2 introduces a length scale which
allows for periodic solutions. The potential term reads
f(ψ) = 1

2 (1 − r)ψ2 + 1
4ψ4. The only parameters are r,

corresponding to an undercooling and the average density
of the system ψ̄. Depending on r the energy functional
is minimized by periodic and/or constant solutions, mod-
elling a crystal and its melt, respectively [21]. We will
consider only parameters in the coexistence regime and
thus include interfacial energy of the crystal/melt inter-
face as analysed in [30]. The temporal evolution of the
system is given by

∂tψ = ΔΓ
δF [ψ]

δψ
, (2)

making ψ a conserved quantity. In [31] a derivation of this
equation from a surface dynamic density functional theory
(DDFT) is sketched, following the detailed derivation of
the PFC equation in flat space in [32,33].

Within a one-mode approximation in flat space [21] the
periodic solution is given in the (x, y)-plane by

ψp = A

⎡
⎣cos (qx) cos

(
q√
3
y

)
−

cos
(

2q√
3
y
)

2

⎤
⎦ + ψ̄ (3)

with equilibrium wave number q and amplitude A
defined as

q =
√

3
2

, A =
4
5

(
ψ̄ +

1
3

√
−15r − 36ψ̄2

)
. (4)

Correspondingly, the equilibrium wavelength is a0 = 2π/q.
We will use this one-mode approximation to initially set
up a curvature-induced stressed configuration.

Fig. 1: (Colour on-line) The temporal evolution (from left to
right) of a ribbon of stressed atoms on the surface of a sphere.
The curvature-induced stress enhances initially small crystal
interface perturbations, which grow exponentially in time. For
visualization purposes the maxima in the particle density field
are extracted and considered as atoms.

Numerical simulation. – Now, we numerically inves-
tigate the relaxation of such a curvature-induced stressed
configuration. As in the classical ATG instability, only
wavelengths of interface perturbations above some critical
value can be expected to grow exponentially. We there-
fore need large, stressed crystals and start with a one-
mode approximation restricted to a ribbon shape wrapped
completely around the equator of a sphere with radius
R = 100a0/2π (see fig. 1). Its initial width is adjusted
such that it closely corresponds to the surface coverage
as determined by the PFC parameter ψ̄. This allows to
keep crystal growth at bay in order to avoid competing
dynamic instabilities (e.g. Mullins-Sekerka). As ψ̄ steers
the width of the crystal ribbon and each new particle layer
is exposed to increasing stress due to the curvature of the
sphere, the width can be used to realize setups with dif-
ferently stressed crystals. We choose the PFC parameter
r = −0.25 and ψ̄ = −0.32, ψ̄ = −0.31, ψ̄ = −0.30 and
ψ̄ = −0.29 for increasingly stressed crystals. The PFC
equation (2) is solved by using a basis decomposition into
spherical harmonics combined with a semi-implicit Euler
time discretization [31,34]. In order to shorten simulation
times, small amplitude noise was added in each time step.

Upon temporal evolution, we identify the upper and
lower crystal/melt interface position, denoted by b(x) with
x a longitude coordinate, using the approach described
in [30]. The interface mean values are constant after an
initial relaxation of the initial condition and before crys-
talline defects are incorporated at a late stage of the inter-
face modulation. The interfacial Fourier components b̂(k)
are calculated and the amplitude for each wave number k
is monitored over time. Subsequently, in order to obtain
the growth rate σk for each wave number k, we fit the ob-
tained data to an exponential function ∝ exp (σkt) using
the time interval of constant mean interface.

We introduce the compression cm = (a0 − a)/a0, where
a0 is the equilibrium lattice spacing, determined by eq. (1),
and a the lattice spacing at the crystal/melt interface,
compressed due to the curvature of the sphere. In fig. 2 the
numerically obtained growth rate and interface spectrum
b̂(k) are exemplarily shown for ψ̄ = −0.29. Defining the
mean value of the interface as the crystal/melt interface,
this corresponds to a compression at the crystal interface
of cm = 18.4%. We extract a maximum growth rate of
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Fig. 2: (Colour on-line) Exemplary interface spectra (a) and growth rates (b) averaged over 20 single noise realizations for a
compression cm = 18.4% (ψ̄ = −0.29). The shaded areas indicate spectral domains, where the values of the growth rate are
non-physical.

σk = 3.0 × 10−2 for the wave number kmax = 0.18. The
slightly noisy structure of the growth rates and spectra in
fig. 2 originates from the noise imposed in the numerical
simulations. In fig. 3 we demonstrate for the same pa-
rameter setting, that the absolute values of the maximum
growth rate σk,max and wave number of maximum growth
kmax do not depend on the number of layers necessary to
realize a certain coverage of the sphere (and thus a certain
curvature-induced stress at the crystal/melt interface), as
a doubling of the sphere radius (and thus doubling the
number of layers) does not considerably alter the previ-
ously found values. In addition, in fig. 2 and fig. 3 we
shaded spectral regions for which exponential decay in-
stead of growth is expected, see below eq. (22). The onset
of this region should be taken as an approximate value.
Considerably large values for the growth rate around the
onset of this region are present due to the rigorous appli-
cation of our ∝ eσkt fitting procedure, even if the spectral
components exhibit no exponential behaviour at all in this
regime.

Further data of kmax for different compression rates cm

appear as solid dots in fig. 5. For the additional data
cm = 7.5% (ψ̄ = −0.32), cm = 10.2% (ψ̄ = −0.31) and
cm = 15.3% (ψ̄ = −0.30), we observe increasing maximum
values of σk = 1.4× 10−4, σk = 1.8× 10−3 and σk = 1.6×
10−2 and increasing wave numbers of maximum growth
rate kmax = 0.04, kmax = 0.09 and kmax = 0.14.

These increasing growth rates σk and wave numbers
kmax for increasing stress are in accordance with the origi-
nal continuum ATG theory [1–3], as well as with previous
observations from numerical simulations within the ampli-
tude equation approach [14] in flat space. In particular,
our time scales for the instability 1/σk are scaling as c−7

m as
in [14]. The “perfect relaxation” condition in [14] assumes
that a crystal of discrete constituents reaches a completely
stress-free state, when it includes a certain number of de-
fects. Equally distributing these defects along the crystal
interface defines a wave number. This wave number of
maximum stress relaxation is plotted as function of the
compression cm in fig. 5 and nicely agrees with our nu-
merical results, even if the origin of stress is different.
Additionally, we calculate the most unstable wave number
kmax within a continuum elasticity model.

Fig. 3: (Colour on-line) The equality of growth rates for surface
radii R = 100a0 and R = 200a0 demonstrates their indepen-
dence on the number of layers (ψ̄ = −0.29).

Continuum elasticity. – Using the continuum elas-
ticity theory with hexagonal symmetry and intrinsic PFC
symmetries, we derive expressions for the wave number of
a maximum growth rate in plane geometry. To use a shal-
low shell approximation for this analysis is justified as the
length scale for elastic deformation is much smaller than
the radius of the sphere, as 1/kmax = 1/0.04 = 25 � R =
100a0 = 725. We closely follow [35], where the ATG in-
stability for an isotropic continuous medium was analysed
in flat space.

We start with the general expression for the elastic en-
ergy (see, e.g., [36])

F = F0 +
1
2
Cijklεijεkl,

where we use the elastic constants Cijkl and the strain ten-
sors εij = 1

2 (∂ui/∂xj + ∂uj/∂xi) with the displacement
fields ui. The indices obey i, j, k, l ∈ {x, y} for two spatial
coordinates x1 = x, x2 = y, see fig. 4. We use Voigt’s no-
tation xx → 1, yy → 2 and xy = yx → 3. Exploiting the
intrinsic symmetries for the elastic constants and strain
tensors and additionally accounting for hexagonal crystal
and intrinsic PFC symmetry results in

C11 = C22 = 3C33 = 3C12, C13 = C23 = 0.

Thus, the free energy reads

F = F0 +
C33

2
(
3ε2xx + 3ε2yy + 4ε2xy + 2εxxεyy

)
.
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The stress tensor σij = ∂F/∂εij = Cijklεkl is related to
the strain tensor via

σij = 4C33εij + C33δij (−2εij + εkk) ,

and vice versa

εij =
σij

4C33
+

1
4C33

δij

(
σij −

σkk

2

)
,

and the equilibrium equation to solve reads

∂σik

∂xk
= 0 (5)

which is satisfied for

σxx =
∂2χ

∂y2
, σxy = − ∂2χ

∂x∂y
, σyy =

∂2χ

∂x2

with an arbitrary Airy stress function χ = χ (x, y). At the
crystal interface we formulate

σnn = −pl, σnt = 0, (6)

where pl is the liquid pressure and

σnn = niσijnj , σtt = tiσijtj , σnt = niσijtj

are the normal and tangential components of the stress
tensor. Describing the crystal interface as y = h(x, t), the
normal and tangent vectors of the interface are given by

(tx, ty) = (1, ∂h/∂x)/
√

1 + (∂h/∂x)2,

(nx, ny) = (−∂h/∂x, 1)/
√

1 + (∂h/∂x)2.

We now solve eq. (6) in a perturbative manner. We
assume α to be a small parameter, which describes the
strength of the interface modulation. The interface h(x, t)
now reads

h = h(0) + αh(1) + α2h(2) + · · · . (7)

Similarly, also the remaining variables are expanded in a
power series in α,

εij = ε
(0)
ij + αε

(1)
ij + α2ε

(2)
ij + · · · ,

σij = σ
(0)
ij + ασ

(1)
ij + α2σ

(2)
ij + · · · ,

χij = χ
(0)
ij + αχ

(1)
ij + α2χ

(2)
ij + · · · .

Plugging in the expansions and reordering all terms by
powers of α, eq. (6) reads up to first order

0 = pl + σ(0)
yy + α

(
σ(1)

yy − 2h(1)′σ(0)
xy

)
, (8)

0 = σ(0)
xy + α

(
−σ(0)

xx h(1)′ + σ(1)
xy + σ(0)

yy h(1)′
)

, (9)

where ′ denotes the derivative with respect to x. Evaluat-
ing these equations to zeroth order in α gives

σ(0)
yy = −pl, σ(0)

xy = 0 (10)

and σ
(0)
xx is the applied stress. To proceed with the first

order in α, we make the ansatz

χ(1) = (A + By) exp (ikx + ky + ωt) (11)

and determine the constants A, B by evaluating the in-
terface conditions (8) and (9) to first order in α. Assum-
ing further, that the first-order perturbation of the flat
(h(0)(x) = const) interface obeys

h(1) = h11 exp (ikx + ωt) , (12)

we end up with

σ(1)
xx = −2kσ0h11 exp (ikx + ωt) ,

σ(1)
xy = ikσ0h11 exp (ikx + ωt) ,

σ(1)
yy = 0, (13)

where we introduced σ0 = σ
(0)
xx − σ

(0)
yy .

The temporal evolution of the surface perturbation h(1)

is induced by the solidification of liquid at the crystal in-
terface. The solidification is driven by the difference of
the chemical potential between the liquid and solid phase
Δμ = μliquid − μsolid:

∂h

∂t
=

∂h(0)

∂t
+ α

∂h(1)

∂t
=

∂h(0)

∂t
+ αωh(1) = fΔμ, (14)

with some proportionality constant f . We encounter the
same thermodynamic situation at the crystal interface
that is described in detail in [35], appendix A. However,
we consider hexagonal crystals, making the mathematical
expressions slightly more extensive.

We start with the two phases at equilibrium. When
transforming a small mass element at the interface of vol-
ume δV from liquid into solid, the change of the Gibbs
free energy is

ΔG = ΔF + Δ(plδV ) = δV Δμ, (15)

where ΔF is the change in Helmholtz free energy. The
Helmholtz free energy ΔF = ΔFi + ΔFm is composed of
the change in free energy of the transformed mass element
ΔFm and an interface contribution ΔFi. The contribution
ΔFi = γκδV accounts for the change of the interface free
energy caused by the interface tension γ and the interface
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curvature κ. For the interface, eq. (7), the curvature κ is
given to first order in α,

κ =
h′′

(1 + h′2)3/2
� −k2αh(1),

giving
ΔFi = −γk2αh(1)δV. (16)

The change in free energy of the transformed mass element
ΔFm is given by the work necessary to increase its internal
strain to the value of the surrounding solid. The work for
an infinitesimal change in strain is

df = σijdεij . (17)

Together with the change of the volume element d (δV )
due to increasing strain, the infinitesimal elastic contribu-
tion to ΔG reads

dGel = σijdεijδV + pld(δV )
= [(σnndεnn + σttdεtt) − σnn (dεnn + dεtt)] δV
= (σtt − σnn) dεttδV. (18)

We used the mechanical equilibrium, eq. (6), by substi-
tuting −pl = σnn and exploiting σnt = 0, i.e. the stress
tensor is diagonal in the coordinate system defined by the
vectors normal and tangential to the interface. We express
dεtt and (σtt − σnn) in terms of the small parameter α and
discard all terms of order higher than one:

dεtt =
dσtt

4C33
+

dσ
(0)
xx

8C33
− dσ

(0)
yy

8C33
+ α

dσ
(1)
xx

8C33
− α

dσ
(1)
yy

8C33

and

σtt − σnn = σ0

(
1 − 2kαh(1)(x, t)

)
. (19)

Using the relations (13) for dσ
(1)
xx , dσ

(1)
yy and integrating

eq. (18) over stress values up to the interface values given
in eqs. (10), (13) results in

ΔGel =

[
σ2

0

8C33

(
1 − 4kαh(1)

)
+

σ2
0

16C33

(
1 − 2kαh(1)

)

+
σ2

0

8C33

(
−kαh(1)

)]
δV.

After plugging this together with eq. (16) into eq. (15) and
dividing by δV , we arrive at

Δμ =
σ2

0

8C33

(
1 − 4kαh(1)

)
+

σ2
0

16C33

(
1 − 2kαh(1)

)

+
σ2

0

8C33

(
−kαh(1)

)
− γk2αh(1). (20)

Comparing to eq. (14) we deduce the exponential growth
rate ω of the interface perturbation

ω = f

(
3σ2

0

4C33
k − γk2

)
, (21)

which is maximal for the wave number

kmax =
3
8

σ2
0

γC33
, (22)

and leads to decaying (ω < 0) perturbations for wave num-
bers larger than k0 = 2kmax. Now, the result for the wave
number of maximum growth is adapted to the crystal on
the curved surface of a sphere.

Discussion. – In the derivation of eq. (22), all defin-
ing quantities were evaluated at the crystal interface. In
particular, only the elastic properties and the chemical
potential difference of the interface determine the value
of kmax. Thus, we identify the crystal interface from the
previous calculations in flat geometry with the interface of
the crystal on the curved surface of the sphere. Because
the elastic constant C33 can be obtained directly from the
PFC parameters r and ψ̄ [21], the remaining task is to
determine the interface tension γ and the externally ap-
plied stress σ0 with regard to the curvature of the spherical
surface. We start with the strain in the x-direction (par-
allel to the unperturbed interface h(0)) for the crystal on
the sphere. The strain is ε

(0)
xx = 1 − cos(ϑ) for a crys-

tal interface at latitude ϑ, provided the crystal is stress
free at the equator (ϑ = 0). This emphasizes the differ-
ence to flat geometry: the curvature-induced compression
cm = 1 − cos(ϑ) increases for larger latitudes, whereas
the compression is constant in the flat geometry. For the
y-direction (perpendicular to h(0)), we can either assume
zero strain (ε(0)yy = 0) or zero stress (σ(0)

yy = 0). The two
cases correspond to pl = −cmC33 or to zero liquid pressure
pl = 0, respectively. The interface tension γ is obtained
as the ratio of the energy dF needed to prolong the inter-
face by a certain length dL and dL, i.e. γ = dF/dL. We
obtain

σ0 = γ =
8
3
C33cm, zero stress, (23)

σ0 =
2
3
γ = 2C33cm, zero strain. (24)

Accordingly, we finally get

kmax = cm, zero stress, (25)

kmax =
1
2
cm, zero strain. (26)

These two lines are also plotted in fig. 5. The actual liquid
pressure lies between the two limiting cases of no liquid
pressure pl = 0 and the case where the liquid pressure is so
strong that it ensures zero displacement in the y-direction
pl = −cmC33. Our numerical results are in between these
two limiting lines and thus allows identifying the observed
elastic instability as a curvature-induced ATG instability.

Summary. – In summary, we numerically simulated
the relaxation of curvature-induced elastic stress for crys-
tals on a spherical surface within a PFC model. In agree-
ment with an analytical continuum model accounting for
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Fig. 5: (Colour on-line) The wave number kmax of the max-
imum growth rate as a function of the compression cm. For
the crystals on the sphere, the compression is curvature in-
duced and related to the latitude ϑ of the crystal interface
cm = 1− cos(ϑ). The results from numerical simulations (solid
blue line with dots) are bounded by the two limiting cases of
zero stress (red dashed line) and zero strain (green dashed line)
in the y-direction. The blue dash-dotted line corresponds to
the “perfect relaxation” condition from [14] and agrees very
well with our results.

hexagonal crystal and inherent PFC symmetries, the re-
laxation is mediated by the ATG instability. Accordingly,
we found that the elastic stress at the crystal interface
is defining the growth rates and the characteristic wave-
length of maximum growth of the interface modulations.
This situation is different to the elastic instability dis-
cussed in [19], where the growth of a crystal under the
influence of curvature-induced stress leads to anisotropic
growth.

Even if the used numerical approach is restricted to the
geometry of a sphere using one of the other numerical
approaches discussed in [31], any curved surface can be
considered or even surface modulations, possibly induced
by the stressed crystal [37] or resulting from external
forces.
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[22] Emmerich H., Löwen H., Wittkowski R., Gruhn T.,

Tóth G. I., Tegze G. and Gránásy L., Adv. Phys., 61
(2012) 665.

[23] Backofen R., Voigt A. and Witkowski T., Phys. Rev.
E, 81 (2010) 025701.

[24] Schmid V. and Voigt A., Soft Matter, 10 (2014) 4694.
[25] Aland S., Lowengrub J. and Voigt A., Phys. Fluids,

23 (2011) 062103.
[26] Aland S., Lowengrub J. and Voigt A., Phys. Rev. E,

86 (2012) 046321.
[27] Bausch A. R. et al., Science, 299 (2003) 1716.
[28] Irvine W. T. M., Vitelli V. and Chaikin P. M.,

Nature, 468 (2010) 947.
[29] Stratford K., Adhikari R., Pagonabarraga I.,

Desplat J. C. and Cates M. E., Science, 309 (2005)
2198.

[30] Backofen R. and Voigt A., J. Phys.: Condens. Matter,
21 (2009) 464109.
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