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Abstract An efficient implementation of an adaptive finite element method on dis-
tributed memory systems requires an efficient linear solver. Most solver methods,
which show scalability to a large number of processors make use of some geometric
information of the mesh. This information has to be provided to the solver in an effi-
cient and solver specific way. We introduce data structures and numerical algorithms
which fulfill this task and allow in addition for an user-friendly implementation of a
large class of linear solvers. The concepts and algorithms are demonstrated for global
matrix solvers and domain decomposition methods for various problems in fluid
dynamics, continuum mechanics and materials science. Weak and strong scaling is
shown for up to 16.384 processors.

Keywords Software concepts · Adaptive finite elements · High performance
computing
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1 Introduction

General purpose finite element toolboxes have become more and more important in
computational science. This results from an increase in complexity of the mathe-

Communicated by: Charlie Elliott

Present Address:
T. Witkowski · S. Ling · S. Praetorius · A. Voigt (�)
Institute of Scientific Computing, TU Dresden, 01062 Dresden, Germany
e-mail: axel.voigt@tu-dresden.de

T. Witkowski
e-mail: thomas.witkowski@gmx.de

mailto:axel.voigt@tu-dresden.de
mailto:thomas.witkowski@gmx.de


1146 T. Witkowski et al.

matical models to be solved, an increase in complexity of the numerical algorithms
to be used and a decrease in the available time for a specific research project. All
together make it more and more inefficient to develop simulation software only for
a specific problem. Various general purpose simulation software packages exist. We
refer to deal.II [9], FEniCS/DOLFIN [32], DUNE [16], Hermes [44], libMesh [26] or
AMDiS [45]. They all provide a parallel implementation of an adaptive finite element
method and offer a more or less user friendly way to solve general partial differen-
tial equations on massively parallel hardware systems. To fulfill both requirements:
to be easy to use and to be efficient, leads to several problems and several com-
promises, either on the user-friendliness or the efficiency are often made. We try to
overcome this discrepancy and demonstrate how appropriate data structures can be
used to implement an efficient massively parallel adaptive finite element method in
a user friendly way and demonstrate its efficiency on various examples.

From a software point of view the finite element method is a composition of
weakly coupled algorithms. It requires data structures for the finite elements, the
mesh and some data on it, algorithms to modify the mesh, assembling procedures,
solvers for the resulting systems of linear equations and error estimators. Some of
these algorithms require only local information, as assembling which can be done on
all elements independently of each other. It thus can be perfectly parallelized and will
not be considered here. Error estimation is likewise an element local procedure. Only
the marker strategy, which chooses a subset of the elements to be refined or coarsenes
requires some global information and thus must be adjusted for parallel computa-
tions. This is already considered, e.g., in [12] and will also not be discussed here.
The other algorithms are more crucial to ensure scalability, which strongly depends
on the distributed matrix and vector data structures. We will make use of PETSc [6,
7], a widely used package that supports distributed linear algebra data structures and
algorithms, and are especially concerned with scalability of the linear solver. In [8]
it was shown that deal.II has good weak and strong scaling of up to 16,384 proces-
sors. However, the main bottleneck in the shown benchmarks is the linear solver,
which shows a break down for the largest of the presented simulations. The situation
is similar to the results of [23], which show parallel scaling of DOLFIN up to 1,024
processors. The algorithms for error estimation and mesh adaptivity scale very well,
but the linear solver does not for a larger number of processors. The problem in both
examples is the communication between the mesh data structure and the solver.

A solution to this problem is to create data structures that allow information flow
from the mesh to the solver in an efficient and general way. As we consider a gen-
eral purpose finite element toolbox with different requirements for the linear solver,
depending on the specific problem to be solved, we must allow for a general solver
interface that makes it possible to implement a large class of linear solvers. All the
concepts presented here are implemented in the finite element toolbox AMDiS [45].

The paper is structured as follows: Section 2 provides information of the software
concepts that are used in our approach for the implementation of parallel distributed
meshes. We describe in detail how specific information required by the solver can
be generated. The data structures and algorithms are used in Section 3 for a general
interface for global matrix and domain decomposition methods. Various examples
demonstrate the efficiency of the approach. We first show scalability of the mesh
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adaptation on an example of dendritic growth, in which the mesh has to be adapted
in every time step and has to be redistributed frequently. In addition, a specific global
matrix Navier-Stokes solver [24, 40] is used to demonstrate the flexibility of the
introduced concepts on a channel flow problem with dissolved particles. Besides
global matrix solvers an efficient implementation of the FETI-DP method is used to
exemplify the concepts. The efficiency of all these methods is demonstrated by show-
ing weak and strong scaling on up to 16,384 processors. Finally Section 4 gives a
detailed discussion and shows limitations of the presented algorithms.

2 Software concepts for distributed meshes

A specific partial differential equation, possible initial and boundary conditions,
appropriate basis functions, and a mesh representing the geometry are the essential
input data for any finite element toolbox. In this work we assume that the geometry
can be sufficiently represented by a coarse mesh. We further assume mesh refinement
to be necessary to solve the problem with a discretization error below a given error
bound. Throughout this paper we use meshes consisting of triangles and tetrahedrons,
which are refined by bisectioning.

2.1 Parallel adaptive finite element method

Figure 1 illustrates the basic building blocks of a h-adaptive finite element method.
In the first step the assembler creates a matrix-vector representation of the equation
on the given mesh using the predefined basis functions.

This is a local integration process. An appropriate solver is used to solve the
resulting system of equations. An error estimator is used to estimate the error of the
discrete solution. If it is above a threshold, a marker strategy is used to identify parts
of the mesh to be adapted in order to decrease the error in the next iteration. The

Fig. 1 Sketch of the finite element method with local mesh adaptivity. The dashed line, representing the
information flow from the mesh to the linear solver, is optional
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same concept might be used to mark parts of the mesh to be coarsened if the error
estimate is below a threshold in this region to further reduce the computational cost.
This loop is continued until the error estimate drops below a given threshold every-
where. Other adaptive concepts, such as p- or hp-adaptivity will also fit (with small
modifications) into this abstract illustration.

The building blocks can easily be implemented on a single processor or shared
memory system but require modifications on distributed memory systems. We need
to consider a distributed mesh and distributed matrices and vectors. Parallelization
of data structures and algorithms from linear algebra is considered, e.g., in [21]. As
already mentioned assembler, error estimator and marker strategy are quite simple to
parallelize, as all of them are mostly local mesh procedures and require almost no
communication between processors, see e.g. [8, 26]. The situation is totally different
for solving the system of equations, as the local solution of one processor is poten-
tially governed by the data of all other processors. During the last decades, many
sequential linear solver methods have been redefined for parallel computing, such
as iterative Krylov subspace methods [22, 39], or multigrid methods [43] or have
been developed specifically for parallel computing, such as domain decomposition
methods [37]. Most solver methods, which show scalability to a large number of pro-
cessors make use of some geometrical information of the mesh. Geometric multigrid
methods for example require information on the hierarchical decomposition of the
mesh, iterative substructuring methods require geometrical information of the degree
of freedoms (DOFs) that composite the interior boundaries between subdomains.
This information is available in the data structure storing the mesh and needs to be
provided to the solver in an efficient and solver specific way.

2.2 Formal definitions

We provide some formal definitions: In what follows, � ⊂ R
d with d = 2, 3, is an

arbitrary domain and ∂� denotes its boundary. The boundary splits into a Dirichlet
boundary part �D and a Neumann boundary part �N , with �D ∪ �N = ∂� and
�D ∩�N = ∅. We do not consider Robin and periodic boundary conditions explicitly,
as they can be handled in the same way. In this work, we restrict to non-overlapping
decompositions:

Definition 1 A set �1, . . . , �p of open subregions of � is a non-overlapping
decomposition of the domain �, if �=∪p

i=1�i and �i ∩�j =∅ for all 1≤ i <j ≤p.

Each subdomain is handled by exactly one processor, and each processor handles
exactly one subdomain. Non-overlapping domain decomposition naturally leads to
the splitting of each subdomain into subdomain’s interior part and interior bound-
aries, i.e., element segments which intersect with other subdomain boundaries. Data
is communicated only along the interior boundaries, which are defined as follows:

Definition 2 The boundary of a subdomain �i is denoted by ∂�i = �Di
∪ �Ni

∪ Ii

with �Di
⊂ �D , �Ni

⊂ �N and Ii is called the interior boundary of subdomain i.
Furthermore, Iij = Ii ∩ Ij denotes the interior boundary between the subdomains i
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and j and I = ⋃p

i=1 Ii is the set of all interior boundaries in �. In many situations
we are interested in the decomposition of the sets of interior boundaries into sets of
vertices, edges, and faces:

Ii = IV
i ∪ IE

i ∪ IF
i and Iij = IV

ij ∪ IE
ij ∪ IF

ij ,

where IF
i and IF

ij are empty in 2D.

Figure 2 illustrates this concept on a simple 2D example with three subdomains.
Note that also subdomain 1 and 2 share an interior boundary that consists of one
vertex. Based on the concept of interior boundaries, we define neighborhood relations
in the natural way as:

Definition 3 Subdomain j is called to be a neighbor of subdomain i if Iij �= ∅. The
set of neighbors for a subdomain i is defined by:

neighi = {j | 1 ≤ j ≤ p, j �= i, Iij �= ∅}

For both, formal definitions and the implementation, it is required to identify for
every substructure, e.g. a vertex, an edge or a face, of all coarse mesh elements the
subdomains which contain this substructure. Therefore, we establish the following
auxiliary definitions, which are exemplified in Fig. 2:

Definition 4 Let b be an arbitrary vertex, edge or face of a coarse mesh element in
�. Then we define Wb to be an index set defined as

Wb = {i | b ∈ �i},
and the degree of b is defined by

degree(b) = |Wb|.

Fig. 2 a) Non-overlapping domain decomposition in 2D with three subdomains b) interior subdomain
decomposition c) definition of the degree and ownership on the interior boundary segments



1150 T. Witkowski et al.

As two or more subdomains may intersect at some interior boundary segments,
we have to define ownership for these segments:

Definition 5 We call a subdomain i to be the owner of a boundary segment b ∈ Ii , if
there is no other subdomain with a higher index number that contains this boundary
segment:

owner(b) = i, ∀j : 1 ≤ j ≤ p ∧ j �= i ∧ b ∈ Ij ⇒ j < i

This definition is somehow arbitrary and other could be possible. The only require-
ments are that it is unique, consistent and simple to compute. Figure 2 exemplifies
this concept.

2.3 Class structure

In the previous section we have identified the need for an appropriate general infor-
mation flow between the mesh structure and the solver method. The following mesh
information could be required:

– hierarchical decomposition of the mesh: mostly used by multigrid methods to
project and prolongate the solution (or the residual) between fine and coarse
meshes.

– communication pattern: most parallel solvers iterate between a local and a global
solution procedure, thus it must be known which subdomain DOFs (degrees
of freedom) are shared with some other subdomains and must be therefore
communicated/synchronized.

– restricted sets of DOFs: especially in iterative substructuring methods [37] it is
common to split the set of DOFs in multiple subsets and to define continuous
global indices for these subsets. For example, this can be the set of all DOFs
which relate to cross points of interior boundaries (see Section 2.6).

– geometrical information of interior boundary DOFs: defining subsets of DOFs
is usually done based on geometrical information. For example, the FETI-DP
method, which we describe in Section 3.2.1 to exemplify the general concepts
presented in this section, must differ between DOFs that belong to vertices, edges
and faces of the coarse mesh elements.

This mesh information should be created only on demand when requested by a spe-
cific solver method. Figure 3 shows a general overview of all classes that make it
possible to create exactly the data required. First, the initial coarse mesh is passed
to the mesh partitioner, which is responsible to assign each coarse mesh element to
one processor. This information is used by the mesh distributor to move the coarse
mesh elements, together with their possible adaptive refinement structure and all
values which are defined on it, to the corresponding processors. As indicated by
Definition 5, not only an assignment of mesh elements to processors is required, but
also the ownership definition for vertices, edges and faces of all coarse mesh ele-
ments. This information is computed by the element object database (EL object DB),
which can be used to query for the following questions: given a geometrical entity,
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Fig. 3 Information flow between the mesh data structure and the parallel solver.

i.e., a vertex, edge or face, of a specific element: What are all elements which con-
tain this entity? Which and how many processors contain this entity (Definition 4)?
Which processor is the owner of this entity (Definition 5)? Thus, the element object
database takes the information of the mesh partitioner and breaks it down to the
level of vertices, edges and faces. This database works only on the level of the coarse
mesh and no information is stored about refined elements. Furthermore, the database
is stored on all processors for the whole initial mesh. We refer to Section 4 for a
discussion of the limitation of this approach and how to circumvent them.

The element object database is mainly used to initialize the interior boundary
handler (IB handler), which stores on each processor all the geometric entities that
form its interior boundaries with other subdomains, see Fig. 2. These boundary ele-
ments are subdivided into two sets: the boundary elements that are owned by the
processor and boundary elements that are part of processor’s subdomain but owned
by another processor. All the information is again stored on the level of the coarse
mesh and thus does not change due to local mesh adaptivity. It must be rebuilt only
after mesh redistribution. To establish the interior boundary handler, all processors
traverse all elements of the coarse mesh and pick up all their entities which are part
of an interior boundary, i.e. degree(·) > 1, and which are owned by the processor,
see Algorithm 1. Each processor then sends its list of own boundary segments to all
neighboring processors, which share the same interior boundary. This ensures, that
the list of boundary segments is the same, and especially in the same order, on all
processors that share this interior boundary.

Up to this point, the initial coarse mesh is partitioned, the corresponding subdo-
mains are created and all processors know which geometric entities form their interior
boundaries. If the mesh is adapted new DOFs are introduced, which might be located
on the interior boundaries. These DOFs are shared by at least two subdomains, and
we define ownership of these DOFs in the same way as we have done it for the inte-
rior boundaries. All communication between subdomains is done on the basis of these
common DOFs. To store all common DOFs, we introduce the concept of DOF com-
municators, that describe the DOF communication pattern between all subdomains.
Once they have been established, they can be used for very efficient point-to-point
communication. Assuming that an interior boundary handler is already initialized,
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DOF communicators can be easily created without further communication. Each sub-
domain just traverses all geometric entities of all interior boundaries and collects
the corresponding DOFs. As the interior boundary handler ensures that the bound-
ary elements are in the same order on all neighboring processors, the collected DOFs
directly fit together on the interior boundaries and can be used for communication. As
the DOF communicators must be reinitialized after each mesh adaptivity, it is quite
important that this procedure can be done fast and without further communication.

The DOF communicator has just the knowledge how to exchange data with neigh-
boring subdomains, but it has no global DOF view. This is the main task of the
parallel DOF mapper. It creates a mapping from local DOF indices to global indices.
This mapping must be consistent, i.e., if two local DOFs in two different subdomains
represent the same global DOF they must also map to the same global index. The
parallel DOF mapping is described in Section 2.6.

The last concept is the boundary DOF info object. It can be used by a specific sol-
ver method to get geometrical information about interior boundary DOFs. This can
be necessary, if, e.g., a domain decomposition method must decompose the set of
interior boundary DOFs into DOFs which are part of a boundary vertex, edge or face.

2.4 Mesh structure codes for parallel mesh adaptivity

Parallel adaptive mesh refinement is e.g. considered in the distributed mesh library
p4est [11, 13], which shows excellent weak and strong scaling for over 224,000
processors. Due to its internal mesh representation based on octrees, it is not
directly usable for triangle and tetrahedron meshes. In [23] a method for tetrahe-
dral mesh is presented which shows parallel scaling up to 1,024 processors with an
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efficiency of around 80 %. However, the mesh quality is influenced by the parti-
tioning. All these algorithms ensure coincident interior boundaries which requires
communication between neighboring processors. We present a method for parallel
mesh adaptivity where the communication is minimized and parallel scaling effi-
ciency is only limited by the efficiency of the used MPI library. One of our key
concepts for efficient distributed adaptive meshes are mesh structure codes, see [38].
The main idea is to traverse the binary trees, that represent refined elements, in a
unique way, e.g. using pre-order traverse, and to denote each leaf element by 0 and a
non-leaf element, which is further refined, by 1. Thus, a sequence of 0 and 1 uniquely
represents the refinement structure of an element. Figure 4 shows the construction of
a binary code for a refined triangle. Here, the code 1101000 (decimal value 104) can
be used to reconstruct the refinement structure of this element. The main advantage
of mesh structure codes is that they can easily be created and their communication
between processors is very cheap. In this way, mesh structure codes are used by the
mesh distributor to transfer the refinement structure of elements from one processor
to another. See Section 2.5 for more details.

We extend the concept to substructure codes. A substructure code does not store
the refinement structure of one coarse mesh element but only of one of its substruc-
tures, i.e. an edge of a triangle. Substructure codes are used to check if two elements
have the same refinement structure along their substructures, i.e., if they fit together
on interior boundaries between two subdomains.

The creation of substructure codes is based on a modified pre-order traverse
that works on element’s substructures. The algorithm, see Algorithm 2, starts on a
coarse mesh element and traverses recursively only the children that intersect with a
given substructure of the coarse mesh element. We must care about the order of the
traversed children. As it is shown in Fig. 5, the left children of T1 is the neighbor of
the right children of T2. Thus, to compare the substructure codes of both triangles
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along their neighboring edge, one of these codes must be created in reverse order.
This means, while traversing the element hierarchy, left and right child of an element
are swapped.

Using the interior boundary handler it is straightforward to define an algorithm
that iteratively adapts the local subdomains until all of them coincide along their
interior domains. This procedure is defined in Algorithm 3. Every processor creates
substructure codes for all interior boundary segments it owns. These codes are sent
to the neighboring processors where they can be directly used to check if the mesh
structures are the same at this edge or face. If this is not the case, the substructure
code can directly be used to refine the corresponding element. This loop must be
repeated as long as all processors accept the received substructure code. In all of our
simulations, even in cases which require the mesh to be changed in every timestep,
the mesh adaption algorithm terminates in a few iterations. For an optimal scaling the
number of iterations should be independent of the number of subdomains. Theoret-
ically this cannot be achieved as the number of iterations increase with O(log(p)),
with p the number of subdomains. A situation where this might be observed is when
a very localized mesh refinement is done within only one subdomain. In general,
however we see good scaling, see Section 3.1.2.

2.5 Mesh distribution

A mesh distributor is used to move coarse mesh elements, and all data on them,
from one processor to another. Once a coarse mesh element has been moved from
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processor A to processor B, processor B must reconstruct the refinement structure.
Therefore processor A creates mesh structure codes for all coarse mesh elements that
must be reconstructed on processor B. When processor B receives these mesh struc-
ture codes, it has first to create the corresponding coarse mesh element on its local
subdomain and use the mesh structure code to reconstruct its refinement structure.
Besides reconstruction of the coarse mesh element refinement structure, reconstruc-
tion of the DOF vectors is also required and handled by the mesh distributor. Not only
the element structure must be communicated, but also the values that are defined on
them. For this, we make use of value mesh structure codes that are used for both, the
reconstruction of elements and DOF vectors defined on them.

As the mesh structure code defines in a unique way not only the final structure
of the element but also the order of newly created DOFs on it, a vector of values
can be used to restore a DOF vector on this element. The length corresponds to the
number of vertices of the initial element plus the number of 1s in the mesh structure
code. This functionality of reconstructing an element refinement structure and a DOF
vector is shown in Algorithm 4.

After mesh redistribution, the following data structures must be rebuilt: interior
boundary data, DOF communicators and all requested parallel DOF mappings. All
algorithms for mesh redistribution require only point-to-point communication. The
same holds for rebuilding the interior boundary data and DOF communicators. The
only global communication required in mesh redistribution is hidden in the creation
of parallel DOF mappings, see Section 2.6.

2.6 Parallel DOF mapping

DOFs in domain �i are enumerated with a continuous index set 1, . . . , di . For the
solver method the subdomain matrices and vectors must be related such that local
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Fig. 4 Mesh structure code of an adaptively refined triangle

DOF indices of two different subdomains which correspond to the same global DOF
are related to each other. This is the main task of the parallel DOF mapping.

For a general solver method it is important that these mappings can also be estab-
lished on subsets of local and global DOFs. In Fig. 6 four subdomains are shown.
Each subdomain has five DOFs and there are 13 global DOFs. A parallel DOF map-
ping for all DOFs would map on each processor from the set of local DOF indices
1, . . . , 5 to the global set 1, . . . , 13. Figure 6 shows the situation when a solver
requires a local to global DOF mapping only for the interior boundary DOFs. In this
case, a parallel DOF mapping is a partial mapping from local DOF indices 1, . . . , 5
to the global set of all interior boundary DOF indices 1, . . . , 5. Figure 6 shows this
mapping for subdomain �3.

We consider a node as a container for DOFs. A vertex can be a node, but nodes can
also occur on element edges, faces or in the interior of an element. For scalar valued
partial differential equations each node contains exactly one DOF. In this case both
terms are equivalent. But for vector valued equations nodes may contain more than
one DOF. The number of DOFs per node can also vary, if different finite element
spaces are used for the variables.

For each subdomain we define Di = {1, . . . , di} to be the set of all DOF indices in
subdomain �i . The subset Di contains all DOF indices that are owned by processor
i. We denote with ni = |Di | the number of DOF indices owned by processor i. To
simplify the following definitions and the implementation of the corresponding algo-
rithms we assume that Di is sorted containing first all DOFs owned by the processor
of subdomain �i and followed by the other DOF indices. Consequently, Di is also a
continuous set of indices starting with 1. To relate DOFs on interior boundaries, we
define the mapping R as follows:
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Fig. 5 Creation of a substructure code and the corresponding reverse code for the longest edge of one
triangle. The underlined part of a code represents its new part caused by one refinement, and always
replaces here one 0 in the code before

Definition 6 Let d ∈ Di and e ∈ Dj , with 1 ≤ i, j ≤ p and i �= j , be DOF indices
in subdomains �i and �j respectively. If d and e correspond to the same global DOF
index, we relate them with Ri

j (d) = e.

The parallel DOF mapping provides a global index for a set of local DOF indices.
This index must be continuous and consistent on all subdomains. Thus, a DOF on
an interior boundary must have the same global index on all subdomains that include
this DOF. We define the global index to be a mapping from local DOF indices to the
set D of global indices:

gi : Di �→ D

gi(d) =
{ ∑i−1

j=1 nj + d if d ∈ Di

gj (d
′) if d /∈ Di ,Ri

j (d) = d ′ and j = owner(d ′)
(1)

In the implementation of the local to global DOF mapping, two communications
are necessary. In the first one, all ranks must compute the global index offset,
i.e., the first global DOF index owned by the rank. This offset is denoted by the
sum of global indices in all ranks having a smaller rank number. Computation
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Fig. 6 a) Creation of global index for a subset (dark colored) of local DOFs on four subdomains; dotted
line indicate DOFs which are owned by the corresponding processor b) local DOF numbering in each
subdomain c) mapping g3 from local DOF indices of subdomain �3 to the global index of the selected
DOFs

of this value can be implemented efficiently with using the parallel prefix reduc-
tion operation MPI::Scan. When all ranks have computed the global index for all
rank owned DOFs, neighboring ranks must communicate the global DOF indices
along interior boundaries. As the number of neighboring subdomains is bounded
independently of the overall number of subdomains, also this communication is
scalable. Note that the communication pattern to interchange global DOF indices
does not need to be computed, as it is already defined by the interior boundary
database.

Most parallel solver and domain decomposition methods require the set of global
DOFs to be splitted in multiple subsets that must not necessarily be disjoint. Usually
the global DOFs are splitted into the set of all DOFs on interior boundaries and the
DOFs of subdomain’s interior. Many domain decomposition methods split the set of
interior boundary DOFs, e.g., to create a global coarse space that is defined on some
interior boundary DOFs with special properties. All these subsets require a local and
global continuous index.

Global mappings, defined on subsets of DOFs, are mostly used to create dis-
tributed matrices and vectors. The definition of a global mapping allows directly
for subassembling local matrices to global ones. This becomes more complicated
when mixed finite elements are used. Then, there exist multiple finite element spaces
which define different sets of DOFs on the mesh. Thus, also local and global map-
pings have to be defined for each finite element space. There are two different
assembling strategies when using multiple solution components, that may possi-
bly be defined on different finite element spaces: the node-wise and the block-wise
ordering. The node-wise ordering assigns to all DOFs at one node a continuous
index, while the block-wise ordering considers all DOFs of the first component,
then of the second, and so on. Both are just permutations of each other. In this
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work, we make use of the block-wise ordering, as it is simple to implement
in a parallel environment. Figure 7 shows the different views on the local and
global numbering of DOFs with multiple finite element spaces. The global DOF
indices for each component are sorted with respect to the rank number that own
the DOF, which follows directly from the definition of the mapping gi . The first
global index of the j -th component finite element space on rank i is denoted with
rStart

j
i . With this definition we can specify a function that maps on rank num-

ber i for each local DOF index d in component number j to a unique matrix
row index:

matIndexi(d, j) =
{∑j−1

k=1 rStartki + ∑j−1
k=1 nRankk

i + g
j
i (d) if d ∈ Di

matIndexk(d, j) if d /∈ Di , Ri
k(d) = d ′, k = owner(d ′)

If there is only one component, or if the component number does not play any role,
we will omit the second argument and just write matIndexi(d) for the matrix index
of DOF d in rank number i.

3 Examples for efficient parallel methods

There exist two large classes of methods: global matrix solvers and domain decom-
position methods.

Fig. 7 Example for global mapping with three component defined on two different finite element spaces
and three processors. For simplicity we assume the mesh to be equidistributed. (left) the rank view of the
locally owned DOFs. The i-th rank contains in the finite element space of the j component nRank

j
i DOFs.

(right) the component view of enumerating DOFs



1160 T. Witkowski et al.

3.1 Global matrix solvers

The first one works on a distributed, globally assembled matrix and includes itera-
tive Krylov subspace methods, parallel direct solvers and a large class of multigrid
methods. To be efficient, iterative methods require for an efficient preconditioner.
Typically, the performance and scaling of the preconditioner is the limiting factor of
all iterative methods. The creation of an purely algebraic based, parallel, robust and
optimal (w.r.t. scaling) preconditioner for iterative Krylov subspace methods is still
an open research question. We will demonstrate the efficiency of the introduced data
structures and algorithms on three examples. First, a constructed problem to show
the scaling properties of mesh adaptation and repartitioning, second, a problem in
dendritic solidification, which is solved using a phase-field model and a standard
GMRES solver with Block-Jacobi preconditioning with local ILU and also requires
frequent mesh adaptation and redistribution and third, a problem in fluid dynamics,
which is solved using a diffuse domain approximation of an incompressible Navier-
Stokes equation with a specific solver, as described in [24, 40]. Here a locally refined,
but fixed mesh is used.

3.1.1 Mesh adaptivity according to a prescribed motion

We first address a problem of adaptive mesh refinement. Due to the local refine-
ment the work distribution changes over time, making an initially good load
balance useless. In order to sustain a good parallel efficiency, the mesh must
be repartitioned and redistributed, which has to be rather efficient and should
scale well for a large number of processors. To concentrate on this issue we
use a simple geometrical problem of a prescribed moving sphere in a three-
dimensional domain and require a prescribed fine mesh resolution within the
sphere and a coarse mesh outside. This requires mesh adaptivity within each
time step and serves as a worst case scenario for mesh adaptivity and load bal-
ancing. We measure the work load for each processor by counting the number
of leaf elements associated with this processor. Performance of mesh adaptiv-
ity and load balancing is shown in Fig. 8 and Table 1 for strong scaling and
in Fig. 9 and Table 2 for weak scaling.

While the local mesh adaption scales almost perfectly, as expected, also the par-
allel DOF mapping, with its global communication scales well. The number of
iterations in the parallel adaption algorithm increase only slightly for both con-
sidered cases, the one with repartitioning in every 10th timestep and the one
where repartitioning is done in every timestep. But the scaling behavior of the
mesh adaption loop differs and better scaling is achieved for an appropriate load
balancing. However, even if the mesh is repartitioned in each time step, perfect
load balancing is not achieved. For large numbers of processors this is due to
the underlying coarse mesh, which does not provide enough elements. METIS
is used for repartitioning and does not scale well in our example and is the
most expensive part of the algorithm. If repartitioning is done in each time step
the overall algorithm is dominated by the repartitioning and the parallel effi-
ciency for 4,096 processors drops to 13.6 %, if measured with respect to 256
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Fig. 8 Strong scaling of parallel mesh adaption: Shown are results for a simulation with repartition-
ing every 10th timestep and every time step. The problem setting in such that approximatly 1/4 of the
processors are effected by the parallel mesh adaption in each time step.

processors. If load balancing is only done every 10th timestep, the overall time
of the mesh adaption scales better, with an efficiency of 23.6 %. If we do not
consider the costs for repartitioning the parallel efficiency is 55.1 %. However,
for larger numbers of processors it is expected that also this number goes down

Table 1 Strong scaling of parallel mesh adaption: The upper part show the results with repartitioning at
every 10th iteration and the lower part with reparitioning at every iteration. Shown is the average of 50
timesteps

processors unbalancing parallel adapt. iter min. avrg. max. elements

256 56.9 % 3.97 26,165 41,612 65,290

512 95,9 % 4.00 11,934 21,243 25,968

1,024 137.8 % 4.03 5,377 10,919 25,968

2,048 173.8 % 4.36 2,740 5,651 15,468

4,096 206.8 % 4.75 1,218 2,940 9,018

256 12.3 % 3.86 33,161 41,619 46,728

512 16.7 % 4.08 14,792 21,244 24,797

1,024 18.9 % 4.19 7,726 10,926 12,994

2,048 20.8 % 4.33 4,325 5,654 6,833

4,096 24.4 % 4.53 2,263 2,942 3,658

The first colum shows the number of processors, the second the load unbalancing, which is defined w.r.t.
the number of leaf elements and defined as (max./avrg. − 1)100 %. The iteration number of the parallel
mesh adaption is shown in the third column and the forth column shows the minimal, average and maximal
number of leaf elements per processor
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Fig. 9 Weak scaling of parallel mesh adaption: Shown are results for a simulation with repartitioning
every 10th timestep and every time step. The previously considered example of a moving sphere which
has to be refined is duplicated if the number of processors is doubled

as the costs for the mesh adaption loop, which accounts for the communication
of domain boundaries, starts to dominate the local adaption and parallel DOF
mapping.

Table 2 Weak scaling of parallel mesh adaption: The upper part shows the results with repartitioning at
every 10th iteration and the lower part with reparitioning at every iteration. Shown is the average of 50
timesteps

processors unbalancing parallel adapt. iter min. avrg. max. elements

256 50.6 % 4.0 4,162 5,807 8,799

512 60.8 % 4.0 5,329 5,849 9,404

1,024 71.8 % 4.1 3,357 5,852 10,053

2,048 65.5 % 4.2 3,172 5.838 9,684

256 14.9 % 4.0 4,929 5,807 6,672

512 17.6 % 4.3 3,545 5,849 6,874

1,024 18.5 % 4.5 3,346 5,855 6,940

2,048 19.6 % 4.5 3,149 5.853 7,005

The first colum shows the number of processors, the second the load unbalancing, which is defined w.r.t.
the number of leaf elements. The iteration number of the parallel mesh adaption is shown in the third
column and the forth column shows the minimal, average and maximal number of leaf elements per
processor
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We see similar bahavior for weak scaling. If the algorithm is not dominated by
the repartitioning we observe good scaling properties for the mesh adaption up to
2,048 processors, which is 56.7 % for repartitioning every 10th timestep and 41.9 %
if repartitioning is done every time step. Again, parallel efficiency is measured with
respect to 256 processors. Not considering the costs for repartitioning gives an effi-
ciency of 81.0 %. Here we do not see an indication for a lower efficiency if the
number of processors is further increased.

Our results are still better than the theoretically predicted scaling properties for
parallel mesh adaption and repartitioning in [23] but not as good as their reported
computational examples up to 1.024 processors, which might be due to the consid-
ered configuration with shows a strong influence of the mesh adaption loop, which
cannot be expected to scale well, as it only considers communication along domain
boundaries.

As we use an external library for repartitioning, improving the scaling properties
of this part is out of the scope of this paper and as long as mesh adaption does not turn
out to be the dominating part in the adaptive finite element algorithm, we still expect
good scaling properties of the overall algorithm. The next example thus considers a
real application, which also requires frequent mesh adaption and repartitioning.

3.1.2 Strong scaling in dendritic growth simulations

A phase field equation is used to model dendritic growth. The model and the used
discretization is described in detail in [47]. We use a standard GMRES solver with
Block-Jacobi preconditioning with local ILU. While the solver is more or less stan-
dard, the challenge comes from the change and increase of the adaptively refined
phase boundary, which requires frequent redistribution. The example is thus well-
suited to demonstrate the prescribed scaling properties of the mesh adaptation in a
real world example.

Figure 10 shows the phase field describing the dendrite at a specific time step
as well as strong scaling results. The mesh is adapted in every timestep to resolve
the phase boundary and redistributed if the unbalancing is above 20 %. The average
of 50 timesteps is shown. The initial configuration was computed with 512 proces-
sors. Results with 128 up to 4,096 processors are shown. Because the coarse mesh is
fix, the unbalancing factor increases for more processors as not enough coarse mesh
elements can be redistributed. Table 3 shows more details.

The workload for mesh adaption and repartitioning is comparible with the pre-
vious example. However, due to a larger number of elements per processor and the
refinement restricted only to the evolving interface, the adaption loop is dominated
by the local mesh adaption and thus gives better scaling properties.

Compared with the overall time per timestep, which in addition include matrix
assembly, error estimation, preconditioning, linear solver and redistribution the scal-
ing properties for parallel mesh adaptivity play only a minor role. The overall
algorithm shows an acceptable parallel efficiency for 4.096 processors of 52,3 % if
compared with 128 processors.
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Fig. 10 (left) Dendritic structure at a specific time step. (right) The time is the average of 50 timesteps.
As in the previous example, the time for local mesh adaptivity and rebuild of the parallel DOF mapping
scales perfectly and only the mesh adaption loop shows weaker scaling properties. In addition the overall
time per timestep is shown, which include in addition matrix assembly, error estimation, preconditioning,
linear solver and redistribution and shows good scaling properties

3.1.3 Strong scaling for a parallel Navier-Stokes solver

To justify that our methods can be used for fast and simple implementation of prob-
lem specific solver methods, we show the results of our implementation of a parallel
solver for the instationary Navier-Stokes equations, which was proposed in [40]. We
briefly describe the solver. Consider the discrete system:

(
F BT

B 0

) (
u

p

)

=
(

f

g

)

(2)

Table 3 Strong scaling of parallel mesh adaptivity in dendritic growth simulation. Shown is the average
of 50 timesteps

processors unbalancing parallel adaption iter ratio

128 4.44 % 3.31 3.9 %

256 4.56 % 3.54 4.1 %

512 6.03 % 3.94 5.2 %

1,024 10.05 % 3.98 6.5 %

2,048 18.14 % 4.92 7.6 %

4,096 28.32 % 4.82 7.5 %

The first column shows the number of processors, the second load unbalancing, which is defined w.r.t.
the unknowns of the linear system. Redistribution is only done if the unbalancing is above 20. The third
column shows an almost constant number of iterations for parallel mesh adaptivity, consistent with the
previous example. The last column shows the ratio of time required in each timestep for parallel mesh
adaptivity with the overall computing time for one timestep. We observe a slight increase, which probably
continuous for larger processor numbers
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We now consider the following block triangular preconditioner (see [10] for a general
overview on preconditioning saddle point systems):

P −1 =
(

F−1 F−1BT S−1

0 −S−1

)

(3)

with S = BF−1BT . When using exact solvers for computing F−1 and S−1,
GMRES converge in at most two iterations [10]. F−1 is replaced by the approx-
imation F−1∗ which is obtained by one algebraic multigrid V-cycle on the matrix
F . The Schur complement solution S−1 is approximated by S−1∗ = Q−1∗ FpH−1∗ ,
where H−1∗ is the approximate solution of the pressure Laplace matrix with one
algebraic multigrid V-cycle, Q−1∗ is the approximate solution of the pressure
mass matrix with two CG iterations with diagonal preconditioning, and Fp the
convection-diffusion operator discretized in pressure space. In [40] it was shown
that this solver is independent of the mesh size and timestep, and that viscos-
ity has only mild influence on the iteration count. The solver was extended in
[24] for two-phase flow problems. Here, we use the same solver in a parallel
environment for a diffuse domain model of the Navier-Stokes equation [1]. The
results of [40] are not applicable in this situation, but the solver still provides
an efficient method for the incompressible Navier-Stokes equation in complicated
geometries.

We consider a flow channel with spherical particles. They are implicitly described
by a phase-field variable, which in the current situation is fixed in time. No-slip
boundary conditions at the particles are specified and incorporated into the diffuse
domain approximation. A gravity force is used to drive the flow. The Reynolds
number is Re = 100. The system to be solved in each timestep has 1.15 · 107

unknowns. 32 to 512 processors are used. The same initial mesh is provided, which
is created in a sequential preprocessing step. The partitioning is computed using
METIS and not changed during the computation. Figure 11 shows the runtimes of
the individual sub-algorithms. The overall efficiency w.r.t. 32 processors is around
100% for all runs up to 256 processors and goes down to 82 % when using 512
processors. Here the sub-problems are already very small, with only ∼ 5000 ele-
ments per subdomain. Also load balancing can no longer be achieved due to the
used coarse mesh, which does not provide enough elements. Details are shown
in Table 4.

3.2 Domain decomposition methods

Domain decomposition methods decouple the problem in local subproblems, which
can be solved independently of each other and only have to be coupled together once
or in an iterative way by some global problem. Thus, an efficient domain decompo-
sition method must balance between the parallelism it introduces and the size and
complexity of the global problem. Most known domain decomposition methods are
Schwarz iterative algorithms [17], Schur complement approaches and iterative sub-
structuring algorithms [33, 34], and the family of FETI-DP (finite element tearing and
interconnecting - dual primal) [19, 20, 27, 29] and BDDC (balancing domain decom-
position by constraints) [35, 36] methods. FETI-DP and BDDC methods are well
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Fig. 11 (Left) solution at a specific time. The particles and the adaptive mesh are shown together with the
stream lines. The color coding is according to the magnitude of the velocity field. (Right) strong scaling
behavior of the solver for 32 to 512 processors

suited as black-box solvers for the finite element method. The methods are nearly
free of parameters, only the null space of the linear system must be considered in
some way. Both methods consider only a coarse mesh problem as the global problem
and thus require less communication. The methods have been successfully applied
in elasticity [27, 29], fluid dynamics [25, 46] and in electromagnetics [48]. Parallel
and numerical scalability of the FETI-DP method for up to 65,536 processors was
shown in [28]. We will use the FETI-DP method to examplify that the introduced
algorithms and data structure allow for a simple, fast and scalable implementation.
We demonstrate the algorithm on two examples. First a problem in grain growth, in
which a phase field crystal model is used, and second a problem in biomechanics in
which elasticity is considered within the diffuse domain approach. We start with a
brief discussion of the method.

Table 4 Data for the Navier-Stokes solver for a diffuse domain configuration in 3D

processors avrg. unknowns unbalancing runtime [s] efficiency

32 359,144 5.3 % 405.5 100.0 %

64 179,572 13.3 % 205.8 98.4 %

128 89,786 14.2 % 98.1 103.3 %

256 44,893 14.1 % 48.2 105.0 %

512 22,446 40.9 % 30.6 82.6 %

The first column shows the number of processors, the second the average number of unknowns, the third
the load unbalancing, which is defined w.r.t. the unknowns of the linear system. The fourth shows the
overall runtime and efficiency in the last column is computed w.r.t the calculation with 32 processors
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3.2.1 FETI-DP method

According to Definition 1 � is decomposed into p non-overlapping subdomains �i ,
which are distributed to p processors. Each processor assembles local matrices Ai

and local right-hand side vectors f i . The vectors of unknowns are denoted by ui .
The basic idea of the FETI-DP method is to solve the local systems independently of
each other and to ensure continuity of the solution across interior boundaries in some
special way. For this, the unknowns ui are first partitioned into the set ui

I of interior
unknowns and into the set ui

� of unknowns on the interior boundaries. The interior
boundary unknowns are further partitioned into the set of dual ui

� and primal interior
boundary unknowns ui

�. We further define the vector of local variables ui
B :

ui =
[

ui
I

ui
�

]

=
⎡

⎣
ui

I

ui
�

ui
�

⎤

⎦ =
[

ui
B

ui
�

]

(4)

All subdomains are directly coupled on the primal nodes, which play the role of the
global coarse mesh problem. Along dual nodes, subdomains are only weakly coupled,
see Fig. 12. The way how to choose the interior boundary nodes to be either dual or
primal is crucial. To be consistent with Definition 2, we denote the set of all primal
and dual interior boundary nodes by I� and I�, respectively. Correspondingly, Ii,�

and Ii,� denote the primal and dual nodes in subdomain �i . As the primal nodes are
non-local, there are always subdomains i and j , such that Ii,� ∩ Ij,� �= ∅. For dual
nodes we have Ii,� ∩ Ij,� = ∅ for all 1 ≤ i, j ≤ p.

Continuity on the primal variables is enforced by global subassembly on the matri-
ces and vectors restricted to the primal variables. To enforce continuity on the dual
variables, we introduce a discrete jump operator J , such that the solution on the dual

Fig. 12 Partitioning of the unknowns for the FETI-DP method
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variables u� is continuous across interior boundaries, when Ju� = 0. Each row of
the matrix J , i.e., each constraint, must satisfy that the difference of two dual vari-
ables, that correspond to the same global node, is zero: xn − xm = 0, with xn ∈ Ii ,
xm ∈ Ij , i �= j and Ri

j (xn) = xm. If degree(b) ≥ 3, there is some choice in the
number of constraints for vertex b. On the one hand, we cam take the whole set of
redundant constraints. In this case, we will have 1

2degree(b)(degree(b) − 1) con-
straints for each vertex b and the matrix J will not be of full rank if degree(b) ≥ 3
for at least one vertex b. On the other hand, we can choose a minimal, linear inde-
pendent subset of constraints and obtain a matrix J of full rank. The first case is
simpler to implement and will be used here. Let v ∈ I� be a dual node. We denote
the ordered set of all constraints for vertex v with

vC = {(i, j) | with i, j ∈ Wv and i < j}. (5)

The number of overall (possibly redundant) constraints is given by:

Cn =
∑

b∈I�

1

2
degree(b)(degree(b) − 1)

The overall number of dual variables is given by:

�n =
p∑

i=1

Ii,�

We denote by C(vij) �→ [1, . . . , Cn], with i, j ∈ Wv and i < j , the global index
of the constraint associated to the dual node v on subdomains �i and �j . Then, the
jump operator matrix J is of size Cn × �n and defined as follows:

Jk,l =
⎧
⎨

⎩

1 , if C(vij) = k and ṽi = l

−1 , if C(vij) = k and ṽj = l

0 , otherwise
(6)

We partition the local matrices according to the partitioning of the unknown
variables:

Ai =
[

Ai
BB Ai

B�

Ai
�B Ai

��

]

, Ai
BB =

[
Ai

II Ai
I�

Ai
�I Ai

��

]

, Ai
B� =

[
Ai

I�

Ai
��

]

, Ai
�B = [

Ai
�I Ai

��

]

(7)
The right-hand side vectors are partitioned in the same way. To create the global
coarse mesh problem of the primal variables, the primal variables are subassembled

using the prolongation matrices Ri
�

T
:

Ã�� =
p∑

i=1

Ri
�

T
Ai

��Ri
� (8)

and

Ãi
B� = Ai

B�Ri
�, Ãi

�B = Ri
�

T
Ai

�B (9)
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Ãi
BB =

⎡

⎢
⎣

A1
BB 0

. . .

0 A
p
BB

⎤

⎥
⎦ , Ãi

B� =
⎡

⎢
⎣

Ã1
B�
...

Ã
p
B�

⎤

⎥
⎦ , Ãi

�B = [
Ã1

�B . . . Ã
p
�B

]
(10)

We now define the partially assembled matrix Ã and the corresponding right-hand
side f̃ as follows:

Ã =
[

ÃBB ÃB�

Ã�B Ã��

]

, f̃ =
[

fB

f̃�

]

(11)

We introduce Lagrange multiplier λ for the continuity constraints on dual variables
and formulate the FETI-DP saddle point problem as follows:

⎡

⎣
ÃBB ÃB� JT

Ã�B Ã� 0
J 0 0

⎤

⎦

⎡

⎣
uB

ũ�

λ

⎤

⎦ =
⎡

⎣
fB

f̃�

0

⎤

⎦ (12)

By simple block Gaussian elimination on the variables uB and ũ�, we obtain the
reduced linear system

Fλ = d (13)

with the FETI-DP operator F and the reduced right-hand side vector d defined by

F = J Ã−1
BB(I + ÃB�S̃−1

��Ã�BÃ−1
BB)J T

d = J Ã−1
BB(fB − ÃB�S̃−1

��(f̃� − Ã�BÃ−1
BBfB)) (14)

with
S̃�� = Ã�� − Ã�BÃ−1

BBÃB�. (15)

Note that the matrix F is never built explicitly but is evaluated in every iteration
of some Krylov subspace solver. The efficient parallel evaluation of the FETI-DP
operator is discussed in the next Section.

With an appropriate preconditioner, which we do not describe here (see [29] for
more information about this topic), the condition number of the preconditioned FETI-
DP system was proven [20] to grow asymptotically as:

O
(

1 + log2
(

H

h

))

, (16)

where H is the subdomain size and h the mesh element size. Consequently, when
the number of processors, and thus the number of subdomains, is fixed and the local
meshes are refined, the condition number of the FETI-DP system grows asymptoti-
cally as log2(h−1). If instead the problem size is fixed and the number of processors
is increased, the condition number of the FETI-DP system decreases. For weak scal-
ing, the problem size per processor is kept fixed and thusH/h and the condition
number of the FETI-DP system remains constant.

The approach can be efficiently implemented using the algorithms and data
structures described in Section 2. Required is:

1. creating all nodes on interior boundaries and deciding then to be either primal or
dual nodes,
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2. creation of matrices ÃBB , ÃB�, Ã�B , Ã�� and J ,
3. creation of vectors fB and f̃�,
4. defining some procedure for the solution of the Schur complement system S̃��,

and
5. solving the FETI-DP system in Eq. 13.

Our implementation of the FETI-DP method is based on the distributed data struc-
tures provided by the PETSc [6, 7] which are created using the algorithms and data
structures from Section 2.

There are three different index sets that must be defined for the FETI-DP method:
the set of indices of interior, dual and primal nodes. Partitioning of interior bound-
ary nodes into the group of primal and dual nodes depends on the specific problem,
or more precisely on its null space [30]. All selection algorithms have in common
that they must distinguish between nodes on coarse mesh vertices, edges and faces.
We use the interior boundary handler and the boundary DOF info class to collect all
DOFs along the interior boundaries and to split them into sets on element substruc-
tures. A parallel DOF mapping for the primal nodes is established to directly create
matrices and vectors defined on the space of primal nodes. As dual nodes are not
shared by multiple processors, no parallel DOF mapping is required here. Instead,
each processor create a local DOF mapping, which is also handled by the parallel
DOF mapping class but restricted to one processor. The mapping is from local DOF
indices to a continuous index set of non-primal DOFs.

We further have to create the matrix J . Each row of this matrix defines one con-
straint and thus has exactly two entries, 1 and −1, connecting two dual nodes in two
different subdomains, see Algorithm 5. It requires one DOF communicator for the
interior boundaries, which is used to get all subdomain indices of each dual node.
Furthermore, the algorithm makes use of two parallel DOF mappings: one for the



Scalable adaptive parallel finite element method 1171

local nodes, i.e., the interior and dual nodes, and one for the Lagrange constraints.
The algorithm traverses for all dual nodes in its subdomain all constraint pairs. If the
rank is part of this constraint, a corresponding entry to the matrix is set.

There are two different ways to implement the solution of the system with the
operator S̃��, see Eq. 15. Either its action on a vector is implemented and an iterative
solution method is used, or the matrix is assembled explicitly and a direct solver is
used. The first one requires at each iteration three matrix-vector multiplications, one
solution with ÃBB and one vector-vector addition. The solution with ÃBB can be
done quite efficiently, see the next section.

Schur complement operators are usually not explicitly assembled, as they are
dense in most applications. We experimentally show, that this is not the case for S̃��,
which has some sparsity structure. We show that it might be beneficial to assemble
it explicitly and to use parallel direct solvers to compute an LU factorization of this
matrix, which allows to solve multiple systems with different right-hand side vectors
efficiently. We have implemented both methods and will compare their efficiency.

The algorithm to apply the FETI-DP operator, see Eq. 14, on a vector is described
in Algorithm 7. For the outer loop we use either the CG method for symmetric pos-
itive definite systems, MINRES for symmetric but indefinite systems or GMRES if
the system is non-symmetric. The solver is stopped if the residual is reduced to less
than 10−8. The same solver and stopping criteria is used for the iterative Schur primal
solver. In the case of the direct Schur primal solver, we use the parallel sparse direct
solver MUMPS [2, 3]. For factorization of the local matrices, we use the multifrontal
sparse LU factorization package UMFPACK [14, 15].
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3.2.2 Weak scaling of FETI-DP for a phase field crystal model

The phase field crystal (PFC) equation was introduced in [18] as a model for elasticity
on atomic scales. It is a 6th order, nonlinear and time dependent partial differential
equation which will be resolved on a globally refined mesh, see [5]. After refinement,
each subdomain contains 66,049 DOFs for each of the three components. We run
this configuration for 10 timesteps with 16 up to 16,384 processors with increasing
domain size. On the largest domain, a system with more than 8 · 108 unknowns must
be solved in each timestep.

For the coarse mesh, all four corner nodes of each subdomain are taken to be
primal. The resulting system is indefinite and non-symmetric. It can be also for-
mulated in a symmetric, but still indefinite way, but loses diagonal dominance and
leads to higher computational costs for solving, even if an appropriate and efficient
solver, e.g. MINRES, is used. Note that solving the resulting systems with FETI-DP
is beyond its theory, which mostly assumes the matrices to be symmetric and positive
definite. Nevertheless, FETI-DP is a robust and efficient solver for this case.
Figure 13 shows runtime and weak scaling for 16 up to 16,384 processors using
either the direct or the iterative Schur primal solver. The runtime is the average of ten
timesteps. It includes the time for local subdomain assembling, creating the appro-
priate FETI-DP data structures and solving the resulting system. There is no error
estimator used here and we have disabled all disk I/O.

The direct Schur primal solver performance is better for small size computations,
but shows bad scaling for a larger number of processors. Using 4,096 processors, the
direct solver was not even able to compute the very first timestep within 30 minutes.
The main reason for this behaviour is the structure of the coarse grid. All proces-
sors contribute to the coarse mesh, but with a very low number of DOFs. For this
benchmark, each processor contains only 4 coarse nodes. The sparsity structure of
explicitly created S̃�� decays from around 32 % by using 16 processors to less than
0.05 % in the case of 16,384 processor. The iterative Schur primal solver is around

Fig. 13 (Left) Configuration for polycrystalline structure after post-processing, which is done with
OVITO [41, 42]. Shown is the lattice structure, the color coding corresponds to the crystal orientation
of a grain, see [4] for details. (Right) Computing time for one timestep of a 2D PFC computation using
FETI-DP with two different solvers for the Schur primal system
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10 % slower than the direct one for less than 1,024 processors but shows stable and
good scaling also for the larger configurations. For the benchmark simulations, only
5 outer iterations are required to solve the FETI-DP system. The performance of the
FETI-DP implementation is analyzed in more detail in Fig. 14.

Herein, we see that computing the explicit Schur primal matrix scales well, but
the time for computing their LU factorization and using this factorization for solv-
ing a system highly increases from 16 processors to 1,024 processors. The iterative
solution of this system scales very well up to 1,024 processors but shows a small
breakdown for 4,096 processors and goes down to an efficiency of only 65 % for
16,384 processors. The very sparse coarse mesh is mostly responsible for the loss of
computational efficiency of the FETI-DP implementation. FETI-DP’s setup phase,
i.e. creating primal, dual and interior node information and the corresponding paral-
lel DOF mappings, shows a constant time on a very low level. Creating all required
matrices shows a small increase in time for a larger number of processors. When fur-
ther dropping the time down it can be shown that this is mainly due to the coarse
mesh matrices Ã��, Ã�B and ÃB�.

3.2.3 Strong scaling of FETI-DP for linear elasticity

We consider a diffuse domain approximation [31] of a linear elasticity problem in
biomechanics. The lamellar structure of a columnar cactus is analyzed using the
FETI-DP method. Figure 15 shows the lamellar structure together with the deforma-
tion. The mesh has more than 55 million elements and around 11 millon vertices.
Computations are performed on 256 to 2,048 processors. Scaling results are shown
in Fig. 15. Here, creating FETI-DP data structures contains also the creation and fac-
torization of local matrices. We have not broken down this number further, as more
than 95 % of this time is related to LU factorization of the local matrices. Overall
runtime, load unbalancing information and overall efficiency of the solver method
are presented in Table 5. The super linear speedup for computations with 512 and
1,024 processors is related to the complexity of the direct solver UMFPACK in 3D,

Fig. 14 Weak scaling of the FETI-DP method. The computing time is split into the subalgorithms. The
direct Schur solver breaks down above 1.024 processors and shows a strong increase before. The most time
is spent on the LU factorization, which however remains constant. The time needed to create the required
matrices increases by a small amount for more than 1.024 processors
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Fig. 15 Left part of the figure shows the result of computing linear elasticity in a cactus geometry defined
by a diffuse domain approach. The result is colored with the magnitude of the displacement field. The
right part of the figure shows strong scaling of the solver in the range of 256 up to 2,048 processors

which is of order O
(
n2

)
, with n the number of unknowns. When the size of the sub-

domain is halved, time for local factorization is quartered. In opposite to this effect,
the size of the coarse space problem, i.e. the Schur primal matrix, is increased.

3.3 Hardware details

All computations are performed on the HPC system JUROPA at the Jülich Supercom-
puting Centre (JSC) in Germany. This system consists of 3,288 nodes, each equipped
with two Intel Xeon X5570 quad-core processors and 24 GB memory. The nodes are
connected with an Infiniband QDR HCA network. Due to the hardware configura-
tion, we do not perform benchmarks with less than 8 tasks as the effective cash-size
and memory-bandwidth per task would be different from runs with more than 8 tasks.

Table 5 Data for benchmarking the FETI-DP solver of linear elasticity in a 3D diffuse domain
configuration

processors avrg. unknowns unbalancing runtime [s] efficiency

256 40,934 6.7 % 380.5 100,0 %

512 20,934 11.0 % 170.2 111.7 %

1,024 10,740 18.5 % 85.7 110.9 %

2,048 5,532 25.6 % 64.7 73.4 %

The first column shows the number of processors, the second the average number of unknown, the thrird
the load unbalancing, which is again defined w.r.t. the unknowns of the linear system. The fourth shows
the runtimes and the efficiency in the last column is computed w.r.t the calculation with 256 processors
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4 Discussion

In order to achieve our goal to provide a user-friendly efficient massively parallel
adaptive finite element method we have presented software concepts and numerical
algorithms for distributed meshes. They provide mesh information to a parallel solver
in a solver specific way. The concepts and algorithms are general in order to allow
to implement a broad range of efficient and scalable methods for the solution of lin-
ear systems. Several examples of weak and strong scaling up to 16,386 processors
justify our approach for global matrix solvers and domain decomposition methods.
As long as repartitioning is not an issue we obtain excellent parallel efficiency, see
Sections 3.1.3, 3.2.2 and 3.2.3. In situations where the mesh has to be frequently
adapted and repartitioned to achieve an appropriate load balancing the parallel effi-
ciency goes down, which is primarily due to the bad scaling properties of the used
library METIS for partitioning. But also for these examples a parallel efficiency
above 50 % could be reached, see Section 3.1.2.

One of our assumptions is that the geometry can be sufficiently represented by a
coarse mesh. Our implementation in the finite element toolbox AMDiS stores this
coarse mesh on all processors, which will become critical if even larger HPC systems
are used. We would like to point out, that this is not specific to the presented method
but only to our implementation. Each processor requires only information on the
coarse mesh elements of its subdomain plus all neighboring coarse mesh elements.
Correspondingly, the element object database must only be stored for these coarse
mesh elements communicated during mesh redistribution.

In most of our simulations working on the coarse mesh level for parallel mesh
partitioning and distribution has the advantage of fast mesh partitioning, using mesh
substructure and structure codes. There are still some very few scenarios, where this
approach can limit parallel scaling. Especially, when the mesh has to be refined only
very locally. It can be impossible to create a coarse mesh to distribute the leaf mesh to
an appropriate number of processors. In such situations the assumption to start with
a coarse mesh has to be weakened.

However, for most situations the described data structures and numerical algo-
rithms provide an efficient way to implement problem specific global matrix solvers
and domain decomposition methods for adaptive finite element discretizations on
today’s HPC systems.
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46. Šı́stek, J., Sousedı́k, B., Burda, P., Mandel, J., Novotný, J.: Application of the parallel BDDC
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