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Abstract. Incompressible fluids on curved surfaces are considered with respect to the interplay
between topology, geometry and fluid properties using a surface vorticity-stream function formula-
tion, which is solved using parametric finite elements. Motivated by designed examples for superflu-
ids, we consider the influence of a geometric potential on vortices for fluids with finite viscosity and
show numerical examples in which a change in the geometry is used to manipulate the flow field.

Key words. curved surfaces, geometric force, interface

AMS subject classifications. 35Q35, 76D17, 53Z05, 14Q10

1. Introduction. We consider two-dimensional (2D) films, e.g. thin films whose
thickness is much smaller than their lateral extension. Such systems can often easily
bend and we are interested in the question how an imposed geometric deformation
influences the internal structure of the film. Such an interplay between geometry and
internal structure is well studied for condensed matter systems, see [3]. The most
illustrative example is probably the structure of a soccer ball, with 12 pentagons,
serving as topological defects. Here, the favored regular order of hexagons, which
easily tile a flat surface, cannot be extended throughout the surface of the sphere.
In technologically more relevant examples of soft materials, such defects are the key
for chemical functionalization and provide the opportunity for the design of novel
materials [15].

Less explored is an analogy for fluid films. Here, the defects are vortices, which
interact with the geometry. In [23] this is analyzed for superfluidic films, fluids with
zero viscosity and zero entropy. Thin layers of liquid helium are used as a model
system, which can be described by a simple scalar field theory for the superfluidic wave
function on the surface. We will here concentrate on the more subtle case of fluids
with nonzero viscosity and consider a numerical approach for an incompressible surface
Navier-Stokes equation for which we analyze the interplay between the geometry and
the vortices of the flow field.

The paper is organized as follows: In §2 we will introduce basic concepts to
describe the interplay of geometry and defects. Section §3 is devoted to the incom-
pressible surface Navier-Stokes equation. In §4 we extend our surface vorticity-stream
function formulation [17] to evolving surfaces, introduce the numerical approach and
consider various examples. Conclusions and an outlook towards biological structures
and technological applications are provided in §5.

2. Basic concepts – geometric potential. One mechanism for the appearance
of defects is a topological constraint. If we triangulate the considered surface we can
use the Gauss-Bonnet theorem to establish a relation between the triangulation and
the Gaussian curvature K

V + F − E =
1

2π

�

Γ

K dΓ (2.1)
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with the number of vertices V , the number of faces F , the number of edges E of the
triangulation and the closed surface Γ. Although the Gaussian curvature is a local
geometric property, when integrated over Γ it becomes a topological invariant, the
Euler characteristic

1

2π

�

Γ

K dΓ = ξ(Γ). (2.2)

For a sphere with radius R, the surface area is 4πR2 and the Gaussian curvature
is 1/R2, which gives ξ(S2) = 2. For each vertex i of the triangulation, we can
assign a coordination number Ci, counting the number of edges at that point. Each
edge connects two vertices. On the other hand, i is also a vertex of Ci faces, where
each connects three vertices. The contribution of vertex i thus can be written as
1− Ci/2 + Ci/3 = (6− Ci)/6. Thus, vertices with a coordination number Ci = 6 do
not contribute and we can sum over all defects (Ci �= 6) and obtain

�

i

indS(di)

6
= ξ(Γ) (2.3)

with indS(di) = 6 − Ci the defect charge at defect position di. For our soccer ball
example from the introduction, with each face replaced by a vertex, we thus find 12
points with charge +1.

Similar arguments hold for a vector field on a closed surface. Also in this case the
Euler characteristic can be used to understand the defects. Here, the Poincaré-Hopf
theorem shows, that any continuous vector field on a sphere must have at least two
+1 defects or one +2 defect. Consider e.g. the lines of latitude on the globe that
naturally create two vortices at the north and south pole. Here, the charge of a defect
is no longer determined by it’s coordination number, but by it’s winding number,
which is the algebraic sum of the number of revolution of the vector field along a
small counterclockwise oriented curve around the defect. We obtain

�

i

indV (di) = ξ(Γ) (2.4)

with index/winding number indV (di). For the example on the globe we have two +1
defects. For a more detailed discussion we refer to e.g. [13].

The topology of the surface is one source for the appearance of defects and the
total topological charge of all defects is a conserved quantity. However, the defect
positions are not determined by topology but result from defect-defect interactions
and other sources, such as geometry and dynamics. On a more general surface with a
varying Gaussian curvature, each defect experiences an additional geometric potential,
which reflects the broken translational invariance of the surface and the type of order
in the film or the alignment of the vector field with the surface. In all these cases,
defects can be described by an effective free energy interacting among each other [25].
This geometric interaction is given by

E(di) = −2πκ ind(di)

�
1− ind(di)

2

�
UG(di) (2.5)

with elastic stiffness κ and geometric potential UG determined by the surface Poisson
equation

ΔΓUG = K, (2.6)
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with Laplace-Beltrami operator ΔΓ. The linear term in eq. (2.5) arises from the
geometric frustration of a vector field, while the quadratic term originates from the
distortion of a vortex’s own flow pattern by the geometry. This self-interaction is
analyzed in detail for superfluid helium in [23]. For this case, analytic expressions can
be derived for the interaction of vortices, showing e.g. a repulsion of vortices from
positive curvature and an attraction to negative curvature regions.

While this mesoscopic approach to describe the system in terms of the interac-
tion of defects is very efficient and successful in determining stable configurations, it
neglects other influences for the appearance of defects, which are caused by dynamics.
We therefore consider a full dynamic model and use the described approach only to
justify the chosen examples and to demonstrate the interaction of the flow field with
the geometry. Instead of a superfluid, where dissipation mechanisms of a conventional
fluid are absent, we consider an incompressible surface Navier-Stokes equation and
show that the same interactions can also be found for that case.

3. Incompressible surface Navier-Stokes equation.

3.1. Model derivation. Using a generalized Laplacian of a vector field on a
surface, the incompressible surface Navier-Stokes equation reads

∂tv + v · ∇Γv = −∇Γp+ µ(ΔB
Γ v +Kv) (3.1)

∇Γ · v = 0 (3.2)

with velocity v defined in the tangential space with components (v1, v2) corresponding
to the unit vectors e1(x) and e2(x), which are defined to be perpendicular to the
surface normal n(x) and each other for each x ∈ Γ, pressure p and surface viscosity µ.
ΔB

Γ is the Bochner or rough Laplacian. Besides this generalization of the Laplacian
also the Gaussian curvature K enters, which is the reason for the geometric potential
discussed above. This formulation, but without the Gaussian curvature term, has been
used in [22] to formulate the Navier-Stokes equation on a manifold. An alternative
formulation is

∂tv + v · ∇Γv = −∇Γp+ µ(ΔR
Γv + 2Kv) (3.3)

∇Γ · v = 0 (3.4)

with ΔR
Γ the Laplace-de Rham operator or Hodge-de Rham Laplacian. This formu-

lation is used in [4], but again without the Gaussian curvature term. The correct
formulation has been considered in the mathematical literature in [8, 14]. The equa-
tion is also related to the Boussinesq-Scriven constitutive law for the surface viscosity
in two-phase flow problems [20, 21, 2] and biomembrane problems [12, 1, 9]. How-
ever, numerical approaches are restricted until recently to simplified (e.g. spherical
or axis-symmetric) geometries.

In [17] the surface vorticity-stream function formulation is introduced for the
incompressible surface Navier-Stokes equation, which follows as in 2D by considering
the velocity v3 = (v1, v2, 0) in the coordinate system (e1(x), e2(x),n(x)) and v3 =
∇ × ψ with the surface stream function ψ. We end up with a scalar surface partial
differential equation

∂tΔΓψ + J(ψ,ΔΓψ) = µ(Δ2
Γψ + 2∇Γ · (K∇Γψ)) (3.5)

where J(ψ,ΔΓψ) = −(∇ × ψ) · ∇ΓΔΓψ is the Jacobian. To numerically solve the
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equation, we rewrite eq. (3.5) as a system of two second order equations

∂tφ+ J(ψ, φ) = µ(ΔΓφ+ 2∇Γ · (K∇Γψ)) (3.6)

φ = ΔΓψ (3.7)

with surface vorticity φ.

3.2. Numerical approach. A parametric finite element approach is considered
to solve the problem. We here follow the general approach, described in [5, 6, 24],
which is already tested for the considered problem in [17]: Let Πh be a surface trian-
gulation of Γ of mesh size h such that

Γh =
�

Z∈Πh

Z

is an interpolation of Γ and let Tτ be a uniform partition of the time interval (0, T ]
of mesh size τ . We define the discrete time derivative dτv

m := (vm − vm−1)/τ and
introduce the surface finite element space

Vh = {vh ∈ H1(Γh) | vh|Z ∈ P 1(Z), ∀Z ∈ Πh}.

Thus, the surface finite element approximation reads: Find (φm, ψm) ∈ Vh × Vh such
that for all (α, β) ∈ Vh × Vh

(dτφ
m, α) + (J(ψm−1, φm), α) = µ(−∇Γφ

m − 2K∇Γψ
m,∇Γα)

(φm, β) = −(∇Γψ
m,∇Γβ).

Within this semi-implicit discretization, we assume K to be given analytically or
computable at the required accuracy, see Appendix A.

3.3. Simulation results. We first come back to the topological defects on a
sphere and study their interaction. We consider two +1 defects (vortices), with initial
condition, such that they are not at opposite positions. The vortices are known to
repel each other and their interaction energy depends linearly on the vortex separation
distance [18]. Fig. 1 shows the dynamics for a viscosity µ = 1.0 towards a state, where
they are maximally separated.

Here, the vortices approach the maximal separation directly. However, this is
no longer the case for a reduced viscosity. Fig. 2 shows the vortex trajectories for
µ = 0.01 as well as the dependency of the time needed to reach the stationary state,
in which the vortices have a separation distance of π, on the viscosity. For less viscose
fluids, the vortices spiral towards the stationary state and as larger the viscosity as
faster the stationary state is reached.

We now consider a geometry which is topologically equivalent to the sphere, but
with varying Gaussian curvature. We use a common test case in computer graphics,
the Stanford bunny. To make flow simulations on this geometry feasible, the original
mesh had to be improved and the surface had to be smoothed to remove sharp corners.
The obtained geometry still contains regions with large positive and negative Gaussian
curvature. We start our simulation with noise as initial condition and let the flow field
evolve. Fig. 3 shows the reached stationary state, with high velocity differences and
three +1 defects (vortices) and one −1 defect (saddle), see Fig. 4 for details. We thus
obtain

�
i indV (di) = 1+ 1+1− 1 = 2 = ξ(Γ) and therefore a different realization of

the Poincaré-Hopf theorem.
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Fig. 1. Evolution of streamlines for t = 0, 0.25 and 1 (from left to right) for µ = 1.0 on a
sphere with R = 1 (top row: front view ; bottom row: top view).
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Fig. 2. Vortex trajectories on the sphere for µ = 0.01 (left) and distance between the two
vortices over time for various viscosities (right).

This stationary state is reached for all considered initial conditions and is clearly
a result of the influence of the Gaussian curvature on the flow. However, a quanti-
tative analysis of this influence is not possible for this geometry. To concentrate on,
and better understand the geometric interaction, we therefore consider three simpler
examples, which are adapted from [23]. The first considers a circular domain with a
bump, slightly placed outside the center, the second a circular domain with a Gaussian
saddle and the third the ”Enneper disk”, a minimal surface, which is characterized
by a vanishing mean curvature H. Within the first two cases

Γ = {(x1, x2, x3)T ∈ R3 : x21 + x22 < r2, x3 = h(x1, x2)}
with a height-function h specifying the bump

h(x1, x2) = αr0 exp
− (x1−m1)2+(x2−m2)2

2r20
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Fig. 3. Streamlines on the Stanford bunny with numbering of the different defects. Numbers
“1”, “2” and “3” indicate vortices (+1 defects) and number “4” indicates a saddle (−1 defect).

Fig. 4. Identified defects with rescaled streamlines according to the marked positions in Fig. 3.

with α = 2.5, r0 = 0.2 and position (m1,m2), or the Gaussian saddle

h(x1, x2) =
α

r0
((x1 −m1)

2 − λ(x2 −m2)
2) exp

− (x1−m1)2+(x2−m2)2

2r20

with α = 1.5, λ = 0.99, r0 = 0.2 and position (m1,m2), see Fig. 5. The ”Enneper
disk” is parameterized over the circular domain Γ with r = 1.5 by

x =
1

3
(
1

3
x31 − x1x

2
2 − x1), y =

1

3
(−1

3
x32 + x2x

2
1 + x2), z =

1

3
(x21 − x22),

see Fig. 5.
In all cases, we consider one +1 defect, which however does not result as a topo-

logical constraint, but is a consequence of the boundary condition, which we specify
as

φ = 2cr, ψ = c at ∂Γ (3.8)

with a constant c. This induces a constant tangential velocity at the boundary and
thus a vortex within Γ. We further specify zero initial conditions for φ and ψ.

Fig. 6 shows the stationary solutions. All results show the same qualitative
influence by the Gaussian curvature as described for superfluids in [23].

In the first case, the bump leads to a lower velocity above the vortex (visible by a
larger spacing between the contour lines), which creates a higher pressure and pushes
the vortex away from the bump. Competing with the boundary condition, which
favor the vortex to be at the center, this leads to a stationary profile with the vortex
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Fig. 5. Considered geometries: (a) circular domain with a bump, (b) circular domain with
a Gaussian saddle and (c) the ”Enneper disk”. The color coding is according to the Gaussian
curvature K.

Fig. 6. Stationary solution for: (a) circular domain with a bump, (b) circular domain with a
Gaussian saddle and (c) the ”Enneper disk”. Shown are the contour lines for ψ. The color coding
is according to the geometric potential UG.

placed off the center. The second case is a vortex-trapping surface. The geometric
potential has its absolute minimum at the center of the saddle, which attracts the
vortex, independent of the position of the Gaussian saddle on the disk. The third
case considers a minimal surface. In this example, the vortex is attracted to the
middle of the surface. With this demonstration of the vortex-geometry interaction
in an incompressible surface Navier-Stokes equation, we will now consider evolving
surfaces with the goal to manipulate the flow field by changing the geometry.

4. Evolving surface. We consider a surface evolution in normal direction and
assume that the surface area remains (at least globally) conserved. This requirement
follows from our incompressibility assumption and is a typical constraint e.g. for
lipid bilayer membranes [11]. We here specify the normal velocity, which is given
by vn = (0, 0, vn) in the considered coordinate system. We thus obtain for the fluid
velocity u = v3 + vn which has to satisfy ∇Γ · u = ∇Γ · v3 + ∇Γ · vn = ∇Γ · v +
vn∇Γ ·n = ∇Γ ·v+vnH = 0 with mean curvature H. Besides this modification of the
incompressibility condition, the normal velocity also enters in the tangential balance
of linear momentum, see [20] and [1, 19] for a formulation in the same notation as
used here. We obtain

∂tv + vnHv + v · ∇Γv = −∇Γp+ µ(ΔR
Γv + 2Kv −∇Γ(vnH))

− 2µ∇Γ · (vnS) (4.1)

∇Γ · v + vnH = 0 (4.2)

on the evolving surface Γ(t) with the shape operator S = ∇Γn. The term including
the mean curvature H on the left hand side of eq. (4.1) follows from conservation of
linear momentum and the transport theorem, see e.g. [7], whereas the term including
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the shape operator S is a consequence of the rate-of-deformation tensor D = 1
2 (∇Γv+

(∇Γv)
T )−vnS, which includes the normal velocity and the shape operator and induces

viscous tractions for non-uniform shape changes.
We rewrite the system as before as a surface vorticity-stream function formula-

tion1

∂tφ+∇Γ · (vnH∇Γψ) + J(ψ, φ) = µ(ΔΓφ+ 2∇Γ · (K∇Γψ))

− 2µ∇Γ · (n× (∇Γ · (vnS)) (4.3)

φ = ΔΓψ (4.4)

and introduce the surface finite element approximation. Let Πm
h be a surface trian-

gulation of Γ(tm) of mesh size h and Γm
h an interpolation of Γ(tm) such that

Γm
h =

�

Z∈Πm
h

Z.

With the surface finite element spaces

V m
h = {vmh ∈ H1(Γm

h ) | vmh|Z ∈ P 1(Z), ∀Z ∈ Πm
h }

the surface finite element approximation now reads: Find (φm, ψm) ∈ V m
h × V m

h such
that for all (α, β) ∈ V m

h × V m
h

(dτφ
m, α)− (vnH∇Γψ

m,∇Γα) + (J(ψm−1, φm), α) =

µ(−∇Γφ
m−2K∇Γψ

m,∇Γα)

−2µ(∇Γ · (n× S∇Γvn), α)

−2µ(∇Γ · (n× (vn∇Γ · S)) , α)
(φm, β) = − (∇Γψ

m,∇Γβ)

where K = Km, H = Hm, S = Sm and vn = vmn the Gaussian and mean curvature,
the shape operator of Γm

h and the normal velocity at tm, respectively. Again, these
geometrical data are assumed to be given analytically or computable at the required
accuracy, see Appendix A.

To demonstrate the approach, we modify the considered examples for the sta-
tionary circular domain and let the bump and the Gaussian saddle evolve. We first
use α = α(t) in the considered height profile with α(0) = 0 and α(T ) = 2.5 or 1.5,
for the bump and Gaussian saddle, respectively. Fig. 7 shows the evolution of the
streamlines, which adapt to the changing geometry leading to the same stationary
solution as before. As a second example, we let the bump and the Gaussian saddle
rotate around the center, with (m1,m2) = (m1(t),m2(t)), see Fig. 8 and Fig. 9.

5. Conclusions. The mathematical formulation of an incompressible fluid on
a curved evolving surface is considered. The incompressible surface Navier-Stokes
equation contains additional geometric terms which induce a strong coupling between
topology, geometry and fluid properties. On closed surfaces, topological constraints
might require the presence of defects in the flow field. These defects respond to the
geometry of the surface and its changes and interact with each other. This leads

1We here used the identity rot(w) = −∇Γ · (n×w) with a vector field w defined on Γ(t) for the
additional term on the right hand side of eq. (4.1). All other terms are treated as proposed before
or in [17].
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Fig. 7. Time evolution of the bump and Gaussian saddle for t = 2, 14, 26, 38 and 50. Shown
are the contour lines for ψ. The color coding is according to the geometric potential UG.

Fig. 8. Time evolution of the bump and Gaussian saddle for t = 2, 11, 19, 27 and 36. Shown
are the contour lines for ψ. The color coding is according to the geometric potential UG.

to a highly nonlinear coupling, which can induce non-uniform surface flow as a re-
sponse of lateral motion and thus opens new possibilities to manipulate surface flow.
We demonstrate this interplay on simple examples using a surface vorticity-stream
function formulation, which is solved by using parametric finite elements. Within
the numerical treatment we assume all geometric quantities, such as the mean and
Gaussian curvature, H and K, the shape operator S and the normal velocity vn, to
be given analytically or computable at the required accuracy. For the example of the
Stanford bunny we are using gradient recovery strategies to approximate the shape
operator and the mean and Gaussian curvature. For more general surfaces or gener-
alizations of the model in which vn is not specified but follows from the balance of
linear momentum normal to the surface, the computation of H, K, S and vn requires
more care, see Appendix A.

Appendix A. Approximation of geometric quantities on surfaces.

The numerical solution of the considered surface vorticity-stream function formu-
lation requires various geometric quantities of the surface Γ(t). If H, K and S of the
surface Γ(t) cannot be computed analytically, a point-wise approximation of these
quantities is needed and has to be computed from the discretized surfaces Γm

h . Vari-
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Fig. 9. Evolution of the bump location (left) and the Gaussian Saddle location (right) denoted
by (m1,m2) and the appropriate vortex location (x1, x2) for a full rotation period.

ous numerical approaches have been proposed for this task. We here refer to [10] for a
parametric finite element approach, for which convergence of order k could be shown
in the L2-norm for Lagrange elements of polynomial degree k + 1. The approach is
based on a discrete definition of H = −ΔΓid and S = ∇Γn, with curvature vector
H = Hn and the formula for integration by parts on Γ

�

Γ

∇Γf dΓ = −
�

Γ

fH dΓ.

The surface finite element approximation reads: Find (Hh,Sh) ∈ (V m
h )3 × (V m

h )3×3

such that for all (γ, δ1, δ2, δ3) ∈ (V m
h )3 × (V m

h )3 × (V m
h )3 × (V m

h )3

(Hh, γ) = (∇Γid,∇Γγ) (A.1)

(S1,h, δ1) = −(n1,∇Γ · δ1)− (n1,Hh · δ1) (A.2)

(S2,h, δ2) = −(n2,∇Γ · δ2)− (n2,Hh · δ2) (A.3)

(S3,h, δ3) = −(n3,∇Γ · δ3)− (n3,Hh · δ3) (A.4)

with Sh = (S1,h,S2,h,S3,h)
T and n = (n1, n2, n3)

T in the Cartesian coordinate
system (e1, e2, e3) and the finite element spaces V m

h = {vmh ∈ H1(Γm
h ) | vmh|Z

∈
P k+1(Z), ∀Z ∈ Πm

h }. The approximation of the mean and Gaussian curvature Hh

and Kh can now be computed from the eigenvalues of Sh.
The present implementation uses Lagrange elements of polynomial degree 1, but

local gradient recovery strategies at each quadrature point for the example of the
Stanford bunny, which qualitatively leads to the same results as for elements of higher
degree in [10]. A detailed convergence study and comparison with other approaches
will be discussed elsewhere [16].

Acknowledgement. This work was supported by DFG within SPP 1506 through
Vo899/11-2. We would like to thank Simon Praetorius for fruitful discussions and his
support.

REFERENCES

[1] M. Arroyo and A. DeSimone, Relaxation dynamics of fluid membranes, Phys. Rev. E, 79
(2009).



Vortex-curvature interaction on curved surfaces 11

[2] D. Bothe and J. Prüss, On the Two-Phase Navier-Stokes Equations with Boussinesq-Scriven
Surface Fluid, J. Math. Fluid Mech., 12(1) (2010), pp. 133–150.

[3] M. J. Bowick and L. Giomi, Two-Dimensional Matter: Order, Curvature and Defects, Adv.
Phys., 58 (2009), pp. 449–563.

[4] C. S. Cao, M. A. Rammaha, and E. S. Titi, The Navier-Stokes equations on a rotating 2-d
sphere: Gevrey regularity and asymptotic degrees of freedom, Z. Angew. Math. Phys., 50
(1999), pp. 341–360.

[5] G. Dziuk and C. M. Elliott, Finite elements on evolving surfaces, IMA J. Numer. Anal., 27
(2007), pp. 262–292.

[6] G. Dziuk and C. M. Elliott, Surface finite elements for parabolic equations, J. Comput.
Math., 25 (2007), pp. 385–407.

[7] G. Dziuk and C. M. Elliott, Finite element methods for surface PDEs, Acta Numerica, 22
(2013), pp. 289–396.

[8] D. G. Ebin and J. Marsden, Groups of diffeomorphisms and motion of an incompressible
fluid, Ann. Math., 92 (1970), pp. 102–163.

[9] J. Fan, T. Han, and M. Haataja, Hydrodynamic effects on spinodal decomposition kinetics
in planar lipid bilayer membranes, J. Chem. Phys., 133 (2010).

[10] C. J. Heine, Isoparametric finite element approximation of curvature on hypersurfaces,
Preprint Fak. f. Math. Phys. Univ. Freiburg, (2004).

[11] W. Helfrich, Elastic Properties of Lipid Bilayers - Theory and Possible Experiments, Z.
Naturforsch. C, 28 (1973), pp. 693–703.

[12] D. Hu, P. Zhang, and W. E, Continuum theory of a moving membrane, Phys. Rev. E, 75
(2007), p. 041605.

[13] R. D. Kamien, The geometry of soft materials: a primer, Rev. Mod. Phys., 74 (2002), pp. 953–
971.

[14] M. Mitrea and M. Taylor, Navier-Stokes equations on Lipschitz domains in Riemannian
manifolds, Math. Ann., 321 (2001), pp. 955–987.

[15] D. R. Nelson, Toward a Tetravalent Chemistry of Colloids, Nano Letters, 2(10) (2002),
pp. 1125–1129.

[16] I. Nitschke and A. Voigt, Curvature approximations on surfaces – A Discrete Exterior
Calculus approach, in preparation, (2014).

[17] I. Nitschke, A. Voigt, and J. Wensch, A finite element approach to incompressible two-phase
flow on manifolds, J. Fluid Mech., 708 (2012), pp. 418–438.

[18] J. M. Park and T. C. Lubensky, Sine-Gordon field theory for the Kosterlitz-Thouless tran-
sitions on fluctuating membranes, Phys. Rev. E, 53 (1996), pp. 2665–2669.

[19] M. Rahimi, A. DeSimone, and M. Arroyo, Curved fluid membranes behave laterally as ef-
fective viscoelastic media, Soft Matter, 9 (2013), pp. 11033–11045.

[20] L. E. Scriven, Dynamics of fluid interfaces. Equations of motion for Newtonian surface fluids,
Chem. Eng. Sci., 12 (1960), pp. 98–108.

[21] T. W. Secomb and R. Skalak, Surface flow of viscoelastic membranes in viscous fluids, Quart.
J. Mech. Appl. Math., 35(2) (1982), pp. 233–247.

[22] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-
Verlag, 1988.

[23] A. M. Turner, V. Vitelli, and D. R. Nelson, Vortices on curved surfaces, Rev. Mod. Phys.,
82 (2010), pp. 1301–1348.

[24] S. Vey and A. Voigt, AMDIS – adaptive multidimensional simulations, Comput. Vis. Sci.,
10 (2007), pp. 57–66.

[25] V. Vitelli and A. M. Turner, Anomalous Coupling Between Topological Defects and Cur-
vature, Phys. Rev. Lett., 93 (2004).


