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Abstract
Weconsider amicroscopicmodeling approach for active systems. The approach extends the phase
field crystal (PFC)model and allows us to describe generic properties of active systemswithin a
continuummodel. The approach is validated by reproducing results obtainedwith corresponding
agent-based andmicroscopic phase fieldmodels.We consider binary collisions, collectivemotion and
vortex formation. For larger numbers of particles we analyze the coarsening process in active crystals
and identify giant number fluctuation in a cluster formation process.

1. Introduction

Active systems can exhibit a wide range of collective phenomena. Depending on the density and interaction
details, energy taken up on themicroscopic scale can be converted intomacroscopic, collectivemotion.
Theoretically, such behavior can be addressed either from themicroscopic scale, taking the interactions into
account or from themacroscopic scale, focusing on the emerging phenomena. For reviews on both theoretical
descriptions see e.g. [1–3].Wewill here introduce a continuummodeling approachwhich combines aspects
fromboth scales.

Vicsek-likemodels [4] are examples for themicroscopic viewpoint. Thesemodels consider particles, which
travel at a constant speed to represent self-propulsion, whose direction changes according to interaction rules
which comprise explicit alignment and noise.However, explicit alignment rules are not necessary for the
emergence of collective phenomena. For elongated particles already the shape gives rise to alignment
mechanisms due to steric interactions, see e.g. [5, 6], and also for circular or spherical particles collective
phenomena can be observed if inelastic behavior in the interaction rules is considered, see e.g. [7]. In [8] it has
been shown that even deformation of self-propelled particles can lead to alignment, without any explicit
alignment rule. Besides these agent-based approaches alsomicroscopic phasefieldmodels have been proposed
in the context of collective cellmigration [9, 10]. Each cell is thereby approximated by a deformable phasefield
variable and the physical processes behind cellmotility are considered using an active polar gel theory [11–14].
Due to the complexity of thesemodels the number of cells, which can be considered numerically is limited.
However, collective alignment could be identified alsowith thesemodels as a result of inelastic interactions.

Field theoreticalmacroscopicmodeling of active systems allows us to describe emerging phenomena on
larger scales.Most approaches are based on the Toner-Tumodel [15] and consider only orientational ordering.
Collectivemotion has been addressedwithin suchmodels, see e.g. [16].More detailed continuummodeling
approaches which address besides orientational ordering also positional ordering and thus include also aspects
frommicroscopicmodels are rare and have so far only been considered for active crystals [17, 18]. Such systems
arise for high densities, where particle interactions dominate the propulsion.

In this article we propose an extension of themodel considered in [17] to also allow for lowdensities. The
proposedmicroscopic field theoretical approach can be considered as aminimal continuummodel to describe
generic properties of active systems and a coarse grainedmodel of the detailed descriptions in [9, 10].
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After introducing themodel, we validate it by reproducing results obtainedwith corresponding agent-based
microscopicmodels [7].We consider binary collisions, collectivemotion and vortex formation. Considering
larger systems the formation of collectivemotion can be analyzed. For high densities we observe a coarsening
process of regions of different directions of collectivemotion. This was alreadymentioned in [17], but not
analyzed. In a broader context the observations can also be related to defects in active crystals. For orientational
ordering this was e.g. analyzed in [19]. Another remarkable property of active systems is giant number
fluctuations. In contrast to equilibrium systems, where the standard deviationDN in themean number of
particlesN scales as N for  ¥N , in active systemsDN can become very large and scales as aN , withα an
exponent as large as 1 in two dimensions. This theoretical prediction is often associatedwith elongated particles
and a broken orientational symmetry [20–23], but it has also been verified in simulations of agent-basedmodels
for disks with no-alignment rule, see [24], andwas demonstrated by experiments and simulations in [25].We
use large scale simulations to show giant numberfluctuations in the proposedmicroscopic field theoretical
approach.

2. Themodel

Our starting point is the active phasefield crystalmodel derived in [17, 18], which reads in scaled units
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see the supplement in [17] for a detailed non-dimensionalization of the equations, which can be derived from
microscopic dynamic density functional theory. Themodel combines the phase field crystal (PFC)model,
introduced in [26, 27] tomodel elasticity in crystallinematerials, with a polar order parameter and a self-
propulsion term. The energy functional pfc, the PFCmodel is based on, is a Swift-Hohenberg energy [28]
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for a one-particle density field y ( )r t, , which is definedwith respect to a reference density ȳ. The parameter r is
related to an undercooling and togetherwith ȳ determines the phase diagram. The functional arises by splitting
theHelmholtz free energy in an ideal gas contribution and an excess free energy, rescaling and shiftingψ,
expanding the ideal gas contribution in real-space and the excess free energy in Fourier-space, and
simplifications by removing constant and linear terms that would vanish in the dynamical equations. A detailed
derivation of the energy and its relation to classical density functional theory can be found in [29, 30]. The
second quantity in equation (1) is the polar order parameter ( )P r t, , which is related to a coarse-grained velocity
fieldwith a typicalmagnitude v0 of the self-propulsion velocity. The remaining parameters are:M0mobility, v0
self-propulsion determining the strength of the activity, a2 and a4 two parameters related to relaxation and
orientation of the polarization field, andC2 andC4 are parameters which govern the local orientational ordering.
Themodel is used in [17, 18] to study crystallization in active systems. To allow for a description of individual
particles, we consider a variant of the PFCmodel, the vacancy PFC (VPFC)model, introduced and analysed in
[31–33] and also considered in [34]. Instead of the Swift-Hohenberg functional equation (2)we consider a
density fieldwith positive density deviationψ only, which leads to amodification of the particle-interaction and
allows us to phenomenologically describe single particles, see [33] for a detailed analysis. The new energy
functional vpfc is:

ò y y= + -(∣ ∣ ) ( )  rH d , 3vpfc pfc
3 3

with a penalization parameterH. As in other,more coarse-grainedmodels for active systems [3]weuse a classical
transport termwith advection velocity Pv0 for the local density fieldψ. Thismodification ismore general and
turns out to bemore stable in comparison to the termused in equation (1), if considered for individual particles.
The secondmodification ensures the polar order parameter P to be a local quantity that is different from zero
only inside the particles. This allows us to interpret P in the context of cells as a coarse grained orientation of
actinfilaments, similar to [9, 10]. The new set of dynamical equations we obtain is:
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withβ a parameter, which is typically larger than the other terms entering the P equation.
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3.Model verification

The aimof this section is to show that themicroscopic field theoreticalmodel equation (4) can be used to
simulate active particles and allows the recovery of known phenomena. The versatility of themodel thereby
allows us to apply it to different physical situations that have been previously studied using agent-basedmodels,
see e.g. [7].Wefirst consider the situation of one particle, followed by studying the interaction of two particles.
These simple computations allow for detailed parameter studies.We found no qualitative difference in the
results of our simulationswhen the parametersC2 andC4 are set to zero, providing a > 02 and a > 04 .
Therefore, we simplify ourmodel by restricting ourselves to the case = =C C 02 4 , which only allows gradients
in the density fieldψ to induce local polar order.M0 and v0 will be specified for each simulations. The other
parameters are a a b = -( ) ( )H r, , , , 0.2, 0.1, 2, 1500, 0.92 4 unless otherwise specified in thefigure captions.
The second test concerns the emergence of collective phenomena in confined geometries with systemswith a
number of particles 100 .

All the simulations are in two dimensions.We consider afinite element approach to solve the evolution
equations. An operator splitting approach is used, where the equation forψ is discretized according to [35] and
the equation for P using a semi-implicit Euler-schemewith all nonlinear terms linearized around the value of
the last time step. Themaxima in the local one-particle density fieldψ are always tracked for post-processing and
evaluation, and everymaximum is interpreted as a particle. Themorphology of the particle is obtained from a
contour line of the density field, see below for details, and its velocity is computed as the discrete time derivative
of two successivemaxima. The computational domain varies for the different examples and is specified below.
The initial condition is chosen forψusing a one-mode approximation for each particle, with the centers placed
randomly, see [34] for details. Only for high densities a perturbation from a hexagonal ordered state is chosen as
initial condition. The P field is set to zero initially.

3.1.Onset ofmovement andparticle shape
Weatfirst want to understandwhat happens in aminimal system,where a single active particle is free tomove.
In particular, we are interested to know if there is a critical value for the activity v0 required for the onset of
movement, as it has been observed in [17] for active crystals.

Infigure 1(a) the particle velocity is plotted as a function of the activity v0 andwe can see that for small
activities ( <v 0.50 ) the particle does notmove at all. After a certain threshold value v 0.50  the particle starts to
movewith a constant velocity, which approximately linearly increases for increasing v0. This is exactly the same
behavior as observed in [17] for the sample-averagedmagnitude of the crystal peak velocities.

An important new feature of ourmodel has to dowith themobility termM0 entering equation (4). =M 10 is
used in [17]. This valuewould lead to strong numerical instabilities for themodifiedmodel equation (4). Larger
values forM0 can suppress this numerical instability.While themobility does not particularly change the particle
velocity, we observe thatM0 directly influences the shape of the particle: for small (but still greater than 1)M0 the
particle shows an elliptic form,whereas further increasingM0 restores a circular shape for the particle. The
dependency of the particle shape on the value ofM0 is shown infigure 1(b) for different values of v0 above the
threshold value. Two examples of themorphology are shown infigures 1(c–f) together with the P field.

3.2. Binary collisions and elastic deformation
The study of binary collisions between particles is often used as a benchmark problem to predict how larger
systems evolve, see e.g. [9, 36]. In particular it has been observed [7] that completely inelastic collisions lead to a
force that aligns the particles direction.We here consider only perfectly symmetric collisionsmeaning that the
incidence angle and the initial velocity are the same for both particles. Different particle trajectories obtained
using differentmobilityM0 and activity v0 are shown infigures 2(a) and (b). The elastic deformation of a single
particle during a collision can be seen infigure 2(c), where the eccentricity is plotted as a function of time,
whereas a time series of a single collision is shown in figure 2(d). Collisions of deformable particles have also
been considered in agent-basedmodels [8], with a qualitatively similar behavior. However, the deformations in
our approach strongly depend onM0 and are negligible for large values.We therefore do not analyze this effect
further and interpret the particles as being spherical in the coming simulations, which are all done for largeM0.

All results indicate the particle alignment to be not instantaneous. There is an initial oscillatory phase, whose
length andmagnitude depends onM0 and v0. Small activity and largemobility lead to an almost instantaneous
alignment, whereas large activity and smallmobility lead to oscillations for a certain period of time, before the
particlesfinally align and travel together.
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Figure 1. (a)Velocity of a particle as a function of the activity strength v0 for different values of themobilityM0. At a threshold value
v 0.50  the particle starts tomove. (b)Eccentricity e of a single particle as a function ofmobility. The eccentricity is defined as

= -e b a1 2 2 where a b, are the length of the semi-major and semi-minor axis, respectively. For small values ofM0 the particles
have the form of an elongated ellipse (c), (d) ( =v 20 , =M 70 ), whereas for largerM0 their form is similar to a circle (e), (f) ( =v 20 ,

=M 1000 ). (c) and (e) show the contour plot ofψ and (d) and (f) themorphology of the particle identified by the contour line of an
intermediate value between 0.001 and 0.01, together with the P field.

Figure 2. (a)–(b)Twoparticles colliding in a perfectly symmetric way for (a) =v 1.50 and (b) =v 2.50 . The net effect of the collision is
an alignment of the particles direction. (c)Eccentricity of a particle as a function of time during a collision for =v 1.50 and different
mobility values.We observe a sudden change in the particle eccentricity at t 40 , corresponding to the collision time. (d)Time series
of a two-particle collision for =v 1.50 and =M 100 . Notice how the formof the particles is slightly changed during the collision. The
shape of the particles is identified as a fixed contour line ofψ.
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3.3. Collectivemotion in confined geometries
As already analyzed using agent-based, e.g. [7, 8], and phase fieldmodels [9, 10] the interaction of amoderate
number of particles can lead to collectivemotion.We here consider simulationswith 100 particles to recover
these results. To analyze the phenomenawe define the translational order parameter fT and the rotational order
parameter fR as

å åf f= = q
= =
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where ˆ ( )v ti is the unit velocity vector of particle i at time t, q q= -qˆ ( ( ( )) ( ( )))( )e t tsin , cost i ii
is the unit angular

direction vector of particle i at time t, and n is the number of particles. In case of translationalmigrationwe
obtain f = 1T and rotationalmigration leads to f = 1R .

3.3.1. Collectivemigration
Weconsider a square domainwith periodic boundary conditions, i.e. simulating an infinite planewhere
particles are free tomovewithout obstacles. Figure 3 shows the resulting behavior: at the beginning (figure 3(a))
there is no specific order and particlesmove towards different directions. After the first collisions take place
some particles start to alignwith each other and small blocks of particles, inwhich particles orient in the same
direction are formed (figure 3(b)). If these blocks collide they change their direction until all particles in the
system are traveling in the same direction (figure 3(c)). This behavior is further confirmed by the translational
order parameter f 1T  after a certain time, see figure 3(d).We also observe that thismigration state is not
particularly affected by the value of themobilityM0.

3.3.2. Vortex formation and oscillatorymotion
Wenow consider a confined geometry and specify y = 0 and =P 0 at the boundary, which ensures that
particles cannot leave the domain. Thefirst geometry is a disk. Here again at the beginning the particlesmove in a
chaotic way, see figure 4(a). Then a vortex is formed andmost of the particles follow an anti-clockwise trajectory.
In the center some particlesmove in the opposite direction, see figure 4(b). Eventually also these particles are
forced to alignwith the rest of the system, seefigure 4(c). This behavior is confirmed by the rotational order
parameter fR. If clockwise or anti-clockwise rotation is observed depends on the initial condition, we therefore
plot f∣ ∣R instead of fR infigure 4(d). Similarly to the collectivemigration case studied above, themobilityM0

does not play amajor role in the formation of the vortex.
Ellipses provide amore interesting geometry and confining active particles inside them can give rise to

different kind of collective phenomena, where the ellipse aspect ratioA/B, where A B, are the length of the semi-
major and semi-minor axis, respectively, plays an important role. An ellipse with a small A B 3 show a
similar behavior as the disc shape. Such geometries produce once again a vortex, where the particlesmove along
the boundaries.More elongated shapes with =A B 10 dramatically change the behavior. As already shown in
[7] particlesmove collectively along themajor axis with oscillating direction. The same behavior could be
observedwith ourmodel, see figure 5. All particlesmove in one direction until they hit the high curvature region.
This produces an impulse that propagates fast along thewhole system and reverts the direction of the particles.
Thewhole process repeats every time a boundary is reached and an oscillatorymotion is the result. To obtain this
result and ensure a constant particle number it is necessary to use a particularly high value for themobility,

=M 5000 . Figure 5(c) shows the scaledmean position andmean velocity of the particles together with the
computed energy pfc.Maxima in the energy thereby correspond to turning point of direction, whereasminima

Figure 3. (a)–(c) Snapshots of a single simulation of n 100 active particles in a square with periodic boundary conditions for
=v 1.50 and =M 500 . After an initial chaotic phase particles travel together in the same direction. Amovie for the evolution is

provided in the supplementarymaterial. (d)Translational order parameter fT for different values ofM0:mobility does not seem to
affect the emergence of collectivemigration. Each curve has been obtained as the average of 10 different simulations startedwith
different initial conditions and =v 1.50 .
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are associatedwith situations, where themean particle velocity is constant. If the particles hit the high curvature
region the particles get jammed, which results in an increase in pfc, resampling the elastic effects. After a certain
energy value is reached an energy barrier can be overcome and the system starts to relax bymoving in the
opposite direction.

3.3.3. Validation and numerical issues
These examples demonstrate the validity of our continuousmodeling approach. All known qualitative
properties which have been shownusing agent-based simulations could be reproduced. Until now a sequential
finite element approach has been used to solve the evolution equation. For larger systemswemust work in a
parallel environment withmultiple processors.We adopt a block-Jacobi preconditioner [37] that allows us to
use a direct solver locally. The approach is implemented inAMDiS [38, 39] and shows good scaling properties,
which allows the consideration of systemswith;15,000 particles on the available hardware.

4. Results

Weagain consider a systemwith periodic boundary conditions forwhich collectivemigration and cluster
formation is expected also for larger numbers of particles. However, how the collectivemigration state is reached
is not well understood andwill be analyzed in detail.We start with a systemwith high volume fraction. The
volume fraction is defined as f s= W∣ ∣n , with number of particles n, domain size W∣ ∣andσ the area occupied
by a single particle, which is equal to s p= ( )d 2 2, with p=d 4 3 the lattice constant determined by the free
energy equation (2). For f > 0.6 the system shows behavior of active crystals. Figure 6(a) shows various
snapshots of the evolutionwith regions of particlesmoving in the same direction color coded. The regions can be
identified as active grains, which undergo a coarsening process. The black particles determine orientational
defects. They are identified as particles where the change in orientation fromone particle to its neighbors is
above a certain threshold. The number of black particles certainly depends on the threshold value, however its
decrease is independent on the value. The data is not sufficient to identify a scaling law.However, the robustness
of the coarsening process is shown infigure 6(b).

Figure 4. (a)–(c) Snapshots of a vortex formation by active particles confined in a disk for =v 1.50 and =M 600 . Amovie for the
evolution is provided in the supplementarymaterial. (d)The rotational order parameter f∣ ∣R shows that after a transient phase the
particles follow a circularmotion for different values ofM0. Also in this case, each curve has been obtained as the average of 10
different simulations startedwith different initial conditions and =v 1.50 .

Figure 5. (a)–(b) Snapshots of two differentmoments of the collective travel of active particles inside an elongated ellipsewith
=A B 10. Particlesmove together along themajor axis and change orientationwhen they reach a boundary. Amovie for the

evolution is provided in the supplementarymaterial. (c)There is an oscillating behavior along the x direction. Shown are the scaled
mean position and scaledmean velocity over time together with the computed energy pfc. Other simulation parameters are

=( ) ( )v M, 1.5, 5000 0 .
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If we decrease the volume fraction the behavior changes. For very lowdensity, f = 0.03,figure 7(a) shows
the tendency of the particles to group together, but the formed clusters are very small and there remainmany
isolated particles in the system. Increasing the density, f = 0.12, increases the size of the formed clusters, but the
average size of a cluster remains very small if compared to the total number of particles, seefigure 7(b). Further
increasing the density, f = 0.25, leads to the formation of largemobile clusters and a drastic reduction of the
number of particles which do not belong to any cluster, seefigure 7(c). This behavior is similar to the results in
[40] for (quasi-) two-dimensional colloidal suspensions of self-propelled particles. For these systemswe
compute the standard deviationDN as a function of themean number of particlesN. For active systems it is
theoretically predicted thatDN scale as aN , with a< 0.5 1 and giant numberfluctuations occur if a » 1,
see [15].

Figure 6. (a) Snapshots of;1,000 particles inside a square with periodic boundary conditions. Different colors correspond to different
orientations, particles colored in black are thosewhere there is a change in the orientation. (b)Decrease of the number of orientational
defectsD as a function of time. Average and standard deviation of the data for 6 different simulations startedwith different initial
conditions and a tolerance parameter equal to p 10 are shown in blue. Each of the shaded curves has been obtained as the average of
the six simulations, but using different values for the tolerance parameter, p 8, p 9, p 10, p 11 and p 12 from top to bottom.
Simulation parameters are =( ) ( )v M, 2, 600 0 .

Figure 7. Snapshots of systems having different particle densityf. Particles with the same color belong to the same cluster. (a) For
f = 0.03 no cluster is present. (b)f is increased until 0.12 and some bigger clusters appear. (c)Weclearly observe two big clusters
when f = 0.25. Other simulation parameters are =( ) ( )v M, 1.5, 500 0 . Amovie for the evolution for f = .25 is provided in the
supplementarymaterial. Here the color coding of each particle corresponds to the cluster it belongs to at an early time step and the
beginning of themovie, which highlights the dynamics during cluster formation.
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Wecomputeα by considering different subregions of our computational domain. The results for;600
particles are shown infigure 8, demonstrating an increase ofαwith increasingf, with the largest value reached
being a = 0.79. This continuous increase inα, as well as the obtained values are consistent with the behavior
found in [24] formoderate numbers of particles but larger volume fractions.However, there is a significant
difference, the formed clusters in [24] are stationary, our clusters aremobile, similar to the light activated living
crystals in [25]. The experimental results as well as the simulations in [25] lead to similar values ofα as ours
already for smallerf.

5. Summary

In summary, we extended the phase field crystalmodel for active crystals [17, 18], which combines the classical
phasefield crystalmodel of Elder et al [26, 27]with a polar order parameter and a self-propulsion velocity, by
considering individual active particles. This can be realized by penalizing a locally vanishing one-particle density,
as considered in [31]. The resultingmicroscopic field theoreticalmodel has been validated against known results
obtainedwithminimal agent-basedmodels.We found a threshold value for the activity, necessary to induce
motion for a particle. Collectivemotion and vortex formations have been identified, as well as oscillatory
motion, depending on the considered confinement. All these results are in agreement with the results in [7]. For
larger systems, we analyze the formation of a traveling crystal if prepared from an initially disordered state. The
traveling crystals emerge through a coarsening process from amultidomain texture of domains traveling
collectively in different directions. For lower volume fractionswe could identify giant number fluctuations. As
theoretically predicted the standard deviationDN scales as aN for active systems. The computed exponentα as
a function of volume fraction is in agreement with experimental and simulation results obtained for light
activated colloidal particles [25].

The proposedmicroscopic field theoreticalmodel can be extended from two to three spatial dimensions.
Other possible extensions consider binarymixtures and hydrodynamic interactions, which are already
consideredwithin the phasefield crystalmodel for passive systems, e.g. in [41] and [34, 42–44], respectively.
Other variants of the phasefield crystalmodel have also been used to simulate the dynamics of epithelial cell
colonies [45]. Together with efficient numerical algorithms, see e.g. [37], this provides the possibility to study
emergingmacroscopic phenomena in active systemswithmicroscopic details, e.g. to validate coarse grained
approaches, as considered in [46, 47].
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