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ABSTRACT
Semiconductor heteroepitaxy involves a wealth of qualitatively
different, competing phenomena. Examples include three-
dimensional island formation, injection of dislocations, mixing
between film and substrate atoms. Their relative importance
depends on the specific growth conditions, giving rise to a very
complex scenario. The need for an optimal control over heter-
oepitaxial films and/or nanostructures is widespread: semicon-
ductor epitaxy by molecular beam epitaxy or chemical vapour
deposition is nowadays exploited also in industrial environments.
Simulation models can be precious in limiting the parameter
space to be sampled while aiming at films/nanostructures with
the desired properties. In order to be appealing (and useful) to an
applied audience, such models must yield predictions directly
comparable with experimental data. This implies matching
typical time scales and sizes, while offering a satisfactory
description of the main physical driving forces. It is the aim of the
present review to show that continuummodels of semiconductor
heteroepitaxy evolved significantly, providing a promising tool
(even a working tool, in some cases) to comply with the above
requirements. Several examples, spanning from the nanometre
to the micron scale, are illustrated. Current limitations and future
research directions are also discussed.
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1. Introduction

Heteroepitaxy refers to any deposition process leading to a crystalline film
composed of a givenmaterial, grown over a crystalline substratemade of another
material. As such, this definition embraces several different systems. While
most of the aspects discussed in this review are also general, we find it natural
to mainly focus on semiconductor heteroepitaxy, a research field involving a
huge academic and industrial community. Even more specifically, semicon-
ductor heteroepitaxy on silicon seems to capture ever-growing attention. The
possibility to improve both electronic and optical properties of the material
while still exploitingmainstream silicon technology, indeed, attracted important
investments as a new generation of high-performance devices ready for high-
volume industrial production is envisaged. Reviews focusing on both present
and future applications exploiting heteroepitaxy of Ge (or, SiGe alloys), GaAs,
GaN can be found in Refs. [1–10].

Despite considerable progress, the possibility to finely tune the deposition con-
ditions in order to obtain the desired film quality, composition, andmorphology
(both low-roughness 2D films and 3D structures can be appealing, depending on
the application) still calls for improvements. The task is of formidable complexity,
due to the amount of competing physical phenomena.

The lattice mismatch between film and substrate induces a biaxial stress
(typically compressive, if deposition on Si is considered). Two alternative paths
are available to release the excess elastic energy: plastic relaxation via the intro-
duction of misfit dislocations or elastic relaxation via formation of 3D islands
[11–15]. 3D growth can be preceded by the formation of a thin wetting layer
(Stranski-Krastanow growth) depending both on the deposition conditions and
on the (film-thickness dependent) difference between film and substrate surface
energies [9,16,17].

If the misfit is low, the film tends to grow flat (provided that the interfacial
energy is not too high) until dislocations are injected. This is the typical behaviour
observed in Si1−xGex alloys grown on Si(001), with x � 0.2 [18,19]. The opposite
behaviour is observed at highmisfits where the appearance of 3D nanostructures
precedes the onset of plastic relaxation, as observed for high-x Si1−xGex/Si(001),
or for InGaAs/GaAs(001).

Elastic and plastic relaxation often act simultaneously. Coherent islands tend
to enlarge their height-to-base aspect ratio (AR) during growth, as this allows
for a better strain relaxation [9]. Once a critical volume is reached, however, the
introduction of misfit dislocations become more convenient from the energetic
point of view [20]. At this stage, the AR vs. volume curve suddenly changes,
almost assuming the form of a plateau [21,22]. A close inspection of the island
shape reveals fascinating oscillations [23]. Interestingly, shape oscillations were
also obtained in the absence of dislocations, as due to intermixing [24]. Actually,
despite being favoured by entropy, intermixing is yet another channel leading
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to strain relaxation as alloying lowers the effective lattice mismatch between
film and substrate [25,26]. Intermixing becomes of particular importance at
high temperatures, when deposited atoms can easily exchange position with the
substrate ones [27,28]. Possible consequences involve the formation of a wetting
layer not uniquely composed of the depositedmaterial, and/or 3D islands hosting
a significant concentration of substrate atoms. When deposition of pure Ge on
Si is considered, the effect can be dramatic. The enthalpy of mixing of Ge/Si is
indeed negligible, so that entropy ofmixing forces alloying [19,29]. At deposition
temperatures around 700 ◦C or higher, 3D islands formed upon deposition of
Ge on Si(001) by Molecular Beam Epitaxy (MBE) can contain less than 50% of
Ge [30]. Intermixing takes place also in InGaAs/GaAs [31], but the effect is less
dramatic due to the non-negligible enthalpy of mixing. It is important to point
out that, at the typical temperatures of interest, intermixing occurs only at the
surface (or, at the subsurface) [32–34], as bulk diffusion is kinetically hindered.
This observation is key, as, for any miscible system, deposition of a thin film
on a thick substrate would lead to full dilution of the former in the latter, as
determined by entropy maximization.

What makes the study of heteroepitaxy at the same time challenging and
fascinating is that the aforementioned processes influence each other, their
relative importance depending on the deposition conditions. For instance, 3D
islanding following Ge deposition on Si(001) can be suppressed by growing out-
of-equilibrium.High deposition rates, and/or lowdeposition temperatures (as an
alternative to surfactants), indeed, lead to fast film thicknening without allowing
for the formation of islands [35–37]. In such a metastable state, the system
relaxes by injecting dislocations suppressing further islanding as the effective
lattice mismatch is reduced. This is of paramount importance if one is willing
to grow flat substrates, as needed for many applications. On the opposite side,
the onset of plastic relaxation can be delayed by depositing on suitably patterned
substrates [38–41].

To make things even more complex, strain also influences surface energies
[42]. The most striking example is given by Ge{105} whose surface energy is
stabilized by compression [43–45] to the point that the (001) wetting layer can
spontaneously break into {105} faceting [7,46].Micron-long, horizontal Gewires
delimited by {105} facets, have been recently observed [24,47] and shown to
display peculiar electronic properties.

The aforementioned examples should make it clear that a subtle competition
between elastic and plastic relaxation and intermixing is often determining,
together with surface energy, the final properties of heteroepitaxial films and
nanostructures. Given this complex scenario, it is clear that reliable models
tackling semiconductor growth dynamics could greatly help in determining
optimal deposition conditions leading to a film with the desired properties.

Atomistic approaches can only tackle small systems and short time scales.
Worst, diffusion processes at semiconductor surfaces are typically influenced
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by local changes in orbital hybridization, so that reliable estimates of diffusion
rates call for refined and computationally demanding ab initio calculations [48].
Nevertheless, it isworthmentioning some significant progress basedonempirical
approaches exploiting Kinetic Monte-Carlo schemes [49–52].

Continuum models are a possible solution to close both spatial and temporal
gaps between simulations and experiments [53–56]. Based by definition on a
coarse-grained description of the actual system, any continuummodel of growth
will necessarily rely on some simplifying assumptions. With this respect, only a
final comparison with experiments can fully establish the validity of the specific
approach. If successful, a continuum model becomes extremely appealing as it
allows for a deep understanding of the main physical driving forces underlying
some complex evolution (much harder to be inferred, e.g. from the observation
of billions of atomic trajectories).

It is the aim of the present work to offer a survey of the present status of
continuum models tackling semiconductor heteroepitaxy. Importantly, authors
wish to share an applied perspective. This means that attention will be focused
only on the deposition conditions commonly employed when growing high-
quality semiconductor films, nanostructures, or heterostructures, i.e. relatively
high temperatures (above the roughening transition [57] and sufficiently high to
overcome typical diffusion barriers) and/or moderate fluxes. Low-temperature
growth and,more in general, strongly out-of-equilibriumconditions are complex
and fascinating regimes already in the homoepitaxial cases. The interested reader
can find excellent treatments in several books [58–60]. Epitaxial breakdown in
semiconductors, also not treated here, is nicely reviewed in Ref. [61].

The manuscript is organized as follows. In Section 2 we recall the basic
thermodynamic andkinetic concepts behind the definition of an evolutionmodel
in the continuum. This allows us to review the seminal works of Asaro, Tiller, and
Grinfeld (ATG) [62,63], and to point out the role played by non-linear effects.
Then in Section 3we discuss various numericalmethods to implement themodel
with a dedicated focus (Section 3.2) on the diffuse-interface approach based on
a phase-field description. In Section 4, we examine the major extensions of the
simple ATG model towards a more realistic description of heteroepitaxy by
considering the interaction with the substrate, responsible for wetting effects
(Section 4.1), accounting for the mechanisms of intermixing at the surface
(Section 4.3) and discussing the simulation of growth on patterned substrates
(Section 4.4). The effects of plastic relaxation by dislocations are also considered
in Section 4.5. Finally, in Section 5 we draw the conclusions and outline future
perspectives.

2. Thermodynamics and evolutionmodel

Heteroepitaxial growth by MBE or chemical vapour deposition, is generally
characterized by close-to-equilibrium processes, ensured by high temperatures
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and/or low deposition fluxes [64]. Therefore, the dynamics is mainly driven by
the tendency to decrease the system free energy1: G = U −TS+ PV = ∑

μiNi,
where U is the internal energy, S the entropy, V the total volume, T the tem-
perature, Ni the number of the i-type particles with a chemical potential defined
by μi = δG/δNi|p,T ,Nj �=i [65]. It must be pointed out that growth conditions
far-from-equilibrium might lead to very different behaviours compared with
thermodynamic expectations [66] and eventually induce other instabilities (see
Ref. [54], and references therein).

2.1. Evolution law

From a microscopic point of view the heteroepitaxial growth results from two
main processes: deposition of adatoms from the vapour phase (i.e. the MBE
beam) and redistribution of atoms by diffusion along the surface. Bulk processes
can be considered to play no role due to their higher activation barrier [32,58].

Atomic diffusion by site-to-site hopping is a stochastic process, but in the
thermodynamic limit it results into a net transport of material. This can be
modelled in terms of surface diffusion [67–69]. According to theOnsager’s linear
law [70,71], the material flux j is driven by the gradient of the chemical potential
along the surface profile, so that j = −M∇�μ with M the surface mobility
and ∇� the surface-gradient (i.e. ∇ evaluated with respect to the local surface
coordinates). As diffusion is a thermally activated process, M is expected to be
described by an Arrhenius law:M ∼ exp (−Ed/kbT)with Ed an effective energy
barrier and kb the Boltzmann constant. The resulting evolution of the surface
profile is conveniently inferred from the local normal velocity vn̂, defined at each
point x of the surface as n̂[(dx/dt) · n̂] with n̂ = n̂(x) the outer surface normal.
By considering the continuity equation we obtain

vn̂ = � · n̂ − ∇� · j = � · n̂ + ∇� · [M∇�μ], (1)

with� a source term corresponding to the external deposition flux. It is assigned
as an external contribution independent of the surface energetics so that it can
drive the system out-of-equilibrium. This is a simplified treatment of deposition
neglecting a proper description of local fluctuations [72] expected however
to provide a fair description following our high-temperature hypothesis. An
illustration of the quantities which determine vn̂ is shown in Figure 1(a).

Other transportmechanisms could also be involved, in particular the so-called
evaporation/condensation process (also referred to as attachment/detachment)
[67–69],where the local velocity is directly proportional to the chemical potential,
i.e. vn̂ = k(μ0 − μ), with k a kinetic factor. For a conservative dynamics
accounting for an “instantaneous” material redistribution along the profile, the
condition μ0 = 〈μ〉� = ∫

�
μdx/

∫
�
dx must be fulfilled. Differently, μ0 can be

identified with the chemical potential of the vapour phase. In such a case a non-
conservative dynamics is obtained, resulting in both deposition anddesorption at
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(a) (b) (d)

(c) (e)

Figure 1. Summary of the main concepts involved in the heteroepitaxial growth model.
(a) Schematic representation of the local motion of the surface as described by Equation (1).
(b) Elastic contribution to the chemical potential με for a strained film with a smooth island on
top of a relaxed substrate. (c) Map of the strain component εxx for a cross-section through the
centre of the film in panel b. (d) Surface energy contribution to the chemical potential μγ ∼ κ

(i.e. isotropic γ ), at the surface of the geometry shown in panel b. (e) Equilibrium crystal shapes
resulting from the evolution by surface diffusion of a sphere, for two different choices of strongly
anisotropic γ (see Ref. [95]), without strain.

the surface according to its local stability relative to the vapour. This contribution
to mass transport can also be added to the surface diffusion Equation (1),
providing a more general description of the profile evolution [73]. Deposition
under equilibrium conditions can bemodelled by replacing the external fluxwith
the evaporation/condensation term [74,75]. It could be also useful to account for
desorption effects which are, for instance, negligible for SiGe but not for GaAs
[76].

It must be pointed out that the continuum dynamics here considered rigor-
ously applies only to vicinal surfaces, where any arbitrary variation of the profile
can be obtained by (barrier-less) step motion. On the contrary, on singular
surfaces such as the typical {0 0 1} or {1 1 1} facets, a barrier for step nucleation
must be surmounted [54]. Such barrier, however, vanishes above the roughening
transition, i.e. under the typical growth conditions [57] we are interested in.

2.2. Energy contributions

The free energy for a heteroepitaxial system is essentially given by elastic Gε and
surface (and/or interface) Gγ energy: G = Gε + Gγ . Here a single component
system is assumed so that entropic contributions, mainly related with intermix-
ing, are not considered. These will be taken into account in Section 4.3. The
chemical potential, required in Equation (1) is obtained as the variation of G by
adding one atom: μ = δG/δN = VaδG/δV , where Va is the atomic volume.

Gε is the energy stored in the volume of the solid because of deformations in
the lattice structure, here determined by the misfit strain εm between the lattice
parameter of the film af and of the substrate as, i.e. εm = (as−af )/af . In the linear
elasticity approximation (hereafter adopted) such deformations are described by
the strain tensor ε = 1/2[∇u + (∇u)T ] where u(x) is the displacement of
each point of the solid with respect to its position x in the reference state [77].
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Forces produced by these deformations are defined by the stress tensor σ where
the component σij corresponds to the force acting along the j-th direction, on
the i-th face of an infinitesimal cubic volume within the solid. Stress and strain
are related by the Hooke’s law σ = C : ε, with C the fourth-order tensor of
the elastic constants. This reduces to two independent values for an isotropic
solid: Cijkl = λδijδkl + μ(δilδjk + δikδjl) where λ and μ are the Lamé constants
(equivalently, Young modulus E and Poisson ratio ν can be used), and δij is the
Kronecker delta.

The strain/stress field of a deformed solid can be defined by solving the
mechanical equilibrium equation ∇ · (σ − σ ∗) = 0 with σ ∗ the eigenstress
tensor given by σ ∗

ij = −∑k,l Cijklε
∗
kl , where ε∗

ij = εmδij is the eigenstrain, i.e.
the reference strain corresponding to the in-plane lattice mismatch [77,78]. The
additional boundary condition (σ −σ ∗) · n̂ = 0must be included to account for
free surfaces. When considering dynamical conditions, i.e. the evolution of the
profile in time, in principle, surface diffusion from Equation (1) and mechanical
equilibrium should be solved simultaneously. However, the time scale for elastic
relaxation is very quick compared to the time scale of diffusive motion, so that
mechanical equilibrium can be assumed to be always instantaneously achieved
for any profile configuration.

The elastic energy can be defined as Gε = ∫



ρεdV with the (volumetric)
elastic energy density ρε = 1/2(σ − σ ∗) : (ε − ε∗). The corresponding contri-
bution to the local chemical potential is then

με = Va
δGε

δV
= Vaρε

= Va

⎡
⎣μ

∑
i

(εii − εm)2 + 2μ
i<j∑
i,j

ε2ij +
λ

2

(∑
i

(εii − εm)

)2
⎤
⎦ . (2)

In Figure 1(b) a map ofμε at the surface of an island-like profile under compres-
sive stress is reported. A cross section showing the εxx field is shown in Figure
1(c), indicating a better strain relaxation at the top and more stressed regions at
the borders.

Gγ is the excess of energy due to the presence of surfaces (compared to
the bulk material) and can be computed as Gγ = ∫

�
γ (n̂)dA, where γ (n̂) is

the orientation-dependent surface energy density and dA is the infinitesimal
surface element. In the absence of strain, γ (n̂) determines the equilibrium crystal
shape (ECS), which can be derived by the well-known Wulff construction
[79–81]. A dependence of surface energy on the local deformation can be in-
cluded by means of the surface stress tensor s, defined by d(γA) = A

∑
ij sijdeij

with A the surface area and e the surface strain tensor [82,83] related to γ by
sij = γ δij + ∂γ /∂eij [84,85]. In solids, ∂γ /∂eij �= 0 and the ECS in presence
of strain can be described by the Wulff-Kaishew theorem [86,87]. The surface
energy contribution to μ is:
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(a) (b) (c) (d)

Figure 2. Surface anisotropy and equilibrium crystal shapes. 2D γ -plot and ECS by Wulff
construction for (a) weak and (b) strong anisotropy. γ minima are set for θn = nπ/2
(n = 0, . . . , 3). In panel b, missing orientations correspond to the “ears” traced by the ξ

vector at the corners. (c) 3D γ -plot, ξ -plot and ECS resulting from a γ function with minima
in the <001> directions, in strong anisotropy conditions. (d) Schematic representation of the
continuum approximation of sharp facets by corner rounding construction.

μγ = Va
δGγ

δV
= Va∇� · ξ , (3)

where ξ is the Cahn-Hoffman vector [88,89], defined by ξ(r) = ∇(rγ (n̂)) with
r = rn̂ the position with respect to the origin. For isotropic surface energy
ξ = γ n̂, so that μγ = Vaγ κ where κ = ∇� · n̂ is the local curvature,
corresponding to the sum of the principal curvatures κ1 + κ2 [89]. A map of
μγ ∼ κ is reported, for example, in Figure 1(d), on the same geometry of
Figure 1(c). For anisotropic γ (n̂), preferential orientations are introduced into
the ECS, as shown for instance in Figure 1(e). Two different conditions can be
identified: weak anisotropy, when the ECS contains all the possible orientations,
and strong anisotropy, when some orientations aremissing in the ECS and sharp
corners appear [80]. To distinguish among them a general criterion for missing
orientations, based on the definition of ξ , can be found in Ref. [90]. In 2D,
Equation (3) can be rewritten as μγ = Vaγ̃ κ with γ̃ = γ (θ) + γ ′′(θ) called
surface stiffness, defined with respect to the profile orientation θ . In Figure 2,
weak (panel a) and strong (panel b) anisotropy regimes are shown for a suitable
choice of γ (θ). When γ̃ > 0 for any orientation weak anisotropy is obtained,
while strong anisotropy occurs when γ̃ < 0 for some θ . The equivalent of this
latter case for a 3D structure is shown in Figure 2(c).

When considering strong anisotropy, the surface diffusion equation becomes
backward parabolic for any missing orientation θ in the ECS, giving rise to an
ill-posed behaviour. Regularization procedures are then needed. A possibility
consists in the convexification of the Wulff shape [91,92]. In 2D, this can be ob-
tained by imposing the constraint γ̃ ≥ 0 (also known as Frank’s convexification).
Another method consists of adding an energy term penalizing high curvatures
(∼ κ2), thus leading to rounded corners with nomissing orientations [80,93,94],
as sketched in Figure 2(d). The ECSs in Figure 1(e) have been obtained by surface
diffusion evolution of a sphere, with strongly anisotropic γ (n̂) regularized by this
corner term (see Ref. [95]).
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Notice that, in the present approach, faceted shapes are not exactly represented
by straight intersecting planes, but a continuum variation in the orientation is
always present within each apparent facet.Moreover, their boundaries are always
smeared over a short distance (at least because of the regularization) yielding a
smooth transition in between. An alternative approach able to manage fully
faceted shapes with selected orientations only, yet in a continuum description,
has been proposed by Carter et al. in Ref. [96] and also applied to model
heteroepitaxy [97,98].

2.3. Asaro–Tiller–Grinfeld instability

The main physics behind heteroepitaxy can be led back to the competition
between elastic and surface contributions, the former favouring the growth
of high AR structures and the latter opposing to any corrugation of a flat
geometry, as illustrated in Figure 1(b), (d). Based on this concept, Asaro and
Tiller [62], and independently Grinfeld [63,99] and Srolovitz [100], proposed
a model to investigate the stability of the surface of a semi-infinite film under
stress, by a linear stability analysis. Their theory, named as ATG instability, can
be considered as the most essential explanation of the dynamics of heteroepitaxy
[53–55]. Despite its simplicity, the ATG model was successfully applied to
the study of the film instability observed experimentally for a wide variety of
materials, such as helium crystals [101], polymers [102] and semiconductors [53,
103–105]. Surface waviness is typically observed for lowmisfit systems (provided
that dislocations are not present), while for larger misfits, three-dimensional
structures are generally obtained [11,12,106,107] and their formation is affected
by nucleation process [108]. However, the instability defined by the ATGmodel
can be viewed as the trigger for the formation of the initial nuclei leading to these
3D islands.

Let us consider a cosine perturbation of the surface of a (2D) film
h(x) = a0 cos (qx). Following Refs. [62,100], for isotropic elastic constants, to
linear order inq the stress distribution at the surface isσxx ≈ σ0[1−2qa0 cos (qx)]
with σ0 = E/(1 − ν2)εm the stress for the flat morphology. According to
Equation (2), με ≈ VaUε[1/2 − qa0 cos (qx)], with Uε = 2σ0εm. In the limit of
small amplitudes (qa0 � 1), κ ∼ −h′′ so that, from Equation (3) for isotropic
surface energy density γ , we have μγ = −Vaγ h′′(x) = Vaγ q2a0 cos (qx).
Summing the two contributions, the total chemical potential is obtained: μ ≈
VaUε/2 + Va(Uεq − γ q2)a0 cos (qx). The profile evolution by surface diffusion
then reads

∂h
∂t

≈ vn̂ ≈ M∇2μ ≈ MVa
(
Uεq3 − γ q4

)
a0 cos (qx). (4)

Deposition is not included since in the linear regime it would just consist of a
rigid shift in the vertical direction. Setting the solution for Equation (4) in the
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form of h(x, t) = a(t) cos (qx) it is possible to define the profile evolution in
terms of the amplitude of the perturbation only:

a(t) = a0e−MVaγ q3(q−qc)t = a(0)eA(q)t where qc = Uε/γ. (5)

The sign of the amplification factor A(q) depends on q − qc. If q > qc the
amplitude decays so that the flat surface is stable. If q < qc, the film is unstable
as the amplitude of the perturbation grows exponentially. The behaviour ofA(q)
as function of q is shown in Figure 3(a), where each curve corresponds to a
different qc. Notice that the fastest perturbation (where A is maximum) exists at
qmax = (3/4)qc. The typical length scale for the evolution of the perturbation
is � = q−1

c . The stability analysis also shows a characteristic time scale τ =
�4/(MVaγ ), strongly dependent on the misfit (∼ ε−8

m ). As M is expected to
obey an Arrhenius law, τ is extremely sensitive to temperature and decreases
exponentially when T is raised.

The previous arguments are developed for a single qmode.However, a generic
perturbation can always be decomposed in a Fourier series and, in the limit of
linear elasticity, each component q is expected to behave independently from
the others according to Equation (5). The resulting profile is then dominated by
the fastest q and for a white noise (ideally comprising all q values) the rise of
the fastest perturbation with q = qmax (i.e. the fastest wavelength λ = λmax) is
expected. With this respect, the ATG model states that a stressed film is always
unstable with respect to long-enough perturbation wavelengths λ > λc (with
λc = 2π/qc the critical wavelength). However, when considering low misfit
εm and/or high surface energy cost γ , only very long λ are expected to grow,
with extremely slow evolution (long τ ). In real systems, this condition might
be physically unreasonable, and the flat film morphology can be considered
practically metastable.

The description here reported for a 2D system directly applies also in 3D
for the case of uniaxial stress, while for biaxial stress σ0 = E/(1 − ν)εm and
Uε = 2(1 + ν)σ0εm, meaning that the instability is shifted to longer qc by a
factor (1 + ν)2. In this latter case, the perturbation should be considered with
respect to both in-plane directions thus leading to cross-patterns dominated by
the same qmax perturbation.

2.3.1. Non-linear effects
The ATGmodel provides a good description of surface evolution for qa � 1. In
order to extend the approach to large perturbation amplitudes, it is necessary to
solve Equation (1) by evaluating all derivatives along the surface (∇�), consider
the proper profile curvature κ = −h′′(1 + h′2)−3/2 in Equation (3), and more
importantly, extend the calculation of the elastic contribution in Equation (2) to
higher order in q.

Weakly, non-linear regimes have been explored by means of the approxima-
tion of the surface grooves with prescribed functions [104,109,110]. In the special
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(a) (b)

(c)

Figure 3. Linear stability analysis and profile evolution. (a) Amplification factor curves as function
of wavenumber q, from Equation (5). Different curves are obtained by scaling the misfit strain by
χ , with all the other parameters set to 1 (i.e. qc = χ2). A dashed line interpolating the maxima of
the amplification factor curves is shown. (b) Non-linear evolution of an unstable (λ > λc) cosine
perturbation at different t� (in τ units). Lengths x� are in � units. (c) Experimental evidence of
ATG instability in a SiGe film containing∼ 20% Ge, annealed at 800 ◦C for 1 h (adapted from Ref.
[124]).

case of cycloid-like profiles, an exact solution for the elastic field exists [111]. By
means of numerical approaches, it is possible to analyse more in general the
evolution as in Refs. [112,113], where the formation of cusps separated by deep
trenches was also linked to crack propagation. Several other studies are reported
in literature (e.g. in Refs. [53,114–119]).More accurate calculations involving the
numerical solution of the mechanical equilibrium equations by Finite Element
Method (FEM) have also been exploited [120,121]. All of these approaches,
however, agree in the tendency to form cusp-like structures with rounded tops
and sharp trenches, yielding the best tradeoff between strain relaxation and total
surface area. Indeed, the cycloid surface is found to be the most efficient stress
concentrator at a fixed wavelength [111], yielding an almost strain-free surface
except at the cusp-point. The formation of cusps ends into stress singularities,
leading to a divergent propagation of the trenches within the solid. In the case
of tensile stresses, this corresponds to the initiation of surface cracks, leading to
spontaneous Griffith brittle fracture [111]. Nucleation of defects (dislocations)
at the cusp tips, favoured by the high local stresses [122], might contrast material
failure by enabling the alternative channel of plastic deformation for strain release
(ductile fracture).

In Figure 3(b) the evolution of a surface profile, including non-linear contribu-
tions, is shown. Evidently, the initial cosine profile is firstly amplified according
to the linear theory (here λ > λc). Then, for larger amplitudes, deviations occur
and lead to an asymmetric profile with cusp-like structures separated by deep
trenches, eventually diverging. This feature is well consistent with experimental
observations [53,102,104,105,123]. An example is reported in Figure 3(c) for a
surface morphology obtained by annealing a SiGe/Si film with low Ge content
[124].
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3. Computational methods

In order to investigate the evolution of heteroepitaxial systems, several compu-
tational methods have been developed to solve Equations (1)–(3) or approxima-
tions thereof. We here provide a general overview of different approaches and
describe one, the diffuse-interface approach, in detail.

3.1. Comparison of computational approaches

Mathematically, Equations (1)–(3) define a free boundary value problem, where
the surface profile is unknown and has to be determined. Only recently, first
analytic results for the highly non-linear sixth-order partial differential Equations
(1)–(3) (including corner rounding regularization)havebeenobtained [125,126].
Most numerical treatments consider only specific aspects of the whole problem.
In Refs. [121,127,128], Zhang et al. developed a model, based on FEM, to solve
both differential problems of mechanical equilibrium and surface diffusion, but
only for weak surface anisotropy. A more advanced treatment of weak surface
anisotropyusingparametric finite elements is considered inRef. [129]. For strong
surface anisotropy, we refer to Refs. [130,131] for parametric finite element
approaches and to Ref. [132] for a finite difference method.

If the surfacemorphology can be described by a height function, as in Equation
(4), the situation simplifies. For shallowprofiles, elasticity can be generally treated
by means of the so-called flat-island approximation [133,134]. It consists of
describing uniformly strained layers with a thickness h(x) above the substrate,
in terms of a stress field σij = σ0h(x)δij at the surface. Then, the linear elastic
response of the medium at a point x due to a force located at another point x0
is generally given by the displacement ui(x) = Gij(x − x0)∂σjk/∂xk where G
is the Green-function tensor. For a semi-infinite film the analytic solution for
G exists [77]. It can also be corrected in order to account for more accurate
force distributions [133,134]. From the resulting displacement field u, strain is
calculated and henceμε , according to Equation (2). Differently, an Airy function
formulation [77] can be exploited. Spectral methods have been widely employed
to solve the resulting system e.g. in Refs. [117–119,135,136], profiting of highly
optimized algorithms, such as the Fast Fourier Transform. However, height
function methods are not applicable to complex structures with overhangs, e.g.
mushroom-like morphologies or wetting angles above 90◦.

Themethods described so far treat the surface profile explicitly. An alternative
approach consists of an implicit description of the geometry, where the surface
profile is located as a level-set of an introduced function. Despite the increased
computational cost resulting from the reformulation of the problem in a higher
dimensional space, this method offers several advantages. Indeed, the reformu-
lated problem can be solved in a fixed domain, using standard discretization
techniques, and allows one to naturally tackle topological changes. Strongly
anisotropic surface diffusion has been modelled e.g. in Refs. [137–139], using
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a level-set method [140], but the elastic field was not taken into account therein.
Also diffuse-interface or phase-field-type models describe the surface profile
implicitly. Here, Equations (1)–(3) are only approximated by assuming a finite
thickness of the surface region of order ε. In the limit ε → 0 the original,
sharp-interface problem can be recovered [141–145]. Phase-field approaches
provide a robust numerical tool to solve surface evolution problems, and open
the possibility to add more and more of the relevant phenomena in a consistent
way. The basis is the classical Cahn–Hilliard model [146], extended in order
to include the major traits of heteroepitaxial growth, namely anisotropy in the
surface free energy density, elastic misfit strain, diffusion restricted at the surface
and deposition flux, as illustrated in Section 3.2. Further extensions will be also
addressed in Section 4.

3.2. Diffuse-interface approach

Let us consider the two-phase system formed by the solid and the surrounding
vapour. An order parameter ϕ is introduced to identify the two regions, respec-
tively, as ϕ=1 and ϕ=0. A smooth transition in ϕ is assumed at the boundaries
between the two phases, thus providing a diffused description of the solid surface
(transition layer). The classical formulation of the diffuse-interface equations for
isotropic systems is based on the free energy

G[ϕ] =
∫




1
ε

(
f (ϕ) + ε2

2
|∇ϕ|2

)
dV , (6)

where ε is a small parameter that is a measure of the interface thickness and
f (ϕ) = 18ϕ2(1 − ϕ)2 is a double-well potential. An example of a surface
profile represented within the phase-field framework is illustrated in Figure 4.
Approximations for surface diffusion based on this energy have been considered
in Refs. [141,147,148]. The evolution law reads

∂ϕ

∂t
= ∇ · [M(ϕ)∇μ

]
, with μ = 1

ε

(
f ′(ϕ) − ε2∇2ϕ

)
, (7)

where M(ϕ) is a mobility function, localized near the interface and vanish-
ing in the solid and in the vapour phase. For the present parameter choice,
M(ϕ) = (36/ε)ϕ2(1−ϕ)2, if the diffusion constant is one. The chemical potential
is defined as μ = δG[ϕ]/δϕ and f ′(ϕ) is the partial derivative of the double-well
f (ϕ)with respect to ϕ. The order of convergence can be improved ifμ is replaced
by g(ϕ)μ, with g(ϕ) localized near the interface, as g(ϕ) = 30ϕ2(1 − ϕ2) (see
Refs.[141,145]). In all cases the profile across the interface in equilibrium is well
described by ϕ(r) = 1/2

[
1 − tanh

(
3r/ε

)]
, with r = r(x) the signed distance

function to the 0.5 level-set of ϕ.
To model crystal growth, deposition should be considered, which here is

rendered by a prescribed material flux from the vapour phase � = −|∇ϕ|n̂ · �.
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(a) (b)

Figure 4. Phase-fieldmodelling. (a) Plot of the phase-field function ϕ and of themobility function
M(ϕ) with respect to the signed distance r from the interface, i.e. the ϕ = 0.5 isoline. The
interface region of thickness ∼ ε is marked in grey. (b) Phase-field representation of a surface
profile (samemorphology as in Figure 1(b)). On the left: the ϕ continuous field; on the right: mesh
discretization with local refinement at the interface.

|∇ϕ| thereby restricts the incoming flux to the interface region and integrates
in the whole domain to the size of the interface. The projection onto the outer
pointing normal n̂ = −∇ϕ/|∇ϕ| results in a net income which enters Equation
(7) as an additional term for ∂ϕ/∂t. The evaluation of � might be a delicate task
as it may account for vapour-phase details, such asmechanisms of fluid-dynamic
transport or flux shielding due to the surface profile itself. Numerical approaches
for the whole system of equations have been considered for example in Refs.
[141,149].

3.2.1. Anisotropic interface energy
Following Ref. [150], anisotropy can be considered in the surface energy as

G[ϕ] =
∫




γ (n̂)

ε

(
f (ϕ) + ε2

2
|∇ϕ|2

)
+ β

2
1
ε3

(
f ′(ϕ) − ε2∇2ϕ

)2 dV . (8)

The first term is the interface energy equivalent to Gγ introduced in Section 2.2.
The additional term is aDeGiorgi-type phase-field approximation of aWillmore
regularization [151–153], with

√
β a small-length scale over which corners are

smeared out. For ε → 0 the energy reduces to the surface energy
∫
�
[γ (n̂) +

(β/2)κ2]dA, which can be viewed as the next higher order approximation of a
more general surface free energy γ̄ = γ̄ (n̂, κ , . . . ) = γ (n̂) + (β/2)κ2 + · · ·
[80,93,154]. Such a regularization prevents the model to become unstable for
negative surface stiffness as discussed in Section2.2. The corresponding evolution
equations read

∂ϕ

∂t
= ∇ · [M(ϕ)∇μ

]
,

g(ϕ)μ = 1
ε

(
γ (n̂)f ′(ϕ) − ε2∇ · m

)+ β
1
ε2

(
f ′′(ϕ)ω − ε2∇2ω

)
, (9)

ω = 1
ε
(f ′(ϕ) − ε2∇2ϕ)



ADVANCES IN PHYSICS: X 345

with

m = γ (n̂)∇ϕ + P∇n̂γ (n̂)

(
f (ϕ)

ε2|∇ϕ| + 1
2
|∇ϕ|

)
≈ γ (n̂)∇ϕ + |∇ϕ|P∇n̂γ (n̂)

where P = 1 − n̂ ⊗ n̂ is the projector operator. The approximation results
from f (ϕ) ≈ ε2/2|∇ϕ|2, which is valid in the asymptotic limit of ε → 0.
In contrast with other approaches [155], the above formalism ensures that
the interface thickness remains independent of orientation. Furthermore, it
retains the same form of the isotropic case, allowing for the combination with
the Willmore regularization term. A fully customizable formulation for γ (n̂)

has been proposed in Refs. [95,156] to account for the complexity of realistic
morphologies.

3.2.2. Elastic contribution
As discussed in Section 2.2, surface motion should account for the additional
driving force towards the reduction of elastic energy in stressed films. To avoid
solving the mechanical equilibrium equation with the free-surface boundary
condition (see Section 2.2) in a time varying domain, a diffuse-interface approach
can be conveniently used [141,157,158]. Thus, the problem is extended to the
whole domain 
 by introducing material properties dependent on ϕ: μ(ϕ) =
μH(φ),λ(ϕ) = λH(ϕ) and εm(ϕ) = εmH(ϕ).H(ϕ) is an interpolating function,
with value 0 in the vapour (ϕ = 0) and 1 in the solid (ϕ = 1). At the interface
H(ϕ) gradually changes from 1 to 0. In the diffuse-interface approach, the elastic
energy density for an isotropic material reads

�(ϕ, u) = μ(ϕ)
∑
i

[
εii − ε∗(ϕ)

]2+2μ(ϕ)

i<j∑
i,j

ε2ij +
λ(ϕ)

2

(∑
i

[
εii − ε∗(ϕ)

])2

(10)

following the definition introduced in Equation (2) with ε∗(ϕ) = εm(ϕ).
Mechanical equilibrium is assumed to be instantaneously achieved. From the
computed displacement vector u, the elastic energy density �(ϕ, u) is obtained.
Then, its derivative with respect to ϕ can be computed:

� ′(ϕ, u) = μ′(ϕ)
∑
i

[
εii − ε∗(ϕ)

]2 + 2μ′(ϕ)

i<j∑
i,j

ε2ij

+ λ′(ϕ)

2

(∑
i

[
εii − ε∗(ϕ)

])2

+

− [
2μ(ϕ) + 3λ(ϕ)

]
ε∗′

(ϕ)
∑
i

[
εii − ε∗(ϕ)

]
, (11)
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and included as an additional term in the g(ϕ)μ definition in Equation (9).
The resulting model is related to the Cahn-Larché system [159] and has been
intensively studied, but mostly with isotropic surface energies only [160–163].

3.2.3. Numerical issues
The derived set of equations for the phase-field variable ϕ and the displacement
field u provides a complete continuum model of heteroepitaxy. A wide variety
of similar models, some accounting for further details, can be found in the
literature, e.g. in Refs. [115,164–171]. Different numerical methods can be used
to solve them. FEM is a very effective way to obtain an accurate solution of the
partial differential equations here defined, profiting of their representation in a
weak form. However, adaptive mesh refinement [172] (as shown in Figure 4(b))
is highly desirable. Indeed, the mesh has to resolve the transition layer, which
is of order ε, as well as the corner length scale

√
β when considering strong

anisotropy. These requirements of spatial resolutions also set restrictions on the
time stepping, with an upper bound, such that the interface never evolves over a
whole mesh cell within one time step. Furthermore, solving the full model in 3D
requires high performance computing and highly scalable algorithms.

4. Towards realistic modelling

The simpleATGmodel presented in Section 2.3 provides an effective explanation
for the occurrence of island growth. However, it lacks several physical aspects
which play a crucial role in real systems. In this section, we review the main
contributions that should be incorporated in the model for a more reliable
description of heteroepitaxial growth.

4.1. Wetting effects

One of the major simplifications of the model discussed in Section 2.3 is that
a semi-infinite film is assumed and the existence of a substrate underneath is
accounted only for the definition of the lattice mismatch. However, real films
extend for finite thicknesses h on top of the substrate.

If the elastic constants differ from those of the film, a different redistribution
of stresses can be achieved, thus affecting the surface relaxation and hence the
film stability [173–176]. If the substrate is stiffer, the film stability is enhanced
and the critical wavelength is larger. In the limiting case of a rigid substrate it
has been shown that there exists a critical thickness hc = (1 − ν)/qc (with ν the
Poisson ratio of the epilayer and qc given in Section 2.3) below which the film
is stable for any perturbation wavelength [110,176,177]. On the contrary, when
the substrate is softer than the film, shorter critical wavelengths are obtained and
the profile roughening is favoured. This is the case of compliant substrates [178]
or, in the extreme case, viscous substrates [179]. These effects are all dependent
on the film thickness and are effective only for thin enough films, as reported in
Refs. [173,174].
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Even if a sharp interface between film and substrate is assumed, both elastic
and surface properties are modified in the proximity of the interface. In partic-
ular, it has been shown by considering non-linear elasticity, that the relaxation
of a film can be enhanced very close to the substrate [180–182], recovering
the constant value predicted by linear elasticity only a few monolayers (MLs)
above the interface. The effect of such a contribution on the profile evolution
is discussed by Eisenberg and Kandel in Refs. [181,182]. Surface energy might
depend as well on the film thickness. Indeed, ab initio calculations for Ge/Si(001)
[45,183,184] have shown that the surface energy density of the film undergoes an
exponential decay from the substrate value (γ of Si) to the one expected for the
thick-film limit (γ of Ge), within 3–5 MLs from the interface. A γ (h) function
fitting such a behaviour has been introduced in the evolution equations by Chiu
and Gao [185] and others [119,186]. Smooth transitions between substrate and
film properties through a small, finite region at the interface have also been
considered [118,175,176] and represent the natural choice when considering
diffuse-interface models [141,165,168]. These approaches, named as boundary
layer transition models, might be physically related with the existence of a
mixing region between the twomaterials (see Section 4.3), where their properties
combine to intermediate values. The asymptotic case of vanishing thickness of
the transition region, named glued-wetting-layer model, has been investigated
by Spencer in Ref. [187].

Let us consider a generic dependence of the free energyG on the film thickness
h:G = G(h), mimicking the behaviour of surface energy γ = γ (h) and/or elastic
energy ρε = ρε(h). An additional contribution must then be added to the local
chemical potential as μwet = ∂G/∂h ≈ W0 + W(h − h0), where the linear
expansion around the average film thickness h0 = 〈h〉 has been considered, with
W0 = ∂G

∂h
∣∣
h0

and W = ∂2G
∂h2

∣∣∣
h0
. Correspondingly, the Equation (4) describing

the profile evolution becomes [188]:

∂h
∂t

≈ MVa
(
Uεq3 − γ q4 − Wq2

)
a0 cos (qx) (12)

The wetting contribution behaves as a stabilizing term provided that W > 0.
Furthermore, if the condition γW > U2

ε /4 is fulfilled, the flat profile is stable
against any perturbation wavelength. By considering thatW = W(h0), the effect
of wetting is expected to vary with the film thickness and become negligible in
a thick-film limit. In particular, if W > 0 and decreasing with h0, there exists a
critical film thickness hc above which the film becomes unstable for some q. For a
better understanding, let us look in more details to the case of γ = γ (h). In such
a case,W = ∂2γ

∂h2

∣∣∣
h0

provides a film stabilization if the surface energy of the film
γf is lower than the substrate one γs (i.e. γf < γs). By assuming an exponential
law for γ (h) = γf + (γs − γf ) exp ( − h/d), the critical thickness can be defined
as hc = −d ln

[
(U2

ε d2)/(4γf (γs − γf ))
]
. As shown in Figure 5(a), for h0 < hc the
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film is stable for any wavelength while for h0 � hc the typical curve for the ATG
instability is recovered. Interestingly, for values of h0 � hc, only wavelengths in
a finite range are unstable, i.e. qmin < q < qmax, so that the wetting contribution
has the effect of stabilizing the long wavelengths.

Based on this analysis, a profile perturbation is expected to rise when anneal-
ing a flat film above the critical thickness h0 > hc. As for the standard ATG
model (Section 2.3.1), the evolution is dominated by a fastest wavelength, which
however depends on the film thickness itself, increasing for thin films as evident
in Figure 5(a). The presence of the wetting term also modifies the evolution
of the perturbation as soon as it starts to dig trenches towards the substrate.
Indeed, these regions are progressively stabilized by the increasing values of
W and γ and stop propagating. A wetting layer of thickness hwet < hc is then
preservedwhile the perturbation breaks up into islands on top of it [119,189]. The
wetting contribution, coupled with non-linear stress, thus permits to avoid the
formation of the cusp-singularities observed in the non-linear ATG models (see
Section 2.3.1), allowing for the description of long-time dynamics, including
island coarsening (see below). This evolution matches the description of the
Stranski–Krastanow growth mode.

When considering weak or even non-wetting conditionsW < 0 (i.e. γf > γs),
the formation of a wetting layer is no more favoured. The presence of the
unstressed substrate ensures that the film perturbation does not penetrate inside
it but breaks up into islands directly on the substrate surface, which can be partly
exposed [165]. The Volmer-Weber growth mode is then obtained.

More in general, the balance between γf , γs and the interfacial energy γsf
between the substrate and the film should be considered when addressing the
wetting conditions. This is discussed, for instance, in Ref. [167] where a phase-
field approach is used to describe the three-phase system consistent in substrate,
film and vapour, explicitly accounting for all the relative interfacial energies.

4.1.1. Growth
As far as a semi-infinite strained film is considered, as in the ATG model, the
addition of a deposition term dh0/dt ≈ � to the evolution Equation (4) is trivial
since elastic and surface energy are invariant under the Galilean transformation
h → h + h0(t). This holds true also when the film and substrate have the same
elastic constants, with no wetting contributions. In the more general case, the
dependence of the film instability on its thickness h0, discussed in the previous
Section, breaks this translational invariance so that the variation of h0 during
the deposition process dynamically affects the energy balance [173,174,190]. In
the linear approximation, for a small profile perturbation, the time evolution of
the amplitude h of the Fourier component of wavenumber q can be written as:

h(q, t) = h(q, t0) exp
[∫ t

t0
A(q, t ′)dt ′

]
(13)
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whereA(q, t) = A(q, h0(t)) is the amplification factor for the q component, at the
average film thickness h0 resulting after deposition, at time t. In particular, in the
case of wetting contributions, as the film grows thicker, the system continuously
moves from one curve to the other of Figure 5(a). This implies the passage from
stable conditions, for h0 < hc, to the rise of the instability, with qmax getting
larger while approaching the thick-film limit of the ATGmodel, as shown in the
evolution sequence of Figure 5(b). Similar effects are expected when different
elastic constants are considered, especially for the case of rigid substrate, as
discussed in Ref. [173].

Kinetics plays a crucial role in controlling whether the instability is going to
become apparent or not with respect to the growth process. Indeed, deposition
sets a reference time scale�−1 to be compared with the instability time scale τ ∼
A−1. The relative growth rate � = A − �/h0(t) can be considered [173,174] to
identify the kinetic onset of the instability: for� < 0, the perturbation grows too
slowly and its amplitude shrinks relative to the growth of the film thickness, while
it becomes dominating for � > 0. Another criterion consists in the definition
of an arbitrary, small threshold below which the amplitude is assumed to be not
appreciable [19,190]. A dynamical critical thickness h�

c can then be identified
as the average height h0 reached by the film before the perturbation amplitude
exceeds this threshold. h�

c is proportional to the �/M ratio, so it is expected to
be very sensitive to the growth temperature, due to the exponential dependence
of the surface mobilityM.

It is important to notice that, in the case of wetting effects, the existence of a
dynamical critical thickness can delay the onset of (apparent) island growth to
larger thicknesses with respect to the thermodynamic critical value hc , defined
in the previous Section. This kinetic stabilization may permit the growth of flat
films, thick enough to overtake the critical thickness for plastic relaxation prior to
islanding. Planar, dislocated films, hundreds of nm thick, are indeed fabricated by
exploiting low temperature and high deposition rate to skip the thermodynamic
regime of island growth [191–193].

4.1.2. Coarsening dynamics
Thanks to the wetting contribution, healing the divergent behaviour of the non-
linearATG instability (see Section 2.3.1), island growth can be explored over long
time scales, as shown in Figure 5(c). This permits not only to observe the onset
of their formation but also the subsequent exchange of material between them.
In agreement with experimental observations [194], island coarsening occurs,
following Ostwald ripening dynamics, i.e. bigger islands grow at the expenses of
the smaller ones. These are then observed to disappear, leaving an almost flat
wetting layer at the thickness hwet in between the larger ones. This behaviour is
illustrated by the late simulation stages reported in Figure 5(c).

As the island volume increases the chemical potentialmonotonously decreases
[119], so that a non-interrupted coarsening is expected, eventually leading to



350 R. BERGAMASCHINI ET AL.

(a) (b)

(c)

Figure 5. Linear stability analysis and profile evolution includingwetting energy. (a) Amplification
factor curves as function of q values for different film thicknesses h0 relative to the critical
thickness hc . (b) Simulation of island growth starting from a random perturbation and depositing
material with a rate�� = 6 ·10−3 (in �/τ units). (c) Long-time coarsening dynamics by annealing
simulation of the last profile from panel b. Scaled units are used for both length (x� and h� in
� units) and time (t� in τ units). Simulations are performed by a phase-field approach as in Ref.
[141].

the formation of a single island [119,186,189,195]. This feature is inherent to
isotropic islands, for which a continuum of island shapes is allowed [196], and
does not holdwhen faceted structures are considered (see Section 4.2).Moreover,
island chemical potentials can be altered by the island–island interactions [197],
corresponding to the strength of the elastic field induced by one island at the
location of the other. Such an effect is, however, significant only at short distance
d and for large cross-sectional island area A. Indeed, its strength scales as A/d2,
and it is responsible for mutual island repulsion. Coarsening dynamics occurs
on a long time scale so that it can be strongly affected by deposition, especially
for high growth rates [128,190].

4.2. Faceting and shape-transitions

Heteroepitaxial islands are typically characterized by well-defined faceted shapes
[12,15], as shown for example in Figure 6(a). The existence of these preferential
orientations is generally due to anisotropic behaviours of the system. Simulations
including elastic anisotropy are not observed to produce relevant morphological
changes compared to the isotropic system [165]while surface anisotropy is found
to yield faceted shapes, exposing those planes corresponding to minima in the
surface energy density function γ . Such facets typically include those expected
from the ECS of the unstressed material (see discussion in Section 2.2) but strain
effects might affect their relative extensions [198] and eventually induce the
formation of additional facets (e.g. the common {105} facets observed on Ge
islands [12], whose presence in the crystal shape is possible only because of a
strong stabilization effect due to strain [43–45]).

The effect of surface anisotropy on the stability of the stressed film can be easily
inferred in 2D by replacing the isotropic γ used in the linear stability analysis in
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(a)

(b)

(c)

Figure 6. Island faceting. (a) STM topographs of heteroepitaxial islands obtained by MBE growth
of Ge on a Si(001) substrate (adapted from Ref. [15]). The typical pyramid ({105} facets) and
dome (with {113} and {15 3 23} facets) shapes are shown on the left and right, respectively. An
intermediate morphology is shown at the centre. (b) 2D phase-field simulation (as in Ref. [141])
of island growth by the evolution of a random perturbation including surface energy anisotropy.
γ minima are set for θ = 0 and θ ≈ ±11◦, mimicking the typical (001) and {105} orientations in
Ge/Si(001). Minima for {105} angles are set 4 times deeper than for the (001) flat orientation to
favour pyramidal shapes. (c) 3D FEM simulation of the pyramid-to-dome transition of Ge/Si(001)
islands (from Ref. [156]).

Equation (4), with the surface stiffness γ̃ [199]. Hence, if the orientation of the
flat surface (θ = 0) is a stable one, i.e. a minimum of γ , γ̃ is maximum so that
the stability is enhanced, the critical wavelength becomes larger and the critical
thickness of the wetting layer increases. More precisely, this stabilization is just
a metastable condition [181] as perturbations of large enough amplitudes can
introduce local orientations far from the θ = 0minimum, for which the stiffness
is lower and such to destabilize the film, even below the critical thickness defined
from the linear stability analysis using γ̃ . On the other hand, if the flat orientation
is not stable, it is strongly destabilized and tends to spontaneously evolve into a
faceted profile. The critical thickness is lowered or even nullified as the strength
of the anisotropy is increased [200].

Once the instability is triggered, growth of faceted islands is observed [127,
156,201–204], as shown, for example, in Figure 6(b) and (c). The existence of
preferential orientations forces the possible island geometries to be bounded by
such planes. Because of this, islands are expected to grow self-similar [201] and
eventually convert into different shapes as additional facets are formed [156].
Coarsening between close-by islands is also affected by this shape stabilization.
At the early stages, when facets are not fully developed, Ostwald ripening causes
the disappearance of the smaller islands, but these dynamics is almost interrupted
after fully faceted structures are formed [119], in contrast with the isotropic case
discussed in Section 4.1.2.
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4.3. Intermixing

Heteroepitaxy inherently involves at least two different chemical species forming
the substrate and the film. Alloy materials (e.g. Si1−xGex , In1−xGaxAs, etc.) are
very common, allowing one to finely control the lattice mismatch εm by tuning
the difference χ = cf − cs between the composition of the film cf and of the
substrate cs, i.e. εm = (a(cs)−a(cf ))/a(cf ) ≈ χε0 (with ε0 themisfit between the
pure components). According to the ATG model (Section 2.3), this results into
different critical wavelengths for the film instability: the smaller is χ the longer
is the unstable wavelength, in agreement with the experimental observation of
larger islands when considering diluted alloys [28]. A variation in the surface
energy density γ is also expected when changing the film composition but the
effect of the misfit is assumed to be dominant (qc ∼ ε2m/γ ). This trend is the
same illustrated by the different curves in Figure 3.

Experimental evidences [28,29] clearly show the occurrence of a complex in-
termixing dynamics during the growth process which implies both non-uniform
composition profiles [205] and time dependence of the composition field. In
order to account for these effects, an excess contribution must be included in
the definition of the system free energy: Gmix = Hmix − TSmix. An enthalpic
contributionHmix arises from the atomic size differences of the chemical species,
responsible of solute stresses in the solid,while themixing entropy Smix is the con-
figurational entropy −kb

∑
ν cν ln cν , where cν = cν(x) is the local composition

with respect to component ν (i.e. the atomic fraction Nν/
∑

ν Nν) and kb is the
Boltzmann constant. By assuming that each component behaves independently,
according to Equation (1) its local flux is given by jν = −cνMν∇�μν whereMν

is themobility of the ν-th component andμν is the corresponding local chemical
potential. It consists of:

μν = μγ + με + ην(1 − cν)trace(σ ) + kbT ln cν (14)

Surface μγ and elastic με contributions are the same defined in Section 2,
provided that γ = γ (cν) is considered and that the problem of mechanical
equilibrium for the strain field is solved by considering the non-uniform misfit
strain map εm(cν) within the whole solid. The third term accounts for the solute
stress ∼ ∂ρε/∂cν (here given for a binary alloy) [206,207], due to a relative
difference in atomic sizes ην = (aν − aν̄ )/a(cν) with aν , aν̄ and a(cν) the lattice
parameter of the pure components ν and ν̄ and of the alloy at composition cν .
trace(σ ) is the local hydrostatic strain. The fourth contribution comes from the
entropic term and favours alloying.

As demonstrated by ab initio calculations [32,33], all mechanisms of atomic
exchange responsible for intermixing are possible onlywithin the first few atomic
layers at the surface. In the bulk below, the activation barriers for atomicmotions
are too high and bulk diffusion is hindered. In order to model this condition,
the system can be separated into a mobile region at the surface, extending for a
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small depth w (few atomic MLs), and the bulk underneath, characterized by a
“frozen-in” composition profile, as sketched in Figure 7(a). The evolution of the
system then results from the coupled dynamics of morphology and composition
at the surface:

vn̂ =
∑
ν

[
�ν · n̂ − ∇� · jν

]
(15)

w
∂cν
∂t

= �ν · n̂ − ∇� · jν − cbvn̂ (16)

The first equation defines the local normal velocity as resulting from the cumula-
tive fluxes of each component ν. The second equation defines the local variation
of the surface composition, resulting from the balance between the surface flux of
component ν and thematerial exchangewith the bulk region immediately below,
at local composition cb, represented by the last term. In a first approximation
[206,207], it can be assumed that cb ≈ cν . However, as discussed inRef. [208], this
is true only where the surface is locally growing (vn̂ > 0), leaving new material
in the bulk. On the contrary, where the surface is retreating (vn̂ < 0), material is
extracted from the bulk, at a composition cb of the material buried immediately
below the surface, possibly determined from previous growth stages. A similar
approach accounting for a fully faceted description has been proposed in Ref.
[97]. In Ref. [209] a Ginzburg-Landau free energy is introduced to describe the
thermodynamic state of the alloy and a continuum composition field, extending
from thebulk to the surface, is consideredwithmobility restricted at the surface to
mimic surface diffusion. Attempts to couple both morphology and composition
evolution in a phase-field description are proposed in Refs. [166,210].

According to Equation (16), deposition of material at composition cd on a
flat substrate (at initial composition cs) leads to a continuous variation c(h) =
cd + (cs − cd) exp ( − h/w), with h the height above the substrate interface. This
provides an explanation to the transition-layermodels introduced for thewetting
energy in Section 4.1. Since h = � · t the thickness of this diffused interface is
proportional to the ratio w/�.

If a slight perturbation of the profile is considered, the film instability is
expected to rise during deposition. However, the characteristic time scale for
such instability strongly depends on the surface composition as τ ∼ c−8 (see
Section 2.3). Therefore, at the early stages, when the composition is still diluted,
it is too slow compared with the time scale of deposition ∼ w/� and the
planar morphology is kinetically stabilized, as discussed in Section 4.1.1. Only by
extending further the deposition, increasing the content of the strained species
at the surface, it is possible to make the instability time scale comparable with
deposition and hence observe its evolution into islands. As a result, there exists
an apparent critical thickness for the instability to become appreciable, which
strongly depends on the composition and weakly on the deposition rate [19],
as illustrated in Figure 7(b). This provides an explanation to the experimental
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(a)

(b)

(c)

Figure 7.Modelling of the effects of intermixing. (a) Schematics of themodel formorphology and
composition evolution at the surface of a growing film. A simple discretization grid for defining
the local composition profile is illustrated. (b) Wetting layer critical thickness as a function of
the composition of the deposited material (from Ref. [19]). The solid lines, from bottom to
top, correspond to increasing growth rates. The dotted line shows the behaviour when surface
segregation at the top layer is considered. The inset reports a comparison with experimental data
(points). (c) Simulation of island formation, growth and coarsening effects including intermixing
(from Ref. [213]). A flat film (locally perturbed at the centre of the cell), with a composition profile
matching the result of deposition, is set as initial condition and its evolution by annealing is
simulated.

observation of increasing wetting layer thickness for highly diluted alloys [123,
211]. Effects of thermodynamic surface segregation, redistributing the material
within the surface layer in order to accumulate the species of lower γ (e.g. Ge in
SiGe or In in InGaAs) in the top ML (see experiments in Refs. [211,212]), have
been investigated as well [19] and were proved just to delay the occurrence of the
instability (see dotted curve in Figure 7(b)).

Once the instability has been triggered, it grows in amplitude and islands start
to form [213], as illustrated in Figure 7(c). Profile minima dig into regions of
different compositions, tending to that of the substrate, and hence they gather
material with lower misfit strain. As a consequence, the tendency to form deep
trenches, as in Section 2.3.1, is damped and separated islands are formed. This
effect is analogous to that of the wetting term discussed in Section 4.1. Lowmisfit
material is extracted from the regions close to the bulk, redistributed along the
surface and incorporated at the growing islands. The corresponding reduction
of strain permits an enlargement of the island bases, reflecting an increase in
the unstable wavelengths. Eventually, coarsening effects occur, favouring the
bigger islands at the expenses of the smaller ones, which are pushed far away
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and become asymmetric both in shape and composition [214]. Based on this
approach, islands are expected to have a non-uniform composition profile, with
the outer region rich in the substrate component coming from trench digging.
Both theoretical [26] and experimental studies [205] have shown that a typical
composition map of islands is rather non-uniform with the top region enriched
by the strained component and the lateral regions, close to the trenches, with a
larger amount of the substrate component. This evidence is reproduced also by
kinetic models as in Ref. [98,215].

The role of solute stress was studied in detail in Refs. [206,207] and it is found
to enhance the growth rate of the instability, with more dramatic effects when
considering intermediate deposition rates. Themost unstable wavelength λmax is
also predicted to shift towards shorter values. To understand this behaviour, let
us consider a compressed alloy film, with η �= 0. According to the ATG model,
the morphological instability induces an undulation of the surface profile, with
a tensile response at peaks and a further compression at valleys. Bigger atoms
are then driven to accumulate at the former locations while the smaller ones
are left at the latter, yielding a modulation in the composition along the surface.
This redistribution enhances the strain non-uniformity, thus speeding up the
growth of the instability itself. For very large values of η, the growth rate of the
instability can become unbounded, even withoutmisfit strain, producing surface
decomposition of the alloy despite its stability in the bulk. This effect is known
as compositional-stress instability or kinetics instability [216].

Another aspect to consider for a multi-component system is that the mobility
of each species might be quite different (e.g. for SiGe, Ge diffusion is ∼10-
100 times faster than Si at typical growth temperatures [217]) and depend on
the local composition. This could induce kinetic segregation effects [208] and
modify the film stability and evolution [218,219]. In Refs. [207,220] it is shown
that a difference in surface mobilities can result into a stabilization of a strained
alloy film and even suppress the stress-induced morphological instability.

4.4. Substrate patterning

The patterning of the substrate is a well-established method to direct and con-
trol the growth of islands into ordered arrays, with improved shape and size
homogeneity [221–224]. From the point of view of the modelling, the effect
of patterning turns into a modulation of the chemical potential. Continuum
models are best suited for the study of the mechanisms involved in the growth
on patterned substrates as long-range interactions, extending for distances larger
than the pattern features, typically ∼100–1000 nm, are to be considered.

The most common way for substrate patterning consists in using a non-
flat geometry with regular sequences of pits or mesas, produced on the surface
by lithography and etching techniques. This induces both capillarity effects,
towards profile flattening, and elastic effects, which alter the strain relaxation
according to the relative positioning of the island on the substrate [225]. Several
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experiments (e.g. [223]) have demonstrated that both positional order and size
uniformity can be obtained (see Figure 8(a)), provided that suitable growth
conditions are matched [226]. Simulations studying the island growth on wavy-
patterned substrates have been reported in Refs. [225,227–230]. Therein, the
strain modulation due to the substrate undulation is accounted for by Fourier
spectral approaches. When considering shallow pits with size λs � λmax [225],
capillarity effects are found to first sustain the growth of the same wavelength
λs of the substrate pattern but soon after, the most unstable wavelengths around
λmax emerge. As the position at the bottom is the most favourable, close to
equilibrium, i.e. for low deposition flux, a single island is formed there. When
higher deposition rates are considered, the island can grow slightly off-centre or
multiple islands can formon the pit sidewalls, and resist to coarsening [225]. This
trend is shown in Figure 8(b) by varying the deposition flux. For smaller pits, with
size comparable to the most unstable wavelength λs ≈ λmax, the perturbation is
found to grow in anti-phase with the substrate profile, except for the case of very
thin films, where islands localize at the substrate tops [227–230]. Similar results
have been obtained for more isolated gaussian pits [231] and are consistent with
simulations obtained by FEM, also including surface and elastic anisotropies, for
both pits and hump geometries [75,232].

The combined effect of substrate morphology and compositional inhomo-
geneities has been inspected inRef. [219], where an enhancement of the pit-filling
prior to the island growth has been discussed and compared with experimental
evidences (see Figure 8(c) for an example of island growth inside the pit with
surface anisotropy).

The phase-field approach is well suited to account for arbitrarily complex sub-
strate geometries using anauxiliaryphase-field function to trace thefilm/substrate
interface in a diffused way [164]. The same method has been exploited to model
the effect of inclusions embedded in the substrate [233].

The modulation of the surface strain induced by buried islands [234] was
proved to be an alternativeway to pilot islandordering,without pre-pattetterning
of the substrate. Self-aligned island superlattices have been obtained [235] by
deposition of multiple film layers separated by substrate spacers. Zhang et al.
in Refs. [74,195,236] reported extensive simulation results of island growth in
stacks, accounting for the influence of the strain modulation due to the under-
lying buried layers. In particular, the authors pointed out the role of the strain
energy density minima and maxima in the positioning of the islands to obtain
ordering and vertical alignment. Peculiar conditions were also found to induce
an alternate disposition of the islands into a body-centred tetragonal superlattice,
with improved uniformity and regularity (see Figure 8(d)). Correlated growth of
islands has been studied also for deposition on the top and bottom surfaces of an
ultrathin substrate [237].
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(a)

(b)

(d)(c)

Figure 8. Island growth and ordering on patterned substrates. (a) AFM image of an ordered
array of islands obtained after deposition (with rate 0.04 Å/s) of 6 ML of Ge at 700 ◦C on a pit-
patterned Si substrate, shown in the inset (adapted from Ref. [223]). X and Y correspond to two
〈110〉 directions. (b) Simulation results of island growth into a cosine-patterned substrate with
λs � λmax for different deposition fluxes (from Ref. [225]). (c) Simulation of Ge island formation
and growth on a Si pit including faceting and intermixing, during Ge deposition (adapted from
Ref. [219]). The anomalous pit-filling observed at the initial stages results from a speed up of
Ge diffusion, enhanced by surface segregation as explained in Ref. [219]. (d) FEM simulation of
vertical island ordering for repeated growth of five layers of strained material separated by thin
substrate spacers (adapted from Ref. [74]). Notice the alternated alignment of islands between
consecutive layers.

4.5. Dislocations

Plastic relaxation provides an alternative path for achieving strain release. The
growth of thick films at low temperature and high deposition rate typically
does not lead to misfit strain relaxation by 3D islands but via the formation of
dislocation networks [191–193]. Even when islands are first formed, dislocations
are found to appear inside thosewith large volumes [21–23,25], partially releasing
the residual misfit strain not relaxed by elasticity.

Dislocations are line defects, inducing a permanentmodification in the crystal
lattice as sketched, for instance, in Figure 9(a), quantified by the Burgers vector b.
The elastic deformation inducedby thepresence of a dislocation canbe computed
within a continuumapproach bymeans of the linear elasticity theory. Indeed, an-
alytic functions are known for both bulkmaterials [238] and flat films [239–241].
An example of this latter case is reported in Figure 9(b) for the εxx component.
It is worth mentioning that a singularity is present at the dislocation line, which
can be regularized according to Ref. [242]. The definition of the local strain
field for a generic geometry is quite more complex as it requires to numerically
solve, e.g. by FEM, the problem of mechanical equilibrium in presence of the
dislocation. This can be done by explicitly imposing the un-relaxed displacement
field introduced by the dislocation [243,244], or, equivalently, by computing the
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(a) (c) (d)

(b)

Figure 9. Effects of plastic relaxation on film stability. (a) Schematics of the crystal lattice distortion
due to amisfit dislocation and (b) its strain field in the case of a flat film. (c) Equilibrium shapes and
(d) evolution of the surface roughness of a film in the presence of an ordered array of dislocations,
spaced by d. Lengths are given relative to the optimal dislocation spacing d0 for full relaxation.
Plots in panels c and d, here obtained by means of an improved FEM approach for the calculation
of strain relaxation including dislocations, reproduce the results originally presented in Ref. [246].

changes of the analytic bulk strain/stress fields induced by the free surfaces of the
actual geometry [41,245].

The amount of strain relaxed by a single dislocation is determined by b. If an
array of dislocations spacedbyd along x is considered in aflat film, at the interface
with the substrate, the initial misfit strain εm is reduced to an average residual
strain of 〈εxx〉 = εm−bx/d [192]. A characteristic spacing of d0 = bx/εm is then
sufficient to obtain (on average) full strain relaxation (notice that d < d0 would
imply an increase in strain, opposite to the misfit). For a typical dislocation
network aligned in both x and y directions, a similar contribution has to be
considered for εyy .

In a first approximation, the effect of the dislocation array on the stability
analysis of the flat film (see Section 2.3) can be inferred by recalculating the
critical wavenumber qc in Equation (5) with 〈εxx〉 replacing the misfit strain εm
in Uε . Evidently, the lowering of the strain has a stabilizing effect deferring the
instability to longer wavelengths. For the peculiar case of d = d0 the flat film is
expected to be stable.

In a flat-island approximation, Jonsdottir and Freund in Ref. [246] showed
that for dense arrays, i.e. small dislocation spacing d/d0, the surface profile
rearranges into equilibrium shapes, as illustrated in Figure 9(c). For this low-
strain condition, the instability time scale τ is extremely slow and unstable wave-
lengths are very long, so that island formation is practically suppressed and the
surface roughness just increases to a constant value, as shown in Figure 9(d). By
increasing dislocation spacing d/d0 the plastic relaxation becomes less efficient
and the profile corrugation raises in order to release strain. Consequently, the
film instability sets in and islands are formed, as shown in Figure 9(d).

The effect of a dislocation on the shape of an island has been investigated
at equilibrium in Ref. [175]. As expected from experiments [21,22], dislocated
islands are characterized by smaller aspect ratio and larger bases, due to the lower
elastic energy. Models coupling plastic relaxation with island growth are not well
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established in the literature as they demand a complex description including both
the nucleation process, which is still largely unknown, and dislocation gliding. In
Refs. [122,247] a comprehensive phase-field model is proposed, mimicking the
dislocationdistributionby adislocation-density field, eventually evolving in time.
Therein, dislocations are observed to play a stabilizing role. In particular, it is
shown that the propagation of grooves formed by the growth of the perturbation
can be slowed down by a local accumulation of dislocations at their bottom,
provided that dislocation mobility is large enough.

5. Conclusions

In this work, we tried to summarize the present state-of-the-art of continuum
simulations of semiconductor heteroepitaxy, focusing on typical growth con-
ditions yielding high-quality materials. The principal drawback of continuum
approaches is obvious already from the name: materials are not continuous.
However, most atomic-scale processes can be effectively considered, as demon-
strated by the successful comparison between many of the approaches discussed
here and actual experimental data. One day reliable atomistic approaches might
develop to the point where growth can be reliably simulated matching both
temporal and spatial laboratory time scales. Quite frankly, we do not envision
this to happen in the close future. Even then, we believe that the importance
of continuum approaches would not fade. As here above illustrated by the
treatment of complex phenomena such as elastic and plastic relaxation, exposure
of preferential surface orientations and intermixing, continuummodelling allows
for a unique understanding of complex phsyics on relatively simple grounds,
which would be hardly achieved by looking at billions of atomic trajectories.

Unavoidably, we focused more on the approaches and on the applications for
which we can claim a direct experience. We first listed the set of competing phe-
nomena experimentally revealed in group-IV and III/V semiconductor growth
experiments and then analysed how they can be handled, often very successfully,
by continuum simulations.

Among the different available methodologies, we find that diffuse-interface
approaches (phase-field) are themore versatile, as they allow to combine different
physical phenomena in a consistent way. As such, they are good candidates to be
the heart of a general-purpose code to simulate different deposition techniques
leading to heteroepitaxial growth. It is worth mentioning that phase-field con-
tinuum approaches do not necessarily work only at large scales. For instance, the
Phase-Field-Crystal method [248–250], allows one to directly trace the crystal
structure and its evolution. This approach offers several advantages over typical
atomistic simulations as it filters out all vibrational dynamics while retaining
atomic scale interactions yielding both elastic and even plastic deformations.
However, this strength also restricts the method to relatively small scales so that
we did not explicitly analyse it in the review.
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Faster codes are always welcome, and computational research on efficient
algorithms is going to be fundamental for further developments. Still, we believe
that the major effort should be made in modelling dislocation evolution during
growth. Precise defects control is nowadays the main issue in developing next-
generation devices. This implies having information on actual dislocation posi-
tioning, on the geometry of the full dislocation line and on possible dislocation
reactions. The evolution of complex dislocation networks at the level specified
above can be provided by dislocation-dynamics simulations (see, e.g. Refs.
[251–255]). A code tackling simultaneously the evolving growth morphology
and the evolution of the corresponding dislocation network, considering their
mutual influence, is what we envision as the future key step.

We believe that the present need to optimally control heteroepitaxy calls
for a more intense synergy between experiments and theory. The parameter
space is way too large to proceed by trial and errors. Actually, we wrote this
review with the precise aim of stimulating further collaborations among the two
communities.

Note

1. Notice that experimental conditions usually consist of constant temperature T and
pressure P, so that the Gibbs free energyG is considered. However, under the assump-
tion of very low pressure, work by pressure-volume is negligible so that G coincides
with the Helmholtz free energy F.
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