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We introduce a diffuse interface approximation for an incompressible two-phase flow 
problem with an inextensible Newtonian fluid interface. This approach allows to model 
lipid membranes as viscous fluids. In the present setting the membranes are assumed to 
be stationary. We validate the model and the numerical approach, which is based on a 
stream function formulation for the surface flow problem, an operator splitting approach 
and a semi-implicit adaptive finite element discretization, against observed flow patterns in 
vesicles, which are adhered to a solid surface and are subjected to shear flow. The influence 
of the Gaussian curvature on the surface flow pattern is discussed.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Lipid membranes behave as viscous fluids under physiological conditions. This interface fluidity is essential e.g. for the 
mobility of proteins [1], fluid domains [2] and lateral reorganizations [3]. However, even if the importance of membrane 
fluidity is recognized, it is only rarely accounted for in continuum modeling approaches. This might be because of the 
difficulty of solving, and even formulating, the governing equations for the membrane fluid flow.

The mechanics of interfacial fluids necessarily involve the tools of differential geometry, and has been formulated in 
various ways since the early work of Scriven [4]. As in [4] we consider a geometric formulation of the governing equa-
tions, as this highlights the tight coupling between curvature effects and interfacial hydrodynamics. We here consider an 
inextensible two-dimensional Newtonian fluid interface of arbitrary curvature embedded in a bulk fluid. The model can be 
seen as an incompressible two-phase flow problem with an inextensible Navier–Stokes equation as interface condition. Sim-
ilar problems within the Stokes limit and for special geometries have been considered in [5–10]. Interfacial Navier–Stokes 
equations, without the coupling to the bulk fluid have been introduced in the mathematical literature by [11,12] and have 
been considered numerically in [13] for arbitrary but stationary interfaces and in [14] for evolving interfaces. We here focus 
on the coupling with the bulk fluid, but restrict the interface to be stationary. This already allows a comparison with an 
experiment [15] in which a vesicle was adhered to a solid surface and was subjected to a simple shear flow. The induced 
flow in the membrane has two vortices, which are attributable to the inextensibility of the membrane and in contrast to the 
toroidal circulation that would occur in the related problem of a drop of immiscible fluid attached to a surface and subject 
to shear [16]. The observed membrane and bulk flow patterns have already been theoretically predicted by [8,10] using a 
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Stokes approximation and a special hemispherical geometry of the vesicle. We will here use these results to validate our 
numerical approach for the full Navier–Stokes problem with arbitrary curvature.

The paper is organized as follows. After introducing the model in Section 2, we provide a diffuse interface approximation 
in Section 3. The numerical discretization and the validation of the model are given in Section 4. Section 5 discusses 
implications for more complex geometries and gives an outlook towards a full model, which also accounts for shape changes.

2. Sharp interface equations

Let � be a two dimensional interface separating two domains �1 ⊂ R
3 and �2 ⊂ R

3. The hydrodynamic equations for 
an incompressible fluid in the outer phase �1 and the inner phase �2 read

∂tui + (ui · ∇) ui = −∇pi + μi�ui

∇ · ui = 0
(1)

where ui is the fluid velocity, pi the pressure and μi the viscosity in �i . For readability, we assume the densities of the 
two fluids ρ1 = ρ2 = 1. Both systems of equations are coupled through the interface condition

ui |� = u� (2)

with the interfacial velocity u� on �. We split u� into a tangential and a normal part u� = v� + V n, with the normal 
vector n, but only consider stationary interfaces in this paper and thus set the normal velocity to zero, V = 0. The tangential 
part v� results as solution of the interfacial Navier–Stokes equations for an inextensible surface fluid on �. The equation 
can be derived from the Rayleigh dissipation potential [17,6]

W� =
∫
�

μ�(
1

2
|∇� × v�|2 + (∇� · v�)2 − K |v�|2) d�, (3)

with interface viscosity μ� , Gaussian curvature K and interface Nabla-operator ∇� . The dynamics of the system are obtained 
by minimizing the potential together with the bulk contributions. For the tangential balance of linear momentum we obtain 
the interfacial Navier–Stokes equations [13,9,14]

∂tv� + (v� · ∇�)v� = −∇� p� + μ�

(
�R

�v� + 2K v�

)
+ f

∇� · v� = 0
(4)

with the interfacial pressure p� , which is the interface tension and serves as Lagrange multiplier to maintain the inexten-
sibility constraint ∇� · v� = 0, the Laplace–de Rham operator �R

� and external forces f. As in the bulk the surface material 
density is ρ� = 1. Note that the surface velocity v� and the external forces f in (4) are considered as three component 
vectors with zero normal component in the respective coordinate system (e1(x), e2(x), n(x)) where e1(x) and e2(x) denote 
the two basis vectors in the tangent plane at x ∈ �. The force acting on an interfacial fluid surrounded by a bulk fluid is 
defined by the tangential part of the jump in the bulk stress tensor over the interface �

f = P� �Sn� (5)

with the projection matrix P� = I − nnT and �Sn� = (S2n − S1n) |� , see [6] for details. The bulk stress tensor is defined by 
Si = −piI + 2μiDi with the strain rate tensor and Di = 1

2

(∇ui + ∇uT
i

)
. By using P�n = 0 one can easily see that the forcing 

term (5) reduces to

f = 2P� �μDn� (6)

which means that this force is independent of the bulk pressure and only considers velocity gradients. According to [13] we 
transform equation (4) into a stream function formulation by using the substitution v� = curl(ψ)

∂tφ + J (ψ,φ) = μ�(��φ + 2∇� · (K∇�ψ)) + ∇� · (n × f)

φ = ��ψ
(7)

on � with the interface stream function ψ , the interface vorticity φ and the Jacobian J (ψ, φ) = −curl(ψ) · ∇�φ. The formu-
lation (7) has been analyzed in detail in [13] in the absence of external forces.

Summing up, the sharp interface equations of the complete system read

∂tui + (ui · ∇) ui = −∇pi + μi�ui in �i

∇ · ui = 0 in �i

ui|� = curl(ψ) on �

∂tφ + J (ψ,φ) = μ�(��φ + 2∇� · (K∇�ψ)) + ∇� · (n × f) on �

φ = � ψ on �

(8)
�
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Fig. 1. Schematic computational domain �1, �2 and � to consider the experimental setting in [15]. The red arrows indicate the shear flow through the 
domain and γ̇ denotes the shear rate. At the bottom the vesicle is adhered to a solid wall. (For interpretation of the references to color in this figure, the 
reader is referred to the web version of this article.)

Fig. 2. Implicit description of the computational domain � = �1 ∪ � ∪ �2 using a phase field function ϕ , together with the adaptively refined mesh. Note 
that the height of the bounding box is not proportional to the rest of the domain due to visual clarity.

which has to be supplemented by appropriate initial and boundary conditions. In general � will be a closed interface, 
which requires only to specify standard boundary conditions for the outer velocity u1. However, in order to reproduce the 
experiment in [15], we need to consider adhesion of the interface to a solid surface, see Fig. 1. We thus specify at the solid 
surface ui = 0, as well as ψ = 0 and ∂nψ = 0.

3. Diffuse domain/diffuse interface approximation

To efficiently solve the coupled bulk/surface problem in eq. (8) we use a diffuse domain/diffuse interface approximation, 
see [18,19] for a general treatment of such problems. We consider a phase field ϕ to implicitly describe the interface � and 
the bulk domains �i , with ϕ ≈ 1 in �1, ϕ ≈ −1 in �2 and ϕ ≈ 0 in �, e.g.

ϕ(x) = tanh

(
1√
2ε

d(x)

)
(9)

with a small interface parameter 0 < ε 	 1 defining the width of the diffuse interface and a signed distance function d(x)

describing the minimal distance of x ∈ � to the interface �, with � = �1 ∪ � ∪ �2, see Fig. 2.
The interface conditions ui |� = curl(ψ) are incorporated through penalty like forcing terms. Thus, the diffuse bulk 

Navier–Stokes equations read

∂tui + (ui · ∇) ui = −∇pi + μi�ui + Fi(ui,v�) in �

∇ · ui = 0 in �
(10)

with

F1(u1,v�) = −β1

2
(1 − ϕ)(u1 − v�), F2(u2,v�) = −β2

2
(1 + ϕ)(u2 − v�)

with typically large penalty prefactors βi . We use in our numerical examples βi = 10μiε
−2 which was justified asymp-

totically in [20]. We further assume that the interface velocity v� = curl(ψ) is defined in the whole domain � and has a 
constant extension normal to the interface �. Also the surface stream function formulation eq. (7) is extended to � and 
reads
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B(ϕ) (∂tφ + J (ψ,φ)) = ∇ · (B(ϕ) (μ�∇φ + 2μ� K∇ψ + n × f)) in �

B(ϕ)φ = ∇ · (B(ϕ)∇ψ) in �
(11)

where B(ϕ) ∼ (
ϕ2 − 1

)2
defines an approximation of an interface delta function, restricting the solution to �, and n =

∇ϕ/|∇ϕ|. The two bulk velocities u1 and u2 allow to compute the jump in the stress tensor in the forcing term f according 
to eq. (5), which again is extended constantly in normal direction.

Combining these equations defines a diffuse domain/diffuse interface approximation of the sharp interface equations (8), 
which can be justified by matched asymptotic expansions, see [21]. The coupled system reads

∂tui + (ui · ∇) ui = −∇pi + μi�ui + Fi(ui,v�) in �

∇ · ui = 0 in �

B(ϕ) (∂tφ + J (ψ,φ)) = ∇ · (B(ϕ) (μ�∇φ + 2μ� K∇ψ + n × f)) in �

B(ϕ)φ = ∇ · (B(ϕ)∇ψ) in �

(12)

and combines three Navier–Stokes equations, two in the bulk phases and one in stream function formulation on the inter-
face. Again eq. (12) has to be supplemented by appropriate initial and boundary conditions. At the solid surface we specify 
again ui = 0, as well as ψ = 0 and ∂nψ = 0.

4. Results

4.1. Discretization

To solve the system (12) we use a finite element approach. An operator splitting technique is applied to solve both bulk 
Navier–Stokes systems and the surface flow problem separately. We also use a semi-implicit Euler time stepping scheme. 
Let h be a triangulation of � such that

�h =
⋃

Z∈h

Z

is an interpolation of �. Let further Th be a uniform partition of the time interval (0, T ] with end time T and time step τ . 
We define the discrete time derivative dτ vm = 1

τ

(
vm − vm−1

)
for an arbitrary time dependent function v . The upper index 

denotes the time step number. The finite element spaces read

Mh =
{

q ∈ C0(�) ∩ L2
0(�) | q|Z ∈ P

rp (Z) ∀Z ∈ h

}

Vh =
{

v ∈ H1
0(�) | v |Z ∈ P

rv (Z) ∀Z ∈ h

}

Yh =
{
η ∈ H1(�) | η|Z ∈ P

rψ (Z) ∀Z ∈ h

}

where Pr· (Z) denotes the space of polynomials of degree r· on a tetrahedron Z ∈ h . The finite element approximation of 
the coupled system of equations (12) now reads: find (um

i,h, pm
i,h) ∈ V 3

h × Mh such that for all (vi, qi) ∈ V 3
h × Mh

(dτ um
i,h,vi) + ((um−1

i,h · ∇)um
i,h,vi) = (pm

i,h,∇ · vi) − (μi∇um
i,h,∇vi) + (Fi(um

i,h,vm−1
�,h ),vi)

(∇ · um
i,h,qi) = 0

(13)

with vm−1
�,h = curl(ψm−1

h ), and find (φm
h , ψm

h ) ∈ Y 2
h such that for all (η, ξ) ∈ Y 2

h

(B(ϕ)(dτ φm
h + J (ψm−1

h , φm
h )),η) = −(B(ϕ)

(
μ�∇φm

h + 2μ� K∇ψm
h + n × fm)

,∇η)

(B(ϕ)φm
h , ξ) = −(B(ϕ)∇ψm

h ,∇ξ),
(14)

with fm = 2P� �μDmn�. A general discussion of the numerical treatment of the boundary conditions for ψ and φ at the solid 
surface is given in [22]. We consider an approach of [23], which has already been adapted to the diffuse domain/diffuse 
interface approximation and validated in [24]. We hereby explicitly specify ∂nψ = 0 and ∂nφ = 0 on the solid surface and 
treat the Dirichlet condition ψ = 0 implicitly using a penalty approach.

In order to ensure well-posedness of eq. (14) we replace B(ϕ) by max(B(ϕ), δ) in the second order terms with a small δ, 
see [18]. In our numerical examples we use δ = 10−7. The following simulations have been computed using the finite ele-
ment toolbox AMDiS [25,26] with an adaptively refined mesh, with a high resolution along the diffuse interface, with mesh 
size h ≈ 3

√
2ε/5. This leads to approximately 7 to 8 points along the normal direction across the diffuse interface. Away 

from the diffuse interface the mesh size is much coarser but fine enough to resolve the flow properties. We use Taylor-
Hood finite elements for both Navier–Stokes systems, i.e. quadratic finite elements for the velocity components and linear 
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Fig. 3. Two dimensional velocity (projected to the plane and rescaled for visualization) of the sliced Ld vesicle at levels z/R = 0.3, 0.5, 0.7 (from left to 
right) for ε = 0.01. The green arrows indicate the inner velocity u2 and the blue arrows indicate the outer velocity u1. Shear direction: from left to right. 
(For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 4. Streamlines of the inner velocity u2 (left) and streamlines of the surface fluid viewed from top (right) for ε = 0.01.

finite elements for the pressure variable. For the surface stream function formulation linear finite elements are employed. 
A domain decomposition approach and a parallel iterative solver BiCGStab(ell) to solve the resulting linear system enable to 
perform simulations with a large number of degrees of freedom with an acceptable cost.

4.2. Experimental validation

In [10] the experimental setup of [15] was used to determine membrane viscosity. Two types of vesicles – liquid ordered 
(Lo) and liquid disordered (Ld) – are adhered to a solid surface and are considered under shear flow. We here use the same 
setup to compare the experimental data as well as their proposed model and our approach. We use � = [−2l∗, 2l∗]2 ×[0, 4l∗]
with length scale l∗ = 20 μm as computational domain and a hemispherical geometry for the vesicle with radius R = l∗
located at the origin. The signed distance function used to define ϕ thus is d(x) = |x| − R . We consider a shear flow boundary 
condition with shear rate γ̇ = 1

2
1
t∗ with time scale t∗ = 1

5.2 s on top of � and no slip boundary conditions on the solid surface 
at the bottom. On all other boundaries we employ homogeneous Neumann conditions, which can be justified by the large 
spatial extension of the domain compared to the vesicle size. The bulk viscosities are set as μ1 = μ2 = 10−6 m2

s = 480.77 l∗2

t∗

and for the surface viscosity we use μ� = 0.8736 · 10−6 m2

s = 420 l∗2

t∗ for the Lo vesicle and μ� = 0.4784 · 10−6 m2

s = 230 l∗2

t∗
for the Ld vesicle. We start with zero initial condition and let the flow evolve until a steady state is reached.

Fig. 3 shows different plane cuts at different height levels through the vesicle. In Fig. 4 (left) a visualization of the inner 
velocity u2 is shown and in Fig. 4 (right) the streamlines of the fluid interface are shown. All these results qualitatively 
coincide with the experimental data in [10].

In order to compare the results quantitatively we use the velocity profile through the vesicle apex, see Fig. 5. The 
experimental as well as the model data, which are obtained using a Stokes approximation (black lines and black circles, 
respectively) are extracted from [10]. The numerical convergence of our phase field approach to the experimental data for 
ε → 0 can be observed. The velocity profile inside the vesicle, as well as the slope discontinuity at the membrane are nicely 
resolved. Table 1 shows the experimental order of convergence (E O C ) for different norms and both vesicle types Lo and Ld . 
We use the L2 norms ‖u − v�‖2,� and ‖u1 − u2‖2,� on the interface � to get a measure for the approximation of the 
boundary conditions at the interface. In all cases a linear convergence rate is observed.
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Fig. 5. Quantitative comparison of experimental/simulation data reported in [10] and the simulation of the present model for different values of ε and both 
vesicle types Lo (left) and Ld (right) where v denotes the component of the velocity field parallel to the shear flow. The dashed part of each colored lines 
indicates the interface region for the respective simulation. We here considered the interpolated velocity u = 1

2 ((1 + ϕ)u1 + (1 − ϕ)u2). (For interpretation 
of the references to color in this figure, the reader is referred to the web version of this article.)

Table 1
Experimental order of convergence (E O C ) for both Lo and Ld vesicles regarding the errors e1 := ‖u − v�‖2,� and 
e2 := ‖u1 − u2‖2,� where ‖ · ‖2,� denotes the L2 norm over the interface �. The mesh size h within the diffuse 
interface is related to the interface width ε by h ≈ 3

√
2ε/5.

ε Ld vesicle Lo vesicle

e1 E O C e2 E O C e1 E O C e2 E O C

0.10 0.0142 – 0.0145 – 0.0142 – 0.0145 –
0.09 0.0124 1.298 0.0127 1.289 0.0123 1.304 0.0126 1.295
0.08 0.0112 0.818 0.0115 0.829 0.0112 0.823 0.0115 0.836
0.07 0.0101 0.767 0.0103 0.778 0.0101 0.771 0.0103 0.783
0.06 0.0089 0.818 0.0091 0.829 0.0089 0.817 0.0091 0.829
0.05 0.0079 0.691 0.0080 0.702 0.0078 0.696 0.0080 0.709
0.04 0.0063 1.006 0.0064 1.007 0.0063 1.014 0.0064 1.017
0.03 0.0050 0.824 0.0050 0.828 0.0049 0.829 0.0050 0.835
0.02 0.0033 1.005 0.0034 0.999 0.0033 1.010 0.0033 1.009
0.01 0.0017 0.991 0.0017 0.973 0.0016 0.998 0.0017 0.992

5. Summary and outlook

5.1. Ellipsoidal shaped vesicle

As our approach is not limited to a hemispherical shape we consider an ellipsoidal shape for the vesicle. The ellipsoid is 
characterized by the zero level set of the function q(x) = xT A2x − 1 with the diagonal coefficient matrix A = diag(a) ∈R

3×3

and a = (a−1
0 , a−1

1 , a−1
2 )T . The function q(x) can easily be transformed into a signed distance function d(x) using coordinate 

transformations. In the following simulations we use the coefficients a0 = 0.8l∗ , a1 = 1.2l∗ and a2 = 0.9l∗ and rotate the 
ellipsoid around the z-axis (height axis) by an angle of π/5 to break the symmetry. As for the hemispherical vesicle, 
also the ellipsoid is in equilibrium if the volume |�2| is conserved and the membrane is inextensible. So also for this 
configuration our assumption of a stationary profile is fulfilled. All other parameters remain. We consider a Ld vesicle.

We visualized the inner flow field in Fig. 6 (top row) in form of plane cuts at different height levels through the vesicle. 
In contrast to a hemisphere as used in the prior sections the ellipsoidal shape has a non constant Gaussian curvature K
(see Fig. 6) and therefore a direct influence on the surface flow field. The influence of the geometry on the flow field can be 
analyzed by an effective geometric interaction which depends linearly on the geometric potential U defined by the surface 
Laplace equation ��U = K , see [27,14] for details. Due to this interaction, vortices in a flow field are typically attracted 
to peaks and valleys, i.e. local maxima of the Gaussian curvature. The steady state interfacial flow field is shown in Fig. 6
(bottom row, left) in form of the surface streamlines. The two vortices are shifted towards the regions of high Gaussian 
curvature K , see Fig. 6 (bottom row, center and right), which shows the Gaussian curvature K and the geometric potential 
U for the ellipsoidal shaped vesicle. However, already the specified no-slip boundary condition on the substrate prohibit 
the vortices to be located at the points of highest Gaussian curvature. Furthermore, the surface flow field is influenced by 
the bulk flow. So, if this shift in location of the vortices is a result of the geometric potential or has its origin in the bulk 
flow or the specified boundary conditions remains open. To identify the effect we vary the geometry. We thereby keep the 
height of the ellipsoid a2 = 0.9l∗ constant to have a comparable interaction with the bulk flow. Furthermore, we fix the area 
of the ellipsoid, to maintain comparable surface flow properties. We only vary a0 and a1, see Fig. 7.
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Fig. 6. Top row: Two dimensional velocity (projected to the plane and rescaled for visualization) for the sliced ellipsoidal vesicle at levels z = 0.3, 0.5, 0.7
(from left to right) for ε = 0.01. The green arrows indicate the inner velocity u2 and the blue arrows indicate the outer velocity u1. Bottom row: Streamlines 
of the surface fluid (left), Gaussian curvature K (center) and the geometric potential U (right) viewed from top for the ellipsoid and ε = 0.01. Shear 
direction: from left to right. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 7. Considered ellipsoidal shapes visualized as contour lines of the phase field function in the bottom plane (left) and table with axis parameter for the 
considered ellipsoids (right).

Fig. 8 shows the setting, with the red dot the center of one vortex and the blue dot the point of highest curvature on the 
major axis. We measure the geodesic distance d between both points. The value should decrease with increasing curvature 
effect. In Fig. 9 d is plotted for different geometries in comparison with the results, which would be obtained without the 
Gaussian curvature term in the surface Navier–Stokes equation. The value decreases for more elongated ellipsoids and also 
the difference between the results with the correct K and with K = 0 increases, which indicates the geometric contribution.

5.2. Outlook

We have introduced a model for a stationary fluidic interface in a viscous fluid. The interface is treated as lower dimen-
sional surface since its thickness is much smaller than its lateral extension. The interfacial hydrodynamics can be described 
by the surface Navier Stokes equations [6] – a generalization of the Navier Stokes equation in the two dimensional plane. In 
order to prevent dealing with vector fields and local coordinates on general surfaces we used the surface stream function 
formulation introduced in [13,14]. This formulation allows using standard numerical techniques for surface PDEs. The basic 
ideas of [18] and [19] are used to transform the model in a description with phase fields. We have validated the model 
on the experimental data provided in [10] and have shown the numerical convergence of our approach for the interface 
parameter ε → 0. Additionally, we have presented numerical examples for interfaces with non constant Gaussian curva-
ture K and the interaction with the underlying geometry. The numerical approach is reliant on the inextensibility of the 
membrane. Without this constraint simplified models can be built which consider the membrane fluidity implicitly using a 
Boussinesq–Scriven interface stress tensor, see e.g. [28–31]. The resulting interfacial flow patterns in these models, which 
consider droplets instead of vesicles or cells, are qualitatively different and lead to toroidal circulation [16].
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Fig. 8. Ellipsoidal surface with surface stream lines, the center of one vortex (red dot) and highest curvature point (blue dot), the major and minor axis of 
the projected ellipsoid, and the measured values d. (For interpretation of the references to color in this figure, the reader is referred to the web version of 
this article.)

Fig. 9. The geodesic distance d as a function of the major axis of the ellipsoid. In addition the results for K = 0 in the surface Navier–Stokes equation are 
shown for comparison for the same geometries.

The coupling of surface hydrodynamics and bulk flow is of special interest for spinodal decomposition in lipid bilayer 
membranes. A description for planar lipid bilayer membranes can be found in [32]. Our approach is not restricted to special 
geometries and can be applied for a broad range of surfaces if a smooth phase field function ϕ is provided. The model 
can be used to investigate spinodal decomposition on general surfaces under the influence of bulk flow. Furthermore, an 
extension to moving surfaces is possible. This has already been considered for the interfacial hydrodynamic equations in 
[14]. With this extension further physical effects of lipid bilayer membranes can be taken into account such as bending or 
spontaneous curvature effects, which have already been considered within a phase field context, under the inextensibility 
constraint, but without membrane fluidity [33–35]. To combine these approaches will be subject of future work.
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