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If two-dimensional crystals grow on a curved surface, the Gaussian curvature of the surface induces
elastic stress and affects the growth pathway. The elastic stress can be alleviated by incorporating defects or,
if this is energetically unfavorable, via an elastic instability which leads to anisotropic growth with
branched ribbonlike structures. This instability provides a generic route to grow defect-free crystals on
curved surfaces. Depending on the elastic properties of the crystal and the geometric properties of the
surface, different growth morphologies with two-, four-, and sixfold symmetry develop. Using a phase field
crystal type modeling approach, we provide a microscopic understanding of the morphology selection.

DOI: 10.1103/PhysRevLett.116.135502

If a two-dimensional crystal grows on a spherical sur-
face, the symmetry axis of its natural lattice packing is
incompatible with the Gaussian curvature of the sphere,
inevitably causing elastic stress. The Asaro-Tiller-Grinfeld
(ATG) instability [1–3] is a common mechanism to
alleviate elastic stress in crystals and is also evident for
curvature induced elastic stress [4]. But under growth a
different elastic instability occurs, which has been identi-
fied by Ref. [5]. It leads to anisotropic growth and defect-
free branched ribbonlike structures, which are potentially
important for processes involving the ordering of identical
subunits in curved space. Examples, as summarized in
Ref. [5], are an assembly of viral capsids [6], filament
bundle packings [7], formation of molecular monolayers
[8], functionalization of nanoparticles [9], and growth of
solid domains on vesicles [10–12].
These observed defect-free structures are remarkable,

as the ground-state configurations for crystals fully cover-
ing the curved surface are not defect-free. Due to topo-
logical reasons, they feature crystalline defects, such as
disclinations, dislocations, grain boundary scars, and pleats
[13–15]. We demonstrate that during growth these ground
states are inaccessible for rigid crystals. There, the core
energy of the defects is too large, and it is energetically
favorable to avoid their incorporation, which leads to the
branched structures.
The underlying elastic instability is explained in Ref. [5]

by considering an isotropic, circular crystal cap surrounded
by melt on a sphere. Using continuum elasticity theory, the
energy ΔGcap depends on the crystal cap radius r0 and the
radius of the sphere R [5,16,17]:

ΔGcap ¼ 2πr0γ þ
π
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where Y is the two-dimensional Young’s modulus of the
crystal. ΔE is the energy difference between crystal and
melt, and γ is the line tension of the crystal melt interface.

Equation (1) has a global energy minimum at a critical cap
size rc (see Fig. 1). Therefore, isotropic or circular growth
of the crystal beyond rc is energetically prohibited. To grow
further, the crystal changes into an anisotropic ribbon
shape. The energy of a ribbon of length l and width w
on the surface of a sphere is [16,17]

ΔGrib ¼ 2γðlþ wÞ þ 9
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For fixed width w the strain energy increases only linearly
in l and thus allows for further growth.
However, this argumentation is only valid for rigid

crystals as it neglects the possibility to incorporate defects.
Soft crystals might never reach the critical size rc, as
incorporation of defects might already be energetically
favored over a defect-free, stressed configuration for
smaller crystals. In order to account for defect formation,
we explore the growth routes for crystals on curved
surfaces using a microscopic elastic theory. The theory
is based on the phase-field crystal (PFC) model [18,19] (see
Ref. [20] for a review on the modeling approach and its

FIG. 1. Qualitative behavior of the energy of a crystal cap
on a spherical surface, Eq. (1). Shown are the energies for
decreasing surface radii R1 > R2 > R3 and increasing
Young’s moduli Y1 < Y2 < Y3 with the energy minima
marked by dots. ΔE and γ are fixed.
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wide applicability in condensed and soft matter physics).
Using the derivation of the model from classical dynamic
density functional theory [21–23], we consider a higher
order PFC model as proposed in Refs. [24,25]. The
additional degrees of freedom allow us to independently
choose, e.g., the elastic constants of the crystal and the
energy difference between liquid and solid phases. These
degrees of freedom are mandatory, as we aim for a
description of crystals with varying rigidity. The PFC
model is a conserved evolution equation for the reduced
particle density ψ and reads

∂tψ ¼ ΔΓ
δF½ψ �
δψ

; ð3Þ

with an energy functional

F½ψ � ¼
Z
Γ

�
ψ

2
ωðΔΓÞψ þ ψ4

4

�
dΓ; ð4Þ

which is formulated here on the spherical surface Γ, using
the surface Laplacian ΔΓ (see Refs. [23,26,27]). Using the
notation of Refs. [24,25], we define

ωðΔΓÞ ¼ ϵ − Λ
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;

Λ ¼ −
k2mγ8
8

; EB ¼ −ðC0 − ϵþ ΛÞ: ð5Þ

The parameter ϵ is the undercooling of the system, km the
equilibrium wave number of the crystal, γ8 the curvature
of the energy kernel ω̂ in Fourier space at km, and C0 the
energy of the liquid phase (see Fig. 2 for details).
Depending on these parameters and the average density
of the system ψ̄ , the functional Eq. (4) is minimized by
periodic and/or constant solutions, modeling a crystal and
its melt, respectively.
Within the one-mode approximation in flat space [19],

the periodic solution is given in the ðx; yÞ plane by

ψ t ¼ At
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with the equilibrium wave number qt and amplitude At
defined as

qt ¼
ffiffiffi
3

p jkmj
2

; At ¼
4ψ̄
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This one-mode approximation can be used to compute the
two-dimensional Young’s modulus Y and the solid-liquid
energy difference ΔE,

Y ¼ 1

8
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t k2m; ð8Þ
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We introduce a length scale km ¼ 1 and ensure a large
crystal-melt coexistence regime by fixing C0 ¼ 20 and
ϵ ¼ −0.9. We are interested in finite-size crystals.
Moreover, these should grow only slowly in order to avoid
Mullins-Sekerka–type instabilities [28]. We realize such
crystals by choosing the average densities ψ̄ ¼ −0.585,
ψ̄ ¼ −0.590, and ψ̄ ¼ −0.595 close to the coexistence
regime (see Supplemental Material Ref. [29]).
Neglecting the line tension γ in Eq. (1) renders the

critical radius

rc ¼
�
128

ΔE
Y

�ð1=4Þ
R ð10Þ

a function of γ8 [via Eq. (8)], the remaining adjustable
parameter of the PFC model.
We numerically solve the eighth-order partial differential

equation (3) using a semi-implicit Euler scheme [30]
combined with a basis decomposition of the density field
ψ into spherical harmonics [31]. The initial condition is set
using the one-mode approximation with fixed amplitude
At ¼ 0.67, resulting from our previously chosen values of ϵ
and ψ̄ , and restricted to a cap of size r0 ¼ 40. The
remainder of the spherical surface is covered by the
surrounding melt. In order to realize setups with different
critical cap sizes rc, we vary the defining parameters γ8 ¼
20;…; 160 and R ¼ 40=qt;…; 120=qt in steps of Δγ8 ¼
10 and ΔR ¼ 10=qt. This also renders the crystals suffi-
ciently rigid to realize defect-free growth. We first focus
on the mesoscopic shapes of the crystals and explain the
microscopic origin of the shape selection afterwards. The
mesoscopic results are summarized in Fig. 3. Besides
the parameter setting for which the initial crystal melts
[white circles in Fig. 3(b)], the crystal cap isotropically
grows in a perfect triangular lattice with sixfold symmetry

FIG. 2. Parametrization of the energy kernel ωðΔΓÞ in Fourier
space.

PRL 116, 135502 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending
1 APRIL 2016

135502-2



until it reaches its critical size. In accordance with the
continuum elastic theory [5], further growth leads to a
morphological transition. However, we encounter different
morphological patterns, shown in Fig. 3(a). The first one
develops six branches, starting at the corners of the
underlying hexagonal crystal structure. In the second
growth pattern, the cap structure transforms into a short
ribbon structure which subsequently branches, forming
four ribbons. Finally, the third growth route features a
transition into a single ribbon, which only increases its
length upon temporal evolution. Figure 3(b) shows the
realized growth patterns for different sphere radii R and
critical radii rc. Using rc=R as a parameter leads to a clear
separation of the different growth morphologies. A tran-
sition from sixfold branching (black stars) to fourfold
branching (yellow crosses) and twofold branching (green
vertical dashes) for decreasing rc=R or R is evident. In
accordance with our results, Meng et al. [5] experimentally
found similar branched structures for rc=R ≈ 0.4–0.5 and
R ≈ 110=qt. However, they attribute branching to the
equivalence of growth directions or coalescence of ribbons.
Our results demonstrate that the elastic instability alone
may lead to branching.
What triggers the different growth morphologies? Let us

consider a sphere with R ¼ 110=qt for fixed ψ̄ ¼ −0.595.
We choose the decreasingly rigid crystals with γ8 ¼ 160,
γ8 ¼ 140, and γ8 ¼ 80 as representatives for the growth
patterns of twofold (ribbon), fourfold, and sixfold branch-
ing. For the explanation we use a microscopic picture with
discrete particles. Now, crystal growth can be considered as
a series of attachment events of particles at energetically
favorable open lattice sites [33–36]. As kinetic effects are
excluded, the next particle will attach at the site with the
maximal number of bonds with the least elastic stress. As
we are only interested in energy differences, we consider

the energy density in Eq. (4) evaluated in the maxima of the
density field ψ as an indicator for the elastic stress.
Starting from the seed crystal with its perfect sixfold

symmetry, the crystal grows by adding particles on the
facets, to which new particles attach until the next layer of
particles is closed. After each attachment of a particle, the
crystal relaxes elastically. Figure 4 illustrates the attach-
ment and relaxation process by plotting the energy density
on the facet sites. The colors of the particles on the left
represent the energy density configuration on the facets of
the growing crystal before and after the elastic relaxation
of the respective layer. The right part shows the facet of
the last growing layer before symmetry breaks. There, the
energy density configuration is supplemented by the
maximum, average, and minimum values, and the corre-
sponding time scales are given. The energy density value in
the corners evolves similarly (see Supplemental Material
Ref. [29]). While the attachment and relaxation process is
basically the same for all three configurations, the energy
differences and the distribution along the facets differ. For
γ8 ¼ 160 and 140 the maximum values before and after
relaxation are always at the ends of the facet, and a
minimum is found in the middle. For γ8 ¼ 80 the situation
qualitatively changes. For larger facets two minima develop
together with two local maxima at the ends of the facet, and
a global maximum arises in the middle of the facet.
Once the critical radius rc is reached, the asymmetry

develops in the local energy density during the relaxation
process. This relaxation takes longer for more rigid crystals
(see time scales in Fig. 4 and movies in Supplemental
Material Ref. [29]). Figure 5 shows the energy density at
each particle at the crystal-melt interface after relaxation of
the latest symmetric morphology. For the softest case of
γ0 ¼ 80, the sixfold symmetry is conserved and all six
corners are the energetically most favorable sites. For

FIG. 3. (a) Temporal evolution (from left to right) of different growth patterns of crystals on a sphere. Top row: Sixfold branching;
middle row: fourfold branching; bottom row: formation of a single ribbon. For illustration purposes, the maxima in the density field ψ
are displayed as particles, using OVITO [32]. (b) State diagram of the growth patterns. Depending on the sphere radius R and the critical
cap size rc, sixfold branching (black stars), fourfold branching (yellow crosses), or ribbon formation (green vertical dashes) is realized.
The white circles mark parameter combinations for which the initial condition decays into a constant solution (melt) (compare Fig. 1).
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γ8 ¼ 140, we observe an asymmetry with four facets being
energetically favorable over the remaining two facets and
six corners. The most rigid case of γ8 ¼ 160 shows an
asymmetry of two corners being energetically cheaper than
the other four corners or six facets. Similarly, the ener-
getically most unfavorable sites are found in the middle of
the facets (γ8 ¼ 80) or at the ends of two opposing facets
(γ8 ¼ 140, even more pronounced for γ8 ¼ 160). The time
evolution in Fig. 6 starts from this configuration (left) and
shows the next rearrangement step which selects the
morphology (middle) and a later configuration with the
developed twofold, fourfold, or sixfold symmetry (right).

The symmetry breaking in the morphology is, in all cases,
associated with a detachment (attachment) process of
particles at the energetically most unfavorable (favorable)
sites. For γ8 ¼ 160, detachment happens at the ends of two
opposite facets. The next attachment process is at the
corners, which are not associated with these two facets,
leading to the twofold symmetry. For γ8 ¼ 140, the
symmetry breaking happens slightly differently. Because

FIG. 4. Averaged energy density evaluated at the facets for each
layer until the symmetry breaks. We show the maximum, average,
and minimum values along the last growing layer. The (þ)
corresponds to the equidistant time steps. In addition, the facet
configuration, together with the energy density, is shown after
the attachment and relaxation process, for (a) γ8 ¼ 160,
(b) γ8 ¼ 140, and (c) γ8 ¼ 80. The colors of the particles indicate
the energy density [from low (blue) to high (red) as shown by the
color bar in (c)].

FIG. 5. Energy density over each particle on the crystal-melt
interface, plotted as a function of angle and evaluated at the last
configuration shown in Fig. 4, also corresponding to the first
frame shown in Fig. 6. The developing twofold, fourfold, and
sixfold symmetry is already visible.

FIG. 6. Growth morphology and energy density at the largest
symmetric configuration after elastic relaxation (left). The color
indicates the energy density (blue-low, red-high) and is the same
as in Fig. 4. We show the configuration after further attachment or
reconfiguration (middle) and developed morphology (right). The
detachment events are indicated by red arrows, and the asym-
metric growth direction by black arrows. The top row shows the
evolution for γ8 ¼ 160 leading to twofold symmetry, the middle
row the evolution for γ8 ¼ 140 leading to fourfold symmetry, and
the bottom row the evolution for γ8 ¼ 80 leading to sixfold
symmetry. The whole evolutions are provided as movies in
Supplemental Material Ref. [29].
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of the energy density minima at four facets, formation of
the new layer happens there first. But instead of starting a
new layer on the two remaining facets, particles get
detached from the existing layer on these facets and
attached on the already growing layers on the other four
facets, leading to the fourfold symmetry. Only for γ8 ¼ 80
does the configuration stay symmetric. But the maximum
energy density is found in the center points of the facets,
leading to a detachment process there and attachment at the
energetically more favorable corners. This initiates the
sixfold symmetry with branches developing in each corner.
Only very soft crystals remain in a compact caplike shape.
Here, the branches immediately grow together, leaving
behind scarlike structures. In the Supplemental Material
Ref. [29] a movie is provided showing the simulation
results for γ8 ¼ 0.1.
To conclude, anisotropic crystal growth is shown as the

result of a geometric constraint of Gaussian curvature. We
have shown that the developing morphology thereby
strongly depends on the elastic properties of the crystal
leading to twofold, fourfold, or sixfold branched structures.
These patterns are a result of broken symmetry in the elastic
energy on the microscopic particle scale.
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