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We consider a generic model for cell motility. Even if a comprehensive under-

standing of cell motility remains elusive, progress has been achieved in its

modelling using a whole-cell physical model. The model takes into account

the main mechanisms of cell motility, actin polymerization, actin–myosin

dynamics and substrate mediated adhesion (if applicable), and combines

them with steric cell–cell and hydrodynamic interactions. The model predicts

the onset of collective cell migration, which emerges spontaneously as a result

of inelastic collisions of neighbouring cells. Each cell here modelled as an active

polar gel is accomplished with two vortices if it moves. Upon collision of

two cells, the two vortices which come close to each other annihilate. This

leads to a rotation of the cells and together with the deformation and the

reorientation of the actin filaments in each cell induces alignment of these

cells and leads to persistent translational collective migration. The effect for

low Reynolds numbers is as strong as in the non-hydrodynamic model, but

it decreases with increasing Reynolds number.
1. Introduction
Substrate-based cell motility is a well-studied process for eukaryotic cells, such

as keratocytes, fibroblasts and neutrophils. It plays a fundamental role in tissue

growth, wound healing and immune response. Less explored are motility

mechanisms where local adhesion is less evident, such as for cells moving in

martigels or freely swimming microorganisms. We here consider a generic

model, which accounts for a wide range for motility mechanisms by consider-

ing: (i) the generation of a propulsive force by actin polymerization, which acts

against the cell’s membrane, (ii) the formation of adhesive contact to the sub-

strate, transferring this force to the substrate (if present), and (iii) a contractile

action of actin–myosin complexes determining the cell polarity and being

responsible for retraction of the cell’s rear (e.g. [1,2] for a review on the forces

involved in cell movement). Several experimental studies for fish keratocyte

(e.g. [3–5]) indicate a self-organization process behind the motility mechanism,

which has been adapted in various theoretical approaches [6,7]. Similar models

(without the adhesive contact) have been proposed as generic models for cell

motility in three-dimensional environments [8–10]. They all apply an active

polar gel theory [11–13]. If considered in a confinement, a splayed polarization

of the actin filaments can occur, which models the contractile stress due to the

interaction of myosin and actin. If combined with the treadmilling process of

polymerization and depolymerization of actin filaments (e.g. the one con-

sidered in [14–16]) and if applicable an effective treatment of the adhesive

contact, a whole-cell physical model for moving cells can be constructed

[10,17]. Such models have been established for single cells and are used to ana-

lyse motility of various cell types [10,18]. The results strongly support the

physical view on cellular motility, which exploits autonomous physical mech-

anisms whose operation does not need continuous regulatory effort. Recently,

such models have also been considered for collective migration [19]. Here,

each cell is considered as an active polar gel and interactions between the

cells are specified. The model predicts that collective migration emerges spon-

taneously as a result of inelastic collisions between neighbouring cells. These
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collisions lead to mutual alignment of the cell velocities and

to the formation of coherently moving multi-cellular clusters.

These results essentially confirm simpler agent-based model-

ling approaches of Vicsek type [20] with inelastic behaviour

in the interaction rules [21], recent mesoscopic simulations

based on active phase field crystal models [21] and continuum

approaches which only consider the emerging macroscopic be-

haviour [22,23] using Cahn–Hilliard type models. All these

approaches for collective migration neglect hydrodynamic

interactions. The effect of these interactions on collective

migration is controversially discussed. In the related problem

of motility-induced phase separation [24], where clustering

results from a reduction of the propulsion speed due to cell

collisions in environments with high local density [25,26], a

suppression of cluster formation is observed if hydrodynamic

interaction is taken into account, while the hydrodyna-

mic active Cahn–Hilliard model in [27] leads to arrested

phase separation.

We here consider the hydrodynamic active polar gel

model, which was used in [10] for a single cell, for multi-

ple cells. Each cell is thereby described by a phase-field

variable, which defines the confinement of the field variables

of the active polar gel model for each cell. The interaction

between the cells only considers steric interactions. Short-

range repulsion is realized by a Gaussian potential using

the phase-field variables [28]. Using a multi-mesh approach

[29], which allows for an efficient numerical treatment by

considering differently refined meshes for each variable,

allows one to significantly reduce the computational cost

and to consider numbers of cells, which are sufficient to

observe collective migration.

The paper is organized as follows. In §2, we introduce the

mathematical model and compare it with the non-hydrodynamic

model in [19]. We further discuss numerical aspects. In §3, we

first perform several computations for binary collisions

before the onset of collective migration is studied for larger

systems. The simulations do not indicate a suppression of col-

lective motion if hydrodynamic interactions are considered.

However, the number of cells which can be considered

in the numerical study is limited and it remains open, if

long-range polar order can also be established for much

larger systems.
2. Mathematical model for cell motility
The mathematical model is based on physical phenomena and

results from energy minimization, conservation laws and

active components, taking into account the filament network,

the cell membrane, cell–cell and cell–substrate interactions,

as well as fluid properties.

2.1. Energy
Following [8,10], we consider the free energy of a single cell i

EcellðPi,fiÞ ¼ EPðPi,fiÞ þ ESðfiÞ, ð2:1Þ

which consists of the energy of the filament network EPðPi,fiÞ,
described by an orientation field Pi, which is the mesoscopic

average of the actin filaments and the surface energy ESðfiÞ
of the cell membrane GiðtÞ. Each cell is described by a phase-

field variable fi, defined as fiðt,xÞ :¼ tanhðriðt,xÞ=ð
ffiffiffi
2
p

eÞÞ,
where e characterizes the thickness of the diffuse interface

and riðt; xÞ denotes the signed-distance function between
x [ V, in the considered case a bounded domain in R2, and

its nearest point on GiðtÞ. Depending on ri, we label cell i
with fi � 1 and the outside with fi � �1. The cell membrane

GiðtÞ is then implicitly defined by the zero-level set of fi. In [8],

the cell has been considered as a droplet for which the surface

energy reads

ES,CHðfiÞ ¼
3si

2
ffiffiffi
2
p
ð
V

1

2
jrfij2 þ

1

1
WðfiÞdx, ð2:2Þ

where WðfiÞ¼ (1=4)(f2
i � 1)2 denotes the double-well poten-

tial and si is the membrane tension. In [10], also a bending

energy of the cell membrane was taken into account using

the Helfrich energy in a phase-field approximation [30,31]

ES,WðfiÞ ¼
3bN,i

4
ffiffiffi
2
p
ð
V

1

21
1Dfi �

1

1
W 0

0ðfiÞ
� �2

dx, ð2:3Þ

with bN,i denoting the bending rigidity and W 0
0,iðfiÞ¼

ðf2
i � 1Þðfi þ

ffiffiffi
2
p

H0,i1Þ the derivative of the double-well poten-

tial with the spontaneous curvature H0,i. The surface energy

thus results as a combination of both energies

ESðfiÞ ¼ ES,CHðfiÞ þ ES,WðfiÞ: ð2:4Þ

In the following, we will consider si¼s, bN,i¼bN and

H0,i ¼ H0 for simplicity. The energy of the filament network

of cell i is given by

EPðPi,fiÞ ¼
ð
V

ki

2
ðrPiÞ2 þ

c0;i

4
jPij2ð�2fi þ jPij2Þ

þ b0,iPi � rfdx: ð2:5Þ

The gradient term with the positive Frank constant ki is a sim-

plification of a general distortion energy formulation from the

theory of liquid crystals, with the assumption of the same

value of the stiffness associated with splay and bend defor-

mations (e.g. [32]). Linking fi to the second term allows

restricting Pi to the cytoplasm: if fi , 0 the minimum is

obtained for jPij ¼ 0 and thus the term does not contribute

to the energy, and for fi . 0, the term forms a double-well

with two minima with jPj ¼ 1 and the form specified by

the parameter c0,i. The last term in equation (2.5) guarantees

for b0,i . 0 that Pi points outwards in normal direction to

the cell boundary. This is required to account for the effect

of polymerization of actin filaments [33]. We will again

only consider the case ki ¼ k, c0,i ¼ c0 and b0,i ¼ b0.

The overall energy for N cells and their interaction in a

fluid environment is given by

EðP1, . . . ,PN ,f1, . . . ,fN ,vÞ ¼
XN

i¼1

EcellðPi,fiÞ

þ
XN

i¼1

Ei,intðf1, . . . ,fNÞ þ EkinðvÞ,

with the kinetic energy Ekin and the velocity v. For the sake of

simplicity, we consider in the derivation equal density r and

viscosity h for VcellðtÞ ¼ <N
i¼1ViðtÞ and the fluid outside V0ðtÞ,

which is considered as an isotropic Newtonian fluid, so that

EkinðvÞ ¼
r

2

ð
V

v2 dx, ð2:6Þ

with V ¼ V0ðtÞ< GðtÞ< VcellðtÞ and GðtÞ ¼ <N
i¼1GiðtÞ. We

further introduce the phase field fcell ¼ maxðf1, . . . ,fNÞ con-

taining all cells. Figure 1 provides a schematic description for

two cells.



v
Pj

fj ª –1

Wj (t)

W0 (t)

fj ª 1
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Figure 1. Schematic description for two moving cells. Shown are the splayed
orientation field Pi,j , as well as the streamlines of the velocity profile v and
the phase fields fi,j with the cell membranes Gi,jðtÞ corresponding to the
zero-level sets of fi,j . (Online version in colour.)
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The cell–cell interaction energy Ei,int requires a coupling

of all surrounding phase fields f1, . . . ,fi�1,fiþ1, . . . ,fN with

fi. We here consider only steric interactions and model a

short-range repulsion by a Gaussian potential. Following

[28], we use the definition of fjðt,xÞ :¼ tanhðrjðt,xÞ=ð
ffiffiffi
2
p

eÞÞ
to compute the signed-distance function rj, which is used to

link cell i and cell j. Within the diffuse interface region,

we obtain

rj ¼ �
effiffiffi
2
p ln

1þ fj

1� fj
8x:jfjðxÞj , 1, ð2:7Þ

and thus we can write the Gaussian interaction potential

within the phase-field description as

1i,intðf1, . . . ,fNÞ ¼
ð
V

BðfiÞ
XN

j¼1
j=i

aijwj dV, ð2:8Þ

with BðfiÞ ¼ ð1=eÞðf2
i � 1Þ2 being non-zero only within the

diffuse interface around Gi, the interaction function

wj ¼
exp � 1

2
ln

1þ fj

1� fj

 !2
0
@

1
A if jfjðxÞj , 1

0 otherwise

8>><
>>: ð2:9Þ

and aij . 0 the strength of the repulsive interaction between

cell i and cell j with respect to the evolution of cell i. Here,

we consider a constant repulsive interaction strength, hence

aij ¼ a. The approach circumvents any non-local terms

which are typically required for cell–cell interactions and

has been analysed in detail in [28].
2.2. Non-dimensional form
Before we introduce the governing equations, we consider

the energies in a non-dimensional form. We consider the

characteristic values for space x ¼ Lx̂, velocity v ¼ Vv̂ and

energy E ¼ hVL2Ê, with characteristic length L, characteristic

velocity V and fluid viscosity h. This yields a time scale

t ¼ L=Vt̂ and a pressure p ¼ hV=Lp̂. We further define
the constants c ¼ c0L2=k and b ¼ b0L=k, and the dimension-

less quantities:

Re ¼ rUL
h

, Ca ¼ 2
ffiffiffi
2
p

3

hU
s

, Be ¼ 4
ffiffiffi
2
p

3

hUL2

bN
, Pa ¼ hUL

k

and In ¼ 4
ffiffiffi
2
p

3

hU
a

,

which are Reynolds, capillary, bending capillary, polarity and

interaction number, respectively. Dropping the �̂ notation, we

obtain the energies in a non-dimensional form

EPðPi,fiÞ ¼
1

Pa

ð
V

1

2
ðrPiÞ2 þ

c
4
jPij2ð�2fi þ jPij2Þ

þ bPi � rfi dx,

ES,CHðfiÞ ¼
1

Ca

ð
V

1

2
jrfij2 þ

1

1
WðfiÞdx,

ES;WðfiÞ ¼
1

Be

ð
V

1

21
1Dfi �

1

1
W 0

0ðfiÞ
� �2

dx,

EkinðvÞ ¼
Re
2

ð
V

v2 dx,

EkinðvÞ ¼
Re
2

ð
V

v2 dx

and Ei;intðf1, . . . ,fNÞ ¼
1

In

ð
V

BðfiÞ
XN

j¼1
j=i

wj dx,

and again ESðfiÞ ¼ ES;CHðfiÞ þ ES,WðfiÞ, EcellðPi,fiÞ ¼ EPðPi,

fiÞ þ ESðfiÞ and EðP1, . . . ,PN ,f1, . . . ,fN ,vÞ ¼
PN

i¼1 Ecell

ðPi,fiÞ þ
PN

i¼1 Ei,intðf1, . . . ,fNÞ þ EkinðvÞ.
2.3. Governing equations
The hydrodynamic model is an extension of the model in

[8,10]. The governing equations look similar, but now have

to be considered for each cell with the additional contribution

from the interaction terms. We denote the variational deriva-

tive or chemical potential of the orientation fields and phase

fields by P\
i ¼ dE=dPi and f\

i ¼ dE=dfi.

The evolution equations for the phase-field variables fi

are regularized advection equations with the advected vel-

ocity given by the fluid velocity v. The introduced diffusion

term is scaled with a small mobility coefficient g . 0. The

equations read

@tfi þ v � rfi ¼ gDf\
i , i ¼ 1, . . . ,N, ð2:10Þ

and are coupled with each other through the fluid velocity v

and the interaction terms, which are contained in the

chemical potentials f\
i , which read

f\
i ¼

1

Be
Dmi�

1

12
W 00

0 ðfiÞmi

� �
þ 1

Ca
�1Dfiþ

1

1
W 0ðfiÞ

� �

þ 1

Pa
�c

2
jPij2�br�Pi

� �
þ 1

In
B0ðfiÞ

XN

j¼1
j=i

wjþw0i
XN

j¼1
j=i

BðfjÞ

0
BB@

1
CCA

mi¼eDfi�
1

e
W 0ðfiÞ,

for i ¼ 1, . . . ,N.

The orientation field equations for each Pi are the same as

for the single-cell case and read

@tPi þ ðv � rÞPi þV � Pi ¼ jD � Pi �
1

k
P\

i , ð2:11Þ
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for i ¼ 1, . . . , N, where the left-hand side is the co-moving and

co-rotational derivative where the vorticity tensor defined as

V ¼ ð1=2Þðrv` �rvÞ takes rotational effects from the flow

field into account. The first term on the right-hand side

describes the alignment of Pi with the flow field, with the

deformation tensor D ¼ ð1=2Þðrvþrv`Þ. j and k are non-

dimensional material parameters. The evolution equations

are defined in V, but due to the coupling with fi we have

jPij � 0 outside of cell i. The non-dimensional chemical

potentials read

P\
i ¼

1

Pa
ð�cfiPi þ cP2

i Pi � DPi þ brfiÞ, i ¼ 1, . . . ,N:

The flow field v and pressure p are defined through the

incompressible Navier–Stokes equations, which read

Reð@tvþ ðv � rÞvÞ þ rp ¼ �uvþr � sþ F ð2:12Þ

and

r � v ¼ 0, ð2:13Þ

with friction coefficient u, modelling substrate adhesion, hydro-

dynamic stress tensor s ¼ sviscous þ sactive þ sdist þ sericksen,

consisting of passive and active components, and a forcing

term Fpoly. The viscous stress is

sviscous ¼ hðfcellÞD, ð2:14Þ

with fcell ¼
PN

i¼1ðfi þ 1Þ � 1 and hðfcellÞ ¼ 1 if the outer

fluid and the cells have the same viscosity and a

quotient if they differ. The active stress due to actin–myosin

complexes is

sactive ¼
XN

i¼1

1

Fa
Pi � Pi, ð2:15Þ

with the active force number Fa ¼ hV=jL and j . 0. The stress

coming from the distortions of the filaments reads

sdist ¼
XN

i¼1

1

2
ðP\

i � Pi � Pi � P\
i Þ þ

j

2
ðP\

i � Pi þ Pi � P\
i Þ

� �
,

ð2:16Þ

and for the Ericksen stress we consider the divergence to be

defined through

r � sericksen ¼
XN

i¼1

f\
i rfi þ

XN

i¼1

rPT
i � P\

i : ð2:17Þ

The forcing term accounts for actin polymerization and

reads Fpoly ¼
PN

i¼1 v0,iPi, with the non-dimensional self-propul-

sion velocity v0,i. We again only consider the case v0,i ¼ v0.

If we set N ¼ 1, we obtain the system considered in [10]

with two additional terms in the Navier–Stokes equations.

The first is the friction term uv, which has not been con-

sidered as the focus in [10] is on motility in environments

without local adhesion, and the second is the forcing term

Fpoly, as actin polymerization is not taken into account in

[10]. However, both terms had already been considered in

[8]. Considering friction as a modelling approach for

substrate adhesion requires strong approximations. More

detailed approaches can be found in [18].
2.4. Non-hydrodynamic model
For comparison, we consider also a non-hydrodynamic

model. As all stress and forcing terms have been considered
in the Navier–Stokes equations, we cannot simply neglect

the hydrodynamic interactions. Instead, we consider

@tfi þ v0Pi � rfi ¼ gDf\
i , i ¼ 1, . . . ,N ð2:18Þ

and

@tPi þ ðv0Pi � rÞPi ¼ �
1

k
P\

i , i ¼ 1, . . . ,N, ð2:19Þ

with the advections only due to the self-propelled velocity v0.

The chemical potentials f\
i and P\

i are defined as before. This

model can be related to the model used for collective

migration in [19]. However, several differences should be

pointed out. We here neglect the treatment of adhesion

bonds and the viscoelastic properties of the substrate. Fur-

thermore, the cell–cell interaction is considered differently.

We do only consider steric interactions and no cell–cell

adhesion. However, the strongest difference is the treatment

of the orientation fields Pi. In [19], only one variable is used

for all cells. As the equation contains diffusion/elasticity of

the orientation field this induces an unphysical coupling of

the actin filaments over cell boundaries.
2.5. Numerical approach and implementation
The system of partial differential equations is discretized using

the parallel adaptive finite-element toolbox AMDiS [34,35]. We

use a semi-implicit time discretization and an operator splitting

approach that allows us to decouple all subproblems, similar to

[10,28]. We further conduct a shared memory OPENMP paral-

lelization to solve the phase-field equations and the orientation

field equations via a parallel splitting method. Each linear

system of equations is solved using the direct solver

UMFPACK. As the computational mesh has to be fine along

the interface, adaptive mesh refinement is heavily used. How-

ever, using a single mesh for all variables is not appropriate in

this case as, for example, the phase-field variable fi only

requires a fine resolution close to the zero-level set of fi but

not at the zero-level sets of fj with i = j. The efficiency

would go down if the number of cells increases if a single

mesh would be used. The multi-mesh strategy, considered in

[36] for two meshes, overcomes these numerical problems

and assigns a mesh to each phase-field variable, which can

be independently refined. In [28,29], the approach is extended

to arbitrary meshes and validated for related problems.
3. Simulations and results
3.1. Binary collisions of cells
We first study binary collisions of cells within a symmetric set-

up with a fixed incidence angle of 458. Figure 2 shows snap-

shots of the cell shapes and orientation fields together with

the flow field if appropriate. The cells deform at collision, the

deformation influences the orientation fields which set the

new directions for cell motion. For the hydrodynamic model,

each cell is accomplished with two vortices. Upon collision

the two vortices, which come close to each other, annihilate.

This leads to a rotation of the cells and together with the defor-

mation and reorientation of the orientation fields set the new

directions for cell motion. In both cases, the non-hydrodynamic

and the hydrodynamic cases, the coupling between the

involved fields leads to partly inelastic collisions and align-

ment. However, the strength of the alignment strongly



(b)

(a)

Figure 2. (a) Non-hydrodynamic model. Shown are the cell shapes and the orientation fields. The parameters used are Ca ¼ 0.0281, Be ¼ 0, Pa ¼ 0.1, In ¼
0.1125, c ¼ 10, v0 ¼ 2:25, b ¼ 0:5, g ¼ 1, e ¼ 0:2 and k ¼ 1. (b) Hydrodynamic model. Shown are the cell shapes and the orientation fields, together with
the flow field. The parameters used are Ca ¼ 0.025, Be ¼ 0, Pa ¼ 0.1, In ¼ 0.1, Fa ¼ 1, Re ¼ 0.001, c ¼ 10, v0 ¼ 3, b ¼ 0:5, g ¼ 0:003, e ¼ 0:2,
k ¼ 1, u ¼ 1 and j ¼ 0. The results for smaller values of the friction coefficient u are similar (results not shown). The time instances for both cases are
t ¼ 3, 17, 30 and 45.

0 20 40 60 80 100

10

20

30

40

x1

x2

Re = 10−3

Re = 1
non-hydrodynamic model

Figure 3. Centre of mass trajectories for binary collision for the cases con-
sidered in figure 2 and Re ¼ 1. (Online version in colour.)

rsfs.royalsocietypublishing.org
Interface

Focus
6:20160037

5

depends on various parameters. Figure 3 shows the centre of

mass trajectories for the non-hydrodynamic model and for

the hydrodynamic model for different Reynolds numbers Re.

The results show a tendency from more inelastic towards

more elastic collisions for increasing Re.

All simulations are performed within a two-dimensional

computational domain of size ½0, 50�2. Each cell has a size, cor-

responding to a circle with radius R ¼ 4. We apply periodic

boundary conditions in each direction. A systematic study of

the influence of various parameters on alignment (not shown)

reveals mainly the same qualitative dependencies for the hydro-

dynamic and the non-hydrodynamic model, even if the

mechanism behind alignment significantly differs. The align-

ment is more efficient at small incidence angles and it is

stronger for higher capillary numbers (Ca) and smaller polarity

numbers (Pa). Only the strength of the self-propulsion v0 seems

to have the opposite effect. While a larger value for v0 leads to

more elastic collisions in the non-hydrodynamic model, it leads

to more inelastic behaviour in the hydrodynamic model. How-

ever, the effect is small if compared with the influence of the

other parameters. The influence of the bending capillary

number (Be) is negligible. All other parameters are kept fixed.

Clearly, the binary interaction behaviour is beyond simple

particle-based models, even if elastic deformations and/or

hydrodynamic interactions are considered. The strength of

alignment in the considered models is a result of the complex
interplay between the cell shapes, viscosity, passive and

active stresses, as well as actin polarizations and adhesion.

The results further indicate the effect of the hydrodynamic

interactions, with a tendency towards more elastic collisions

for increasing Reynolds number Re.
3.2. Collective motion
We now investigate collective motion. For low cell densities,

collective motion is dominated by binary collisions. So from



time: 4 time: 93 time: 170 time: 273
(b)

(a)

Figure 4. Snapshots of the cell shapes, orientation fields and fluid velocity, if appropriate. (a) Non-hydrodynamic model and (b) hydrodynamic model. The snap-
shots correspond to the same times, shown in non-dimensional units. The parameters are the same as in figure 2. See also electronic supplementary material movies
S1 and S2.
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Figure 5. The diagram shows the temporal evolution of v for the non-hydrodynamic model and the hydrodynamic model for two different Reynolds
numbers Re.
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the previous results we might guess the onset of collective

motion also within the hydrodynamic model, at least for

low Reynolds numbers Re. To quantify the effect, we

introduce an order parameter

vðtÞ ¼ 1

N

XN

i¼1

viðtÞ
jviðtÞj

�����
�����,

with vi the velocity vector of the ith cell. The parameter v is 1 if

all cells move in the same direction and 0 if no correlation of the

directions exists. Figure 4 shows snapshots of the evolution for

23 identical cells, which initially move in random directions.

The cell size now corresponds to a circle with radius R ¼ 4:5.

The domain sizes as well as all other parameters are as in the

previous section with Reynolds number Re ¼ 0.001.

The result is quantified in figure 5, which shows the evol-

ution of v for the non-hydrodynamic model and the

hydrodynamic model for two different Reynolds numbers

Re. These results for the non-hydrodynamic model confirm

the findings in [19]: without hydrodynamic interactions,
collision of deformable cells can lead to collective migration

if the collisions are inelastic. This is even true if for each cell a

separate orientation field is used and thus any diffusion/elastic

interaction between these fields is impossible. The situation

with hydrodynamics has not been analysed before. The results

indicate that also for low Reynolds numbers Re ¼ 0.001, which

essentially corresponds to the Stokes regime and is the most

relevant situation for cell motility, collective migration can

be observed. The time to reach collective motion is longer,

but all simulations within this regime lead to persistent transla-

tional collective migration. Even if the mechanism is different,

the analogy between inelastic binary collisions and collective

migration seems to hold also for the hydrodynamic model

with low Re. For Re ¼ 1, the situation changes. The binary col-

lision was more elastic and thus does not suggest collective

migration. However, the more elastic collisions cannot sup-

press collective migration only the time to reach this state is

significantly increased.

Increasing the viscosity of the cells hðcellÞ relative to

the viscosity of the surrounding fluid h (results not shown)
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has qualitatively no influence on these results. In both cases,

Re ¼ 0.001 and Re ¼ 1 and h=hðcellÞ ¼ 0:1 collective

migrations are reached faster as for h=hðcellÞ ¼ 1 and the fluc-

tuations in vðtÞ before reaching collective motion are reduced.

These simulations indicate collective migration for

deformable cells even under the influence of hydrodynamic

interactions. In the low Reynolds number regime, all per-

formed simulations result in collective migrations. The effect

seems to be as stable as without hydrodynamic interactions.

Only for Re ¼ 1 is the time to reach collective migration signifi-

cantly increased and even larger Re might be able to suppress

the formation of collective motion.

In all these simulations, the system size and number of

cells is relatively small. For larger systems the resulting collec-

tive behaviour might be more complex. We expect the

formation of clusters, as for example, observed experimen-

tally for myxobacteria [37] and found computationally for

self-propelled rods [38,39] and within a microscopic field

theoretical approach [21].
4. Conclusion
We have developed a computational model for the collective

migration of cells. On a single cell level, the model is based

on the well-established mechanisms of cell motility account-

ing for actin polymerization, motor-induced contractility

and substrate adhesion (if applicable). The model uses the

hydrodynamic active polar gel theory [11–13] and is compar-

able with the approaches in [6–8,10]. Each cell is treated

individually using one phase-field variable per cell. Cell–cell

interaction is considered through an additional potential with

a short-range repulsive force as used and validated in [28,29].

The overall model only uses physical mechanisms, which do

not need continuous regulatory effort. It describes details

of the motility mechanism which allows one to study the influ-

ence of many parameters on the dynamic behaviour. The

related non-hydrodynamic model [19] could already repro-

duce many experimentally observed phenomena. The overall

question to answer is if these phenomena persist under the
influence of hydrodynamic interactions, which is controver-

sially discussed [25–27]. On the level of detail, which is

considered in this paper, the effect of hydrodynamic inter-

actions has not been studied before. Our results on the

collision of two cells lead qualitatively to the same results as

in the non-hydrodynamic model [19]. These binary cell inter-

actions may be quantified in terms of inelastic or elastic

collisions. In the hydrodynamic model, the variation of various

parameters shows the same tendency to one or the other as in

the non-hydrodynamic case. However, with a stronger defor-

mation of the cells and a more elastic behaviour if the

Reynolds number Re increases. As inelastic collisions have

been reported as one indicator for collective migration [19],

these results suggest the onset of collective migration also if

hydrodynamic interactions are taken into account, at least for

low Re. The simulations with 23 cells confirm this. All con-

sidered cases lead to persistent translational collective

migration. Only the time to reach it differs and increases

significantly with increasing Re. The considered parameters

are Re ¼ 0.001 and Re ¼ 1. Even larger Re, which might be

able to suppress collective migration, are irrelevant for typical

situations of cell motility. These results provide valuable

insights into the physics behind the biological processes in col-

lective cell migration. It answers fundamental questions on

collective motion for self-propelled particles and suggests

some experimentally testable predictions. Can collective

migration be found without cell–cell adhesion; is the effect

stronger for cells with smaller membrane tension and larger

elastic properties, as all predicted by our simulations; and

can the effect of viscosity on collective migration be observed?
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13. Kruse K, Joanny JF, Jülicher F, Prost J, Sekimoto K.
2005 Generic theory of active polar gels: a paradigm
for cytoskeletal dynamics. Eur. Phys. J. E 16, 5 – 16.
(doi:10.1140/epje/e2005-00002-5)

14. Shao D, Levine H, Rappel WJ. 2010 Computational
model for cell morphodynamics. Phys. Rev.

http://dx.doi.org/10.1098/rspb.1980.0017
http://dx.doi.org/10.7150/ijbs.3.303
http://dx.doi.org/10.1083/jcb.200906139
http://dx.doi.org/10.1083/jcb.200906139
http://dx.doi.org/10.1371/journal.pbio.1001059
http://dx.doi.org/10.1371/journal.pbio.1001059
http://dx.doi.org/10.1016/j.cub.2013.05.063
http://dx.doi.org/10.1016/j.cub.2013.05.063
http://dx.doi.org/10.1098/rsif.2011.0433
http://dx.doi.org/10.1103/PhysRevLett.112.147802
http://dx.doi.org/10.1103/PhysRevLett.112.147802
http://dx.doi.org/10.1073/pnas.1200843109
http://dx.doi.org/10.1140/epje/i2014-14008-3
http://dx.doi.org/10.1140/epje/i2014-14008-3
http://dx.doi.org/10.1098/rsif.2015.0161
http://dx.doi.org/10.1098/rsif.2015.0161
http://dx.doi.org/10.1103/PhysRevLett.85.1778
http://dx.doi.org/10.1103/PhysRevLett.85.1778
http://dx.doi.org/10.1103/PhysRevLett.92.078101
http://dx.doi.org/10.1140/epje/e2005-00002-5


rsfs.royalsocietypublishing.org
Interface

Focus
6:20160037

8
Lett. 105, 108104. (doi:10.1103/PhysRevLett.105.
108104)

15. Shao D, Levine H, Rappel WJ. 2012 Coupling actin
flow, adhesion, and morphology in a computational
cell motility model. Proc. Natl Acad. Sci. USA 109,
6851 – 6856. (doi:10.1073/pnas.1203252109)

16. Marth W, Voigt A. 2014 Signaling networks and cell
motility: a computational approach using a phase
field description. J. Math. Biol. 69, 91 – 112. (doi:10.
1007/s00285-013-0704-4)

17. Tjhung E, Tiribocchi A, Marenduzzo D, Cates ME.
2015 A minimal physical model captures the shapes
of crawling cells. Nat. Commun. 6, 5420. (doi:10.
1038/ncomms6420)
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Effective Cahn-Hilliard equation for the phase
separation of active brownina particles. Phys.
Rev. Lett. 112, 218304. (doi:10.1103/PhysRevLett.
112.218304)

24. Cates ME, Taileur J. 2015 Motility-induced phase
separation. Ann. Rev. Condens. Matter Phys. 6,
219 – 244. (doi:10.1146/annurev-conmatphys-
031214-014710)

25. Matas-Navarro R, Fielding S. 2015 Hydrodynamic
suppression of phase separation in active suspensions.
Soft Matter 11, 7525 – 7546. (doi:10.1039/
C5SM01061F)

26. Matas-Navarro R, Golestanian R, Liverpool TB,
Fielding S. 2014 Clustering and phase behaviour of
attractive active particles with hydrodynamics. Phys.
Rev. E 90, 032304. (doi:10.1103/PhysRevE.90.
032304)

27. Tiribocchi A, Wittkowski R, Marenduzzo D, Cates ME.
2015 Active model H: scalar active matter in a
momentum-conserving fluid. Phys. Rev. Lett. 115,
188302. (doi:10.1103/PhysRevLett.115.188302)

28. Marth W, Aland S, Voigt A. 2016 Margination of
white blood cells: a computational approach by a
hydrodynamic phase field model. J. Fluid Mech.
790, 389 – 406. (doi:10.1017/jfm.2016.15)

29. Ling S, Marth W, Praetorius S, Voigt A. 2016 An
adaptive finite element multi-mesh approach for
interacting deformable objects in flow. Comput.
Methods Appl. Math. 16, 475 – 484. (doi:10.1515/
cmam-2016-0003)

30. Du Q, Liu C, Ryham R, Wang X. 2005 A phase field
formulation of the Willmore problem. Nonlinearity
18, 1249 – 1268. (doi:10.1088/0951-7715/18/3/016)

31. Haußer F, Li S, Lowengrub J, Marth W, Rätz A,
Voigt A. 2013 Thermodynamically consistent
models for two-component vesicles. Int. J. Biomath.
Biostat. 2, 19 – 48.

32. de Gennes PG, Prost J. 1993 The physics of liquid
crystals, 2nd edn. Oxford, UK: Clarendon Press.

33. Ziebert F, Aranson IS. 2013 Effects of adhesion
dynamics and substrate compliance on the shape
and motility of crawling cells. PLoS ONE 8, e64511.
(doi:10.1371/journal.pone.0064511)

34. Vey S, Voigt A. 2007 AMDiS: adaptive
multidimensional simulations. Comput. Vis. Sci. 10,
57 – 66. (doi:10.1007/s00791-006-0048-3)

35. Witkowski S, Ling S, Praetorius S, Voigt A. 2015
Software concepts and numerical algorithms for a
scalable adaptive parallel finite element method.
Adv. Comput. Math. 41, 1145 – 1171. (doi:10.1007/
s10444-015-9405-4)

36. Voigt A, Witkowski T. 2012 A multi-mesh finite
element method for Lagrange elements of arbitrary
degree. J. Comput. Sci. 3, 420 – 428. (doi:10.1016/j.
jocs.2012.06.004)

37. Peruani F, Starruss J, Jakovjevic V, Sogaard-
Andersen L, Deutsch A, Bär M. 2012 Collective
motion of nonequilibrium cluster formation
in colonies of gliding bacteria. Phys. Rev.
Lett. 108, 098102. (doi:10.1103/PhysRevLett.108.
098102)

38. Peruani F, Deutsch A, Bär M. 2006 Nonequilibrium
clustering of self-propelled rods. Phys. Rev. Lett. 74,
030904. (doi:10.1103/PhysRevE.74.030904)

39. Weitz S, Deutsch A, Peruani F. 2015 Self-propelled
rods exhibit a phase-separated state characterized
by the presence of active stresses and the ejection
of polar clusters. Phys. Rev. Lett. 92, 012322.
(doi:10.1103/physreve.92.012322)

http://dx.doi.org/10.1103/PhysRevLett.105.108104
http://dx.doi.org/10.1103/PhysRevLett.105.108104
http://dx.doi.org/10.1073/pnas.1203252109
http://dx.doi.org/10.1007/s00285-013-0704-4
http://dx.doi.org/10.1007/s00285-013-0704-4
http://dx.doi.org/10.1038/ncomms6420
http://dx.doi.org/10.1038/ncomms6420
http://dx.doi.org/10.1039/C3SM51597D
http://dx.doi.org/10.1039/C3SM51597D
http://dx.doi.org/10.1038/srep09172
http://dx.doi.org/10.1103/PhysRevLett.75.1226
http://dx.doi.org/10.1088/1367-2630/18/8/083008
http://dx.doi.org/10.1038/ncomms5351
http://dx.doi.org/10.1103/PhysRevLett.112.218304
http://dx.doi.org/10.1103/PhysRevLett.112.218304
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014710
http://dx.doi.org/10.1146/annurev-conmatphys-031214-014710
http://dx.doi.org/10.1039/C5SM01061F
http://dx.doi.org/10.1039/C5SM01061F
http://dx.doi.org/10.1103/PhysRevE.90.032304
http://dx.doi.org/10.1103/PhysRevE.90.032304
http://dx.doi.org/10.1103/PhysRevLett.115.188302
http://dx.doi.org/10.1017/jfm.2016.15
http://dx.doi.org/10.1515/cmam-2016-0003
http://dx.doi.org/10.1515/cmam-2016-0003
http://dx.doi.org/10.1088/0951-7715/18/3/016
http://dx.doi.org/10.1371/journal.pone.0064511
http://dx.doi.org/10.1007/s00791-006-0048-3
http://dx.doi.org/10.1007/s10444-015-9405-4
http://dx.doi.org/10.1007/s10444-015-9405-4
http://dx.doi.org/10.1016/j.jocs.2012.06.004
http://dx.doi.org/10.1016/j.jocs.2012.06.004
http://dx.doi.org/10.1103/PhysRevLett.108.098102
http://dx.doi.org/10.1103/PhysRevLett.108.098102
http://dx.doi.org/10.1103/PhysRevE.74.030904
http://dx.doi.org/10.1103/physreve.92.012322

	Collective migration under hydrodynamic interactions: a computational approach
	Introduction
	Mathematical model for cell motility
	Energy
	Non-dimensional form
	Governing equations
	Non-hydrodynamic model
	Numerical approach and implementation

	Simulations and results
	Binary collisions of cells
	Collective motion

	Conclusion
	Competing interests
	Funding
	References


