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We numerically investigate margination of white blood cells and demonstrate the
dependency on a number of conditions including haematocrit, the deformability of
the cells and the Reynolds number. The approach, which is based on a mesoscopic
hydrodynamic Helfrich-type model, reproduces previous results, e.g. a decreasing
tendency for margination with increasing deformability and a non-monotonic
dependency on haematocrit. The consideration of inertia effects, which may be
of relevance in various parts of the cardiovascular system, indicates a decreasing
tendency for margination with increasing Reynolds number. The effect is discussed
by analysing inertial and non-inertial lift forces for single cells under different flow
conditions and large-scale two-dimensional simulations of interacting red blood cells
and white blood cells in an idealized blood vessel.
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1. Introduction

Various experimental and simulation studies of flowing blood have shown that
red blood cells (RBCs) are concentrated in the centre of the blood vessel. This
can be explained by a non-inertial lift force, arising from cell–wall and cell–cell
hydrodynamic interactions, the high deformability of RBCs and their non-spherical
shapes, see e.g. Kumar & Graham (2012) for a recent review. The non-inertial lift
force results in a migration of RBCs towards the centre of the vessel and an RBC-free
layer near the wall. Differences in size, shape and deformability are assumed to lead
to different non-inertial lift forces, which results in a separation of cells with different
mechanical properties within the blood vessel. White blood cells (WBCs) have a
near-spherical shape and are not very deformable and are therefore mechanically
different from RBCs. The non-inertial lift force of WBCs is expected to be much
lower than that on RBCs, or even zero in the limit of a rigid-body approximation
for WBCs (Goldsmith & Mason 1961; Bretherton 1962). This suggests that WBCs
may get marginated to the RBC-free layer near the wall. This effect requires the
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interaction of RBCs and WBCs and is of utmost importance for a well-functioning
immune system, which requires the adhesion of WBCs to the vessel wall.

For low Reynolds numbers the phenomenon is in principle understood. However,
in this regime detailed investigations also show a non-trivial dependence of WBC
margination on various blood flow properties, such as haematocrit Ht, vessel geometry
and RBC aggregation (Pearson & Lipowsky 2000; Abbitt & Nash 2003; Jain & Munn
2009). One example is a pronounced margination within an intermediate range of Ht≈
0.2–0.3, and reduced WBC margination for lower and higher Ht. Only recently could
such behaviour be explained through simulation studies in two dimensions (Fedosov,
Fornleitner & Gompper 2012). It is argued that for low Ht, WBC margination turns
out to be weak due to a low concentration of RBCs and thus less interaction, while at
high Ht WBC margination is attenuated due to interactions of marginated WBCs with
RBCs near a wall, which significantly limit the time WBCs spend near a wall. This
argumentation is confirmed by 3D simulations in an idealized blood vessel (Fedosov
& Gompper 2014; Takeishi et al. 2014).

The situation changes, if inertial effects come into play. Now, an inertial lift force
is present, which acts on all cells at intermediate-Reynolds-number flows (Geislinger
& Franke 2014). As a consequence WBCs also experience a lift force, even in
the limit of a rigid-body approximation. This contradicts the simple explanation for
WBC margination given above and indeed leads to decreasing margination for an
increasing Reynolds number. We vary the Reynolds number, considering values of
order 10−4, 10−2, 1 and 10, corresponding to different regions in the cardiovascular
system (Formaggiam, Quarteroni & Veneziani 2000). Reynolds numbers of order unity
or higher have been reported in large blood vessels, such as arterioles and arteries
(Prothero & Burton 1962; Ku 1997), especially if the vessels are constricted due to
diseases such as thrombosis (see e.g. Vennemann, Lindken & Westerweel 2007; Bark
& Ku 2010).

The paper is organized as follows. In § 2 we first review existing modelling
approaches. Next our approach is described in detail. It is based on a Helfrich-type
curvature-elastic model (Helfrich 1973). We consider various constraints concerning
membrane inextensibility and area conservation for the RBCs and treat WBCs using
a rigid-body approximation or as objects with a weakly extensible membrane. We
further consider cell–cell interactions and model the fluid flow of the blood plasma
and the internal fluids using the incompressible Navier–Stokes equations. We prove
thermodynamic consistency of the model and briefly discuss the numerical approach.
This approach requires only measurable parameters as input and thus in principle
allows for quantitative predictions. However, we will restrict our simulations to
two dimensions. The effect of various parameters on the margination of WBCs is
discussed in § 3, first reproducing known results for low-Reynolds-number regimes
and then analysing the effect of intermediate Reynolds numbers. The decreasing effect
of the Reynolds number on WBC margination is discussed in detail and explained by
investigations of the inertial lift force on a single RBC and a single WBC. Finally,
we draw conclusions in § 4.

2. Methods and models
2.1. Previous models

Previous simulation studies, which have been performed to describe WBC margination,
are based on strong model assumptions. The simulation approach (Freund 2007)
assumes an incompressible Stokes flow, the cells are modelled with a linear elastic
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membrane and a global area constraint is enforced. A boundary integral formulation is
used for numerical discretization. More recently, a particle-based Lagrangian approach
was used (Fedosov et al. 2012; Fedosov & Gompper 2014). Here, RBCs and WBCs
are described by a network model, where the cells are represented through triangulated
surfaces. Penalty terms are used to ensure global volume and global area conservation
as well as local area conservation for each surface element. The approach therefore
guarantees inextensibility for sufficiently small surface elements. Each membrane
point is connected to the fluid through viscous friction. The dynamics of the fluid
flow is described by the smoothed dissipative particle dynamics (SDPD) method,
an approximation for the Navier–Stokes equations which is only precise, if the
particle density is large enough. Furthermore, the incompressibility of the fluid is
not guaranteed a priori and has to be controlled. In Takeishi et al. (2014), a finite
element approach is used for the RBCs, which are modelled as biconcave capsules
and a Lattice–Boltzmann method for the fluid flow. The problems are coupled through
an immersed boundary method.

Our approach is fully continuous and considers RBCs using a Helfrich-type
curvature elastic model with an inextensibility constraint. WBCs are modelled either
as rigid bodies or again with a Helfrich-type curvature elastic model, but with a
constraint allowing for weak extensibility. Furthermore, we will consider the full
Navier–Stokes equations to account for inertia effects in the plasma. According to
previous studies (N’Dri, Shyy & Tran-Son-Tay 2003) we also consider the internal
fluid of the RBCs and WBCs as an incompressible Newtonian fluid, neglecting
internal structures and the nucleus in WBCs.

2.2. Helfrich-type models
Helfrich-type modelling approaches have been applied to understand the complex
motions and shape changes RBCs undergo within a flow field, e.g. tank-treating
(TT) and tumbling (TB) motion (Fischer, Stöhr-Liesen & Schmid-Schönbein 1978).
Within a low-Reynolds-number regime, the Stokes limit is valid and various numerical
approaches have also been considered in this limit to analyse the TT and TB motion
(Kraus et al. 1996; Biben & Misbah 2003; Beaucourt et al. 2004; Biben, Kassner &
Misbah 2005; Veerapaneni et al. 2009; Ghigliotti, Biben & Misbah 2010; Kim & Lai
2010; Sohn et al. 2010; Zhao & Shaqfeh 2011). All models consider a membrane-free
energy

E =
∫
Γ

1
2

bN(H −H0)
2 dΓ, (2.1)

with membrane Γ (t), mean curvature H, spontaneous curvature H0 and normal
bending rigidity bN . Lagrange multipliers are used to enforce a global area constraint
or the stronger inextensibility constraint. The jump condition for the fluid stress
tensor S = S0,i =−pI + ν0,iD, with pressure p, fluid viscosity ν0, cell viscosity νi and
deformation tensor D=∇v+ (∇v)T, with velocity v, along the membrane then reads

[S · n]Γ = δE
δΓ
+ λglobal Hn global area constraint, (2.2)

[S · n]Γ = δE
δΓ
+ λlocal Hn+∇Γ λlocal local inextensibility constraint, (2.3)

with outer normal n and the surface gradient ∇Γ = P∇, where P = I − n⊗ n denotes
the projection operator. Index 0 thereby denotes the fluid phase and index i the cell
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phase. The Lagrange multipliers λglobal and λlocal are functionals of the fluid velocity
v and are obtained by requiring d/dt

∫
Γ

dΓ = ∫
Γ

Hv · n dΓ = 0 for the global area
constraint and ∇Γ · v= 0 along Γ (t) for the local inextensibility constraint. The jump
condition for the velocity reads [v]Γ = 0.

The linearity of the Stokes problem allows for efficient decoupled algorithms to
solve for the Lagrange multipliers (Biben & Misbah 2003; Sohn et al. 2010; Zhao
& Shaqfeh 2011). However, in regimes with the Reynolds number being of order
unity or higher, the Stokes limit is at least questionable. Modelling approaches,
which consider inertia effects, have been introduced recently (Laadhari, Saramito &
Misbah 2012; Salac & Miksis 2012; Aland et al. 2014). All have found that the
classical TB behaviour is no longer observed at moderate Reynolds numbers. As
such, a suppression of TB motion could have far reaching consequences also for the
interaction of RBCs and thus also the margination of WBCs. In the following, we
will consider the full Navier–Stokes equations, which read inside and outside the
RBCs

ρ(∂tv + v · ∇v)−∇ · S = 0, (2.4)
∇ · v = 0, (2.5)

with density ρ = ρ0,i. The global area constraint can be treated explicitly, which
was e.g. used by Bonito, Nochetto & Pauletti (2011) within a front tracking method,
proposed by Du, Li & Liu (2007) and used by Haußer et al. (2013) and Marth &
Voigt (2014) for a phase-field model and also considered in Salac & Miksis (2011)
for a level-set approach. The local inextensibility constraint is more delicate and
leads to additional nonlinearities, which are so far only considered within a level-set
approach in Salac & Miksis (2011), Laadhari et al. (2012) and within a phase
field approximation in Aland et al. (2014). These models predominantly consider
only one cell or simple test cases with more cells, using one level-set or phase field
function for all cells. We will demonstrate, that this approach can lead to non-physical
behaviour in more complex situations. We further like to distinguish between RBCs
and WBCs having different properties, which can more naturally be considered by
using different functions to describe different cells. It therefore will be the main
modelling contribution to extent the described approaches in Aland et al. (2014) to
also model interactions of cells in an efficient way.

We will consider WBCs using two different approaches. The first models WBCs as
a rigid body with a spherical shape using the fluid particle dynamics (FPD) approach
(Tanaka & Araki 2000), and the second accounts again for a Helfrich-type energy
equation (2.1) with the jump condition for the fluid stress tensor described by

[S · n]Γ = δE
δΓ
+ c

2
(A 0 −A (Γ ))Hn weak global area constraint, (2.6)

with penalty parameter c and initial and desired cell area A 0 and A (Γ ) = ∫
Γ

dΓ ,
respectively. Appropriately choosing c allows for moderate changes in area and thus
an effective weak extensibility. The internal fluid of the WBCs are again considered
as an incompressible Newtonian fluid, but with a larger viscosity as for the RBCs.

2.3. Hydrodynamic phase field models
The method introduces auxiliary phase fields φi that distinguish the inside and the
outside of each cell i= 1, . . . , n. The inside and the outside are separated from each
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other by a diffuse layer, which marks the membrane. The phase field variables are
defined as

φi(t, x) := tanh
(

ri(t, x)√
2ε

)
, (2.7)

where ε characterizes the thickness of the diffuse interface and ri(t, x) denotes the
signed-distance function between x ∈Ω and its nearest point on Γi(t) the membrane
of cell i. Depending on ri, we label the inside with φi ≈ 1 and the outside with φi ≈
−1. Γi(t) is then implicitly defined by the zero level set of φi. The cell phase can
thus be defined as φcell ≈ 1 with φcell = maxx∈Ω(φ1, . . . , φn) and the fluid phase as
φ0 =−φcell ≈ 1. In the same way we define the RBCs phase φRBCs.

The dynamics are now governed by equations that couple these phase fields to the
actual physical degrees of freedom. For WBCs, if considered as rigid bodies, the shape
is a sphere and its velocity defined as the average fluid velocity inside

vi(t)=

∫
Ω

ψi(t, x)v dΩ∫
Ω

ψi(t, x) dΩ
, (2.8)

with ψi(t, x) = 0.5(φi(t, x) + 1). The motion of the WBC can then be described by
xi(t + 1t) = xi(t) + 1tvi(t), with xi(t) the centre of mass of the WBC and 1t the
simulation time step (see Tanaka & Araki 2000). In all other cases we consider the
diffuse non-dimensional Helfrich energies

Ei(φi)= 1
2Re Bei

∫
Ω

1
ε

(
ε1φi − 1

ε
(φ2

i − 1)(φi +H0)

)2

dΩ, (2.9)

with Reynolds number Re = ρUL/ν0 and bending capillary numbers Bei = (4
√

2/3)
(ν0UL2/bN,i), where U denotes a characteristic velocity, L a characteristic length and
bN,i the bending rigidity of cell i. In Du et al. (2005) formal convergence for ε→ 0
to the non-dimensional form of the sharp interface energy in (2.1) is shown.

Instead of a direct extension of the models in Aland et al. (2014), which considers
an L2-gradient flow for φi and enforces a volume and local or global area constraint
by Lagrange multipliers, we here introduce a H−1 gradient flow. This directly ensures
volume conservation and only area constraint have to be considered. They are
treated as a global area constraint using a penalty approach. Such an approach
was already considered for one cell, but without flow interactions, in Campelo &
Hernández-Machado (2007). It has the advantage to keep the equations local. We
introduce the non-dimensional penalty energies

Ei,area(φi)= ci

2Re Bei
(A 0

i −A (φi))
2, (2.10)

with penalty parameters ci, with different values for RBCs and WBCs to ensure
global area conservation and weak extensibility, respectively. The initial and desired
area of cell i are denoted by A 0

i and A (φi)=
∫
Ω
(ε/2)|∇φi|2 + (1/4ε)(φ2

i − 1)2 dΩ ,
respectively. The last term converges to (2

√
2/3)

∫
Γi

dΓ if ε → 0 (see Du, Liu &
Wang 2006). The penalty energy therefore corresponds to the penalty term considered
in (2.6). In case of an enforced stronger local inextensibility constraint for the RBCs,
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the penalty term helps to control the accumulation of errors, as shown in Du et al.
(2006) and Aland et al. (2014).

In addition, we require an interaction energy Eint, to be defined below, such that the
overall energy can be written as

E (φ1, . . . , φn)=
n∑

i=1

(Ei(φi)+ Ei,area(φi))+ Eint(φ1, . . . , φn) (2.11)

and the evolution equations for φi read

∂tφi + v · ∇φi = γ1φ\i , (2.12)

with a small positive mobility coefficient γ and the non-dimensional chemical
potentials

φ
\
i =

δE (φ1, . . . , φn)

δφi
= δEi(φi)

δφi
+ δEi,area(φi)

δφi
+ δEint(φ1, . . . , φn)

δφi
. (2.13)

We obtain

δEi

δφi
= 1

Re Bei
ψi, ψi =1µi − 1

ε2
(3φ2

i + 2H0φ − 1)µi,

µi = ε1φi − 1
ε
(φ2

i − 1)(φi +H0).

 (2.14)

The penalty terms read

δEi,area

δφi
= ci

Re Bei
κi(A

0
i −A (φi)), κi = ε1φi − 1

ε
(φ2

i − 1)φi. (2.15)

Now, we have to consider the interaction terms. Interaction in principle is
computationally costly, as it turns the problem into a nonlocal one and requires
the coupling of all phase field variables φ1, . . . , φn and computations of the distance
between cells. We here consider only steric interactions to prevent coalescence or
overlapping of cells and model the short range repulsion by a Gaussian potential,
which in the sharp interface description reads

Ei,int(Γ1, . . . , Γn)=
n∑

j=1
j6=i

α

∫
Γi

wj dΓ, with wj(x)= exp

(
−r2

j (x)
ε2

)
, (2.16)

where wj is an interaction function and describes the influence of cell j on its
environment. The interaction parameter α > 0 determines the strength of the repulsive
interaction between cell i and cell j with respect to the evolution of cell i. Using
(2.7), the signed distance function rj can be computed within the diffuse interface
region as

rj =− ε√
2

ln
1+ φj

1− φj
∀x : |φj(x)|< 1. (2.17)

We thus can write the short-range interaction function wj as

wj =

exp

(
−1

2

(
ln

1+ φj

1− φj

)2
)

if |φj(x)|< 1

0 otherwise

(2.18)
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and consider the interaction potential within the phase-field description, which reads
in non-dimensional form

Ei,int(φ1, . . . , φn)= 1
Re In

∫
Ω

B(φi)

n∑
j=1
j6=i

wj dΩ, (2.19)

with B(φi)= (1/ε)(φ2
i − 1)2 being non-zero only within the diffuse interface around Γi

and In= (4√2/3)(ν0U/α) the interaction number. The interaction energy thus reads

Eint(φ1, . . . , φn)=
n∑

i=1

Ei,int(φ1, . . . , φn) (2.20)

and we obtain

δEint(φ1, . . . , φn)

δφi
= 1

Re In

B′(φi)

n∑
j=1
j6=i

wj +w′i

n∑
j=1
j 6=i

B(φj)

 , (2.21)

with

w′i =


2

φ2
i − 1

ln
1+ φi

1− φi
exp

(
−1

2

(
ln

1+ φi

1− φi

)2
)

if |φi(x)|< 1

0 otherwise.

(2.22)

Figure 1 gives a schematic illustration of the interaction terms. The algorithm
considers only these cells, for which the diffuse interfaces overlap. All other cells
do not contribute to the interaction. In addition, the most expensive part, computing
the distance between cells, has been avoided, as this information is already contained
in the phase field description of the cells. The approach thus scales with n, the
number of cells. Similar ideas to model interactions within phase field approaches
have been considered in Zhang, Das & Du (2009) and Gu, Wang & Gunzburger
(2014). However, only for the interaction of one cell with a fixed substrate.

The non-dimensional Navier–Stokes equation reads

ρ(∂tv + v · ∇v)+∇p− 1
Re
∇ · (νD)=

n∑
i=1

φ
]
i∇φi, (2.23)

∇ · v = 0, (2.24)

with ρ = 1 and ν = (1− φcell/2)+∑n
i=1 (νi/ν0)((φi + 1)/2). Different densities could

be handled in a similar way but are omitted here for simplicity.
To enforce the local inextensibility constraint for the RBCs, we follow the approach

of model B in Aland et al. (2014). The nonlinear evolution equations for φi remain,
only the Navier–Stokes equation has to be extended and now reads

ρ(∂tv + v · ∇v)+∇p− 1
Re
∇ · (νD)=

n∑
i=1

φ
]
i∇φi +∇ ·

( |∇φRBCs|
2

Pλlocal

)
, (2.25)

∇ · v = 0, (2.26)
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FIGURE 1. (Colour online) The red and blue coloured parts of Γi are in contact with
the interfaces of cell j and cell k (dashed contours around those cells), where the signed
functions rj and rk can be calculated and thus also the interaction functions wj and wk.
They do not vanish in the overlapping regions.

with a Lagrange multiplier λlocal for which we introduce the additional equation

ξε2
∇ · (φ2

RBCs∇λlocal)+ |∇φRBCs|
2

P : ∇v = 0, (2.27)

with ξ > 0 a parameter independent of ε. For ε→ 0 we obtain 1λlocal= 0 away from
ΓRBCs and P : ∇v = ∇Γ · v = 0 near ΓRBCs, which was shown in Aland et al. (2014)
for n= 1.

2.4. Thermodynamic consistency
The proposed system of equations (2.12) and (2.13) for i = 1, . . . , n and (2.23)
and (2.24) or (2.25)–(2.27) fulfill thermodynamic consistency. To show this, we
consider the kinetic energy Ekin =

∫
v2 with constant density ρ = 1 and the cell

energy E and show that the time derivative is less than or equal to zero:

Ėtot(v, φ1, . . . , φn)= Ėkin + Ė =
∫

vvt +
n∑

i=1

φ
\
i ∂tφi dx, (2.28)

with

∂tφi =−v · ∇φi + γ1φ\i , (2.29)

∂tv =−(v · ∇)v −∇p+ 1
Re
∇ · (νD)+

n∑
i=1

φ
]
i∇φi +∇ ·

( |∇φRBCs|
2

Pλlocal

)
, (2.30)
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which yields

Ėtot(v, φ1, . . . , φn)

=
∫

v ·

(
−(v · ∇)v −∇p+ 1

Re
∇ · (νD)+

n∑
i=1

φ
]
i∇φi +∇ ·

( |∇φRBCs|
2

Pλlocal

))

+
n∑

i=1

φ
\
i (−v · ∇φi + γ1φ\i ) dx (partial integration, use ∇ · v = 0)

=
∫
− 1

Re
|∇v|2 − γ

n∑
i=1

|∇φ\i |2 −
(
∇v :
|∇φRBCs|

2
P

)
λlocal dx

(use (2.27) and partial integration)

=
∫
− 1

Re
|∇v|2 − γ

n∑
i=1

|∇φ\i |2 − ξε2φ2
RBCs|∇λlocal|2 dx

6 0, (2.31)

where we have used the identity v× (∇× v)=∇(|v|2)− (v · ∇)v from which follows
that

∫
v · (−v · ∇v)= 0.

2.5. Numerical approach

Time discretization. In order to discretize in time, we explore an operator splitting
approach. In an iterative process, we first solve the flow problem and substitute its
solution into the phase-field equations, which are then solved separately with a parallel
splitting method. We split the time interval I = [0, T] into equidistant time instants
0 = t0 < t1 < · · · and define the time steps τ := tn+1 − tn. Of course, adaptive time
steps may also be used. We define the discrete time derivative dt·n+1 := (·n+1 − ·n)/τ ,
where the upper index denotes the time step number and e.g. vn := v(tn) is the value
of v at time tn. For each system, a semi-implicit time discretization is used, which
together with an appropriate linearization of the involved nonlinear terms leads to a
set of linear systems in each time step.

Space discretization. We apply the finite element method to discretize in space,
where a P2/P1 Taylor–Hood element is used for the flow problem, all other quantities
are discretized in space using P2 elements. In each time step we solve the following.

(i) The flow problem for vn+1, pn+1 and λn+1
local

dtv
n+1 + (vn

· ∇)vn+1 = −∇pn+1 + 1
Re
∇ · (νnDn+1)

+
n∑

i=1

φ
\
i

n
∇φn

i +∇ ·
( |∇φn

RBCs|
2

Pnλn+1
local

)
, (2.32)

∇ · vn+1 = 0, (2.33)

ξε2
∇ · ((φn

RBCs)
2
∇λn+1

local)+
|∇φn

RBCs|
2

Pn
: ∇vn+1 = 0, (2.34)

where νn = ν(φn) and Pn = I − (∇φn ⊗∇φn/|∇φn|2).
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(ii) The phase field equations for φn+1
i , i= 1, . . . , n

dtφ
n+1
i + vn+1

· ∇φn+1
i = γ1φ\i n+1

, (2.35)

φ
\
i

n+1 = 1
Re Bei

ψn+1
i + ci

Re Bei
(A0,i −A (φn

i ))κ
n
i

+ 1
Re In

B′(φn
i )

n∑
j=1
j6=i

wn
j +w′i

n
n∑

j=1
j6=i

B(φn
j )

, (2.36)

ψn+1
i =1µn+1

i −
1
ε2
(3(φn+1

i )2 + 2H0φ
n+1
i − 1)µn+1

i , (2.37)

µn+1
i = ε1φn+1

i − 1
ε
((φn+1

i )2 − 1)(φn+1
i +H0), (2.38)

with κn
i = −ε1φn

i + (1/ε)((φn
i )

2 − 1)φn
i . We linearize the nonlinear terms by a

Taylor expansion of order one, e.g. ((φn+1
i )2−1)φn+1

i = ((φn
i )

2−1)φn
i + (3(φn

i )
2−1)

(φn+1
i − φn

i ).

Implementation. The fully discretized system of partial differential equations is
implemented using the adaptive finite element toolbox AMDiS (Vey & Voigt 2007;
Witkowski et al. 2015). We use an adaptively refined triangular mesh Th with a high
resolution along the cell membranes to guarantee at least five grid points across the
diffuse interface. We further conduct a shared memory OPENMP parallelization, to
solve the phase field evolutions via a parallel splitting method. Each linear system
of equations is solved using the direct unsymmetric multifrontal method UMFPACK.
For more details we refer to Ling et al. (2015).

3. Results and discussion
We study WBC margination for different WBC stiffnesses, different haematocrit

values and different Reynolds numbers. We consider a blood vessel of thickness
20 µm and length 40 µm with periodic conditions on the inflow and outflow.
The relatively small length results from compromising computational efficiency
and physical accuracy and has been obtained through detailed investigations on
the influence of the periodicity on WBC margination. We consider RBCs with
perimeter 22 µm, area 19.5 µm2, bending rigidity bN,RBC = 2 × 10−19 J, viscosity
νRBC = 1 × 10−3 Pa s. WBCs are initially set to be circular with a radius of 5 µm.
They have a viscosity νWBC = 50× 10−2 Pa s. In order to study the influence of the
stiffness of the WBCs, we consider three types: soft WBCs with bN,WBC= 2× 10−19 J,
hard WBCs with bN,WBC = 2 × 10−18 J and rigid WBCs. The interaction strength
is constant between all cell types and reads α = 4.24 × 10−7 N m−1. For the fluid
phase, we consider the viscosity ν0 = 1 × 10−3 Pa s. We consider a constant flow
rate, which is realized by applying a time-dependent force term F = (1/Fr(t), 0)T,
where Fr denotes the Froude number. If the current flow rate Q(t) is lower or greater
than the desired flow rate Q0, we increase the force term by multiplying it with the
ratio of Q0/Qt. The initial force term can be estimated from its Newtonian value:
1/Fr (t = 0) = 12Q0/(h3

l Re), where hl is the channel height. We choose Q0 = 15
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Symbol Description Value

L Radius of a perimeter-equivalent circular cell 5× 10−6 m
U Characteristic velocity 2.25× 10−5 m s−1

ρ Fluid density 103 kg m−3

ν0 Dynamic viscosity of the fluid 10−3 Pa s
νRBC Dynamic viscosity of the RBC 10−3 Pa s
νWBC Dynamic viscosity of the WBC 5× 10−2 Pa s
bN,RBC Bending rigidity of the RBC 2× 10−19 J
bN,WBC Bending rigidity of the hard WBC 2× 10−18 J
bN,WBC Bending rigidity of the soft WBC 2× 10−19 J
ε Diffuse interface thickness 0.04
γ Regularization parameter 10−7

α Repulsion parameter 8.44× 10−4 N m−1

TABLE 1. Mechanical and numerical parameters used in the simulations. Mechanical
parameters correspond to the considered values in Fedosov et al. (2012) and Takeishi et al.
(2014).

for all simulations, which implies an averaged velocity of 8.44 × 10−5 m s−1 for
all simulations and thus allows us to compare the results for different settings. An
overview of all used parameters is given in table 1.

In non-dimensional units, the computational domain becomes Ω = [0, 8] × [0, 4],
with periodic boundary conditions in the x1 direction. The WBC has the radius 1
and is put at (5, 2). RBCs are placed randomly such that they do not overlap. The
non-dimensional numbers read Re= 1.125× 10−4, BeRBC = 5.3, BeWBC = 0.53 (hard),
BeWBC = 5.3 (soft), In= 0.1 and Fr(t= 0)= 4× 10−5. In x2 direction we specify the
Dirichlet conditions φi =−1 for i= 1, . . . , n, which ensures that all cells stay within
the computational domain.

We first vary the deformability of the WBC and keep Ht = 0.293 constant. The
results are presented in figure 2, where the lower left diagram shows the x2 coordinate
of the trajectory of the midpoint of the WBC. After an initial phase, the WBC moves
towards the wall, but only the rigid WBC can attach to the wall, while the soft WBC
moves away after a certain time. The lower right diagram shows the probability that
the midpoint of the cell is within the upper part of the channel with height 0.1. The
results nicely confirm the findings in Fedosov et al. (2012), that WBC margination is
high for rigid cells and decreases for softer cells.

The second test concerns the influence of Ht. We vary the number of RBCs, which
lead to different values of Ht, ranging from 0.098 to 0.39. Figure 3 shows the obtained
results for a rigid WBC and figure 4 for a hard one.

For a rigid WBC, margination can be observed for all considered Ht. However, our
simulations show a lower tendency to move to the wall for the smallest value of
Ht = 0.098 and the largest tendency for Ht = 0.195 and Ht = 0.293. For the highest
value Ht = 0.39, the probability slightly decreases. It seems more likely that due to
the larger number of RBCs, interaction between WBC and RBCs are also possible
close to the wall, which moves the WBC away from the wall, see t= 10, t= 22 and
t= 30. This results give evidence for a decreasing WBC margination for high Ht, as
also observed in Fedosov et al. (2012). In the case of a hard WBC, the cell remains
in the centre and in contrast to figure 3, no margination occurs for the lowest Ht

considered. Increasing Ht leads to WBC margination. However, contact with the wall
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FIGURE 2. (Colour online) Simulation snapshot at late time for Ht= 0.293 for rigid, hard
and soft WBC (a–c), x2 coordinate for the trajectory of the midpoint of the WBC (e) and
the probability that the midpoint of the WBC is inside a defined interval (d). The x2 axis
is split into 20 intervals of length 0.1.
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FIGURE 3. (Colour online) Simulation snapshot at late time for a rigid WBC for Ht =
0.098, Ht= 0.195 and Ht= 0.39 (a–c) (Ht= 0.293 is shown in figure 2). The x2 coordinate
for the trajectory of the midpoint of the WBC (e) and the probability that the midpoint of
the WBC is inside a defined interval (d). The x2 axis is split into 20 intervals of length
0.1.

cannot be achieved. We also do not see the tendency for decreasing WBC margination
for Ht= 0.39. Further increasing bN,WBC or Ht is not possible due to numerical reasons.

So far, only already known results have been reproduced by the hydrodynamic phase
field model, which can be viewed as a validation of the modelling approach. We
now turn to the effect of the Reynolds number on WBC margination. It is shown in
figure 5. We consider Ht = 0.293 and a rigid WBC. Considering a constant flow rate,
we obtain WBC margination for Re= 1.125× 10−4, Re= 0.05 and Re= 1. However,
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FIGURE 4. (Colour online) Simulation snapshot at late time for a hard WBC for Ht =
0.098, Ht= 0.195 and Ht= 0.39 (a–c) (Ht= 0.293 is shown in figure 2). The x2 coordinate
for the trajectory of the midpoint of the WBC (e) and the probability that the midpoint of
the WBC is inside a defined interval (d). The x2 axis is split into 20 intervals of length
0.1.
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FIGURE 5. (Colour online) Simulation snapshot at late time for a rigid WBC and Ht =
0.293 for Re= 0.05, Re= 1 and Re= 10 (a–c) (Re= 1.125× 10−4 is shown in figure 2).
The x2 coordinate for the trajectory of the midpoint of the WBC (e) and the probability
that the midpoint of the WBC is inside a defined interval (d). The x2 axis is split into
20 intervals of length 0.1. For Re= 0.05 a movie is provided in the online supplementary
material available at http://dx.doi.org/10.1017/jfm.2016.15.

the tendency to adhere entirely decreases already for Re = 1. The simulation results
for Re= 10 indicate no margination.

Various explanations can be given. First, the tendency of RBCs to aggregate in
the centre of the vessel might decrease with increasing Re due to the increased

http://dx.doi.org/10.1017/jfm.2016.15
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FIGURE 6. (Colour online) Distribution of RBCs for different Re, (a) 1.125 × 10−4,
(b) 0.05, (c) 1 and (d) 10, computed over the time interval t= 10 to t= 50. The shaded
region shows the interquartile range, the difference between the upper and lower quartiles
together with the median.

hydrodynamic interactions. This would increase the concentration of RBCs near the
wall and thus lead to a stronger interaction with marginated WBCs, which, similar
to the situation for large Ht, limits the time WBCs spend near the wall. However,
this explanation cannot be justified by our numerical results. Figure 6 shows the
distribution of RBCs in the vessel averaged over the simulation time, which does
not, or only very weakly show a dependency on Re. The median is shifted towards
the lower part due to the presence of the WBC in the upper part. The peak in the
distribution for Re= 1 and Re= 10 in the upper part close to the wall results from
RBCs, which are trapped behind the WBC, see figure 5. The lower half of the vessel
thus gives a clearer description of the distribution, with no clear dependency on Re.
This is in agreement with the results of Krüger, Kaoui & Harting (2014), where a
qualitative similar distribution profile is observed for a suspension of soft capsules.
Up to Re = 50 the profile shows no dependency on Re, but for larger Re the soft
capsules are even strongly concentrated in the central region.

The second attempt considered the effect of Re on the lift force directly. The
investigation of inertial forces on rigid particles dates back to Segre & Silberberg
(1961) and its dependency on Re is today well understood for spherical objects (Ho
& Leal 1974; Schonberg & Hinch 1989; Asmolov 1999; Matas, Morris & Guazzelli
2004; Carlo et al. 2009). For deformable objects this is much less investigated.
Krüger et al. (2014) show that the Segre–Silberberg effect is essentially suppressed
for deformable objects. We here consider the effect numerically and compute the lift
force (density) as a function of Re for different cell types. We thereby follow the
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FIGURE 7. (Colour online) Computed lift force (density) for a WBC (a) and an RBC (b)
as a function of Re.

approach in Meßlinger et al. (2009) and adapt a gravitational force Fg acting on
the cell. In the hydrodynamic phase field models (2.23) and (2.25) this is realized
by adding −((φi + 1)/2)Fg to the right-hand side. The strength of Fg is varied to
achieve a balance at a fixed height, which is chosen such that the lowest point of
the cell is at x2 = 0.2. Due to the strong deformability of the cell the usually used
centre of mass position of the cell is not appropriate to achieve comparable results for
the same cell type. The magnitude of Fg now determines the lift force (density) at
position x2= 0.2. Figure 7 shows the computed values for WBCs (considered as rigid,
hard and soft cells) and RBCs as a function of Re. We observe an increase of the
lift force (density) with an increasing Re for all cell types. The increase is strongest
for the soft WBC. However, also the increase of the lift force for the hard and rigid
WBC is significant and explains the decrease in margination for an increasing Re,
as now both cell types feel a lift force and thus compete for a position away from
the vessel wall. However, to quantify this effect is difficult, as the computed values
for WBCs and RBCs are not directly comparable, as the actual lift force depends on
cell size, viscosity and distance from the vessel wall (Meßlinger et al. 2009), which
all differ for WBCs and RBCs. However, the larger size of the WBCs and their
higher viscosity indicate a stronger increase of the lift force with Re if compared
with RBCs.

4. Conclusion
We investigate margination of WBCs using a hydrodynamic phase-field approxi-

mation of a Helfrich-type curvature-elastic model (Helfrich 1973). For RBCs various
constraints concerning membrane inextensibility and area conservation are considered,
while WBCs are modelled using a rigid body approximation or a Helfrich-type
curvature model with a weakly extensible membrane. We also consider cell–cell
interactions. The fluid flow of the blood plasma and the internal fluids of the
cells are modelled using the incompressible Navier–Stokes equations. An idealized
two-dimensional blood vessel is used as computational domain.

In the low-Re regime we have reproduced previous results, e.g. a decreasing
tendency for margination with increasing deformability and a non-monotonic
dependency on hematocrit, which quantitatively agree with results of Fedosov et al.
(2012). Here the non-inertial lift force of WBCs is much lower than that on RBCs, or
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even zero in the limit of a rigid-body approximation. This results in margination of the
WBCs to the RBC-free layer near the wall. With inertia effects the simulations show
a decreasing tendency for margination with increasing Re. The effect is explained
by analysing the lift force on a single WBC and a single RBC as a function of Re.
We now have an additional inertial lift force, which for all cell types increases if Re
increases. This is also true for the hard and even the rigid WBC. These forces lead
to a competition between WBCs and RBCs for a position away from the vessel wall,
which suppresses margination. Due to the huge parameter space, flow confinement,
deformability of the WBCs, haematocrit and inertia effects, we had to restrict our
simulations to specific combinations, which show the most significant effect on WBC
margination.
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