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The formation of membrane vesicles from a larger membrane that occurs during endo-
cytosis and other cell processes is typically orchestrated by curvature-inducing molecules 
attached to the membrane. Recent reports demonstrate that vesicles can form de novo in a 
few milliseconds. Membrane dynamics at these scales are strongly influenced by hydrody-
namic interactions. To study this problem, we develop new diffuse interface models for the 
dynamics of inextensible vesicles in a viscous fluid with stiff, curvature-inducing molecules. 
The model couples the Navier–Stokes equations with membrane-induced bending forces 
that incorporate concentration-dependent bending stiffness coefficients and spontaneous 
curvatures, with equations for molecule transport and for a Lagrange multiplier to en-
force local inextensibility. Two forms of surface transport equations are considered: Fickian 
surface diffusion and Cahn–Hilliard surface dynamics, with the former being more appro-
priate for small molecules and the latter being better for large molecules. The system is 
solved using adaptive finite element methods in 3D axisymmetric geometries. The results 
demonstrate that hydrodynamics can indeed enable the rapid formation of a small vesi-
cle attached to the membrane by a narrow neck. When the Fickian model is used, this 
is a transient state with the steady state being a flat membrane with a uniformly dis-
tributed molecule concentration due to diffusion. When the Cahn–Hilliard model is used, 
molecule concentration gradients are sustained, the neck stabilizes and the system evolves 
to a steady-state with a small, compact vesicle attached to the membrane. By varying the 
membrane coverage of molecules in the Cahn–Hilliard model, we find that there is a crit-
ical (smallest) neck radius and a critical (fastest) budding time. These critical points are 
associated with changes in the vesicle morphology from spherical to mushroom-like as the 
molecule coverage on the membrane is increased.
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Fig. 1. Schematic of the processes involved in endocytosis. Curvature inducing molecules attach to the membrane and induce out-of-plane deformations. 
Once enough molecules cover the membrane a vesicle is formed that provides the vehicle to transport extracellular cargo into the cell.

1. Introduction

The biological membranes that surround cells and organelles often undergo shape changes as part of cellular processes. 
In one class of processes, which includes endocytosis, inter-organelle transport and virus entry [24], a small membrane 
vesicle is formed from a larger membrane. In others, locally curved membranes enable other mechanical processes such 
as cytoskeletal protrusion [30]. These events are typically orchestrated by curvature-inducing molecules that dynamically 
attach to the membrane, such as clathrin and bar-domain proteins (see Fig. 1).

Classical clathrin-mediated endocytosis, which occurs on a timescale of seconds, has been extensively studied, including 
contributions from mathematical models [4,25,29]. However, recent reports demonstrate that in some circumstances vesicles 
can form de novo in a few milliseconds [41]. Examples include ultrafast endocytosis at the neurological synapse, in which 
rapid endocytosis is necessary to complement rapid exocytosis of neurotransmitters [32].

Ultrafast vesicle formation raises a fundamental biophysical question: Membrane dynamics at these scales (millisecond, 
nanometer) are dominated by hydrodynamic interactions, as the membrane pushes the intracellular and extracellular fluids 
around to accommodate curvature. What limits do hydrodynamic interactions impose on the speed of endocytosis? How do 
the resulting intracellular flows affect the arrival rate of soluble curvature-inducing molecules? What are the intermediate 
dynamic shapes of the membrane and what spatial constraints do these shapes place on membrane-associated molecules, 
such as clathrin and receptor cargo?

To address these questions, we have developed computational fluid dynamic models of a membrane interacting with 
intracellular and extracellular fluids. The identity of molecular participants in ultrafast endocytosis remains unknown. There-
fore, we consider an abstract curvature-inducing molecule (henceforth CIM) and explore the dependence of vesicle formation 
on its properties. Known CIMs include proteins such as clathrin, caveolin, COP proteins, BAR domain proteins such as GRAF1 
and epsins, as well as lipid modifiers [28]. These range in size-per-molecule from 4 nm for epsin [21] to 50 nm for clathrin 
[16], and range in spontaneous curvature from zero to 9−1 nm−1 for synaptotagmin [28]. For recent reviews of CIMs and 
other modes of biological membrane sculpting, see [23,28,33,36]. For simulation results, we use parameter values in the 
range of these known CIMs.

Mathematical models have been developed, and numerical simulations have been performed, for vesicles with variable 
biophysical properties due to the presence of multiple lipid components and embedded proteins using discrete and con-
tinuum approaches. See, for example, the review by Elson et al. [14]. Here, we use a continuum phase field approach and 
extend our previous work for locally inextensible, homogeneous closed vesicles [2] to locally inextensible, heterogeneous 
membranes with CIMs. Although phase field models for heterogeneous vesicles have been developed previously, e.g., [40,
26,18,12,44,17,15,19], none of these approaches considered the effect of fluid flow (and local inextensibility). The effect of 
flow on the dynamics of locally inextensible, multicomponent vesicles was investigated using a combined boundary integral 
and surface phase field approach in 2D [35] and in 3D axisymmetric geometries [34]. However to simulate endocytosis, 
which typically occurs on length scales of nanometers while the overall membrane may be millimeters in length, as in 
the experiments described above, only a part of membrane can be considered due to computational cost. This geome-
try is straightforward to implement using the phase field approach developed here. Further, the phase field model can 
also be extended to incorporate additional physical processes such as adsorption and desorption of CIMs following [37,
38] and is independent of dimension, which makes the extension to fully three dimensional geometries straightforward as 
well.

The outline of the paper is as follows. In Sec. 2 the mathematical model is presented. In Sec. 3 the discretization of the 
equations and the numerical methods used to solve the discrete system are discussed. In Sec. 4, simulations demonstrating 
the convergence of the algorithm are presented along with an investigation of the influence of hydrodynamics and the dy-
namics of CIMs on the results. Finally, in Sec. 5 conclusions are drawn and future directions are discussed. Several technical 
results are derived in the Appendices.
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Fig. 2. The cylindrical configuration used in the numerical simulations. The membrane � is defined as the zero-level set of the phase field φ and separates 
the intracellular from the extracellular fluid region where φ = 1 or φ = −1, respectively. A part of the membrane, �c , is covered with CIM.

2. Mathematical model

Consider a membrane that is partially covered with molecules that have a non-zero bending modulus. Let us denote the 
membrane with � and the covered part as �c ⊂ �. Furthermore we assume that the spontaneous curvature is zero for a 
clean membrane and is H0 for a membrane molecule. Then the total bending energy is

E =
∫
�c

1

2
bc (H − H0)

2 dA +
∫
�

1

2
bm H2 dA, (1)

where bc and bm are the bending moduli of the molecule and the clean membrane, respectively.
To keep track of �c it is convenient to introduce the non-dimensional molecule concentration c(x). Let us assume c to 

be normalized such that c = 1 corresponds to complete coverage of the membrane. Therefore, c may either be a coarse 
grained quantity denoting the normalized number of membrane molecules per surface area. Alternatively, c might assume 
only discrete values: either 0 or 1, indicating the presence or absence of a molecule at a certain location on the membrane. 
The latter use of c would be particularly appropriate for large membrane molecules such as clathrin, whose size prevents 
the reasonable use of a coarse-grained concentration.

No matter which interpretation of c is used, the energy of a CIM-covered membrane can be written generally as

E =
∫
�

1

2
b(c) (H − H0(c))2 dA. (2)

Note that this functional has also been used to model the energy of multicomponent vesicles, e.g., [34,20], where in that 
case c denotes the concentration of one of the lipid components of the membrane. Here, we assume for simplicity that b
and H0 are linear functions of c. Other choices are discussed in Appendix A.1. In Appendix A.2 we derive a sharp interface 
model of an inextensible membrane with CIMs in viscous fluids using energy variation.

2.1. Diffuse interface model

The diffuse interface method, also known as the phase field method, introduces an auxiliary field φ that distinguishes 
the membrane interior from the exterior. The membrane is modeled by a narrow, diffuse layer. An equation is posed for the 
phase field function φ, which is nonlinearly coupled to the fluid equations. Near the interface, φ can be approximated by

φ(t,x) := tanh

(−r(t,x)√
2ε

)
(3)

where ε characterizes the thickness of the diffuse interface and r(t, x) denotes the signed-distance function between x ∈ �

and its nearest point on �(t). Taking r to be negative inside the membrane, we label the inside with φ ≈ 1 and the 
outside with φ ≈ −1. The interface �(t) is implicitly defined as the zero level set of φ. Further, let n = ∇φ/|∇φ| denote 
the membrane normal and m the outer normal to the computational domain. The complete setting is depicted in Fig. 2. 
Although Fig. 2 depicts the case of a cylindrical computational domain, we will derive the governing equations for general 
3D-domains in the following.

2.1.1. Diffuse interface energy
A diffuse interface version of the standard Helfrich energy (1) of a clean membrane was proposed in [11,10]:

E =
∫

1

2

3

4
√

2ε
bm

(
ε�φ − 1

ε
(φ2 − 1)(φ + √

2εH0)

)2

dx, (4)
�
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where � = �1 ∪ �2 ∪ � is the computational domain. The scaling factor 3/4
√

2ε is chosen to match the sharp interface 
energy in the thin interface limit [11].

To approximate the energy of a partially-covered membrane embedded in two fluids, we now assume that the bending 
stiffness and spontaneous curvature depend on c. We also account for inertial effects by adding the kinetic energy. The total 
energy is

E =
∫
�

1

2

3

4
√

2ε
b(c)

(
ε�φ − 1

ε
(φ2 − 1)(φ + √

2εH0(c))

)2

+ 1

2
ρ|u|2 dx, (5)

where u denotes the velocity field. Next, we use an energy variational argument to derive a thermodynamically consistent 
system of evolution equations for the diffuse interface, the fluid flow and the CIMs.

2.1.2. Evolution equations
To simplify notation let us introduce the following abbreviations:

b̃(c) = 3

4
√

2
b(c) (6)

f (φ, c) = ε�φ − F (φ, c) (7)

F (φ, c) = 1

ε
(φ2 − 1)(φ + √

2εH0(c)) (8)

The time derivative of the energy (5) can be written as

∂tE =
∫
�

1

ε
b̃ f

(
ε�∂tφ − ∂ F

∂φ
∂tφ − ∂ F

∂c
∂tc

)
+ 1

2ε
b̃′(c) f 2∂tc + ρ∂tu · u dx (9)

=
∫
�

(
�(b̃ f ) − 1

ε
b̃ f

∂ F

∂φ

)
∂tφ +

(
1

2ε
b̃′(c) f 2 − 1

ε
b̃ f

∂ F

∂c

)
∂tc + ρ∂tu · u dx (10)

where we used integration by parts and dropped the boundary integrals by assuming the two boundary conditions
m · ∇φ = 0, φ = φ(t = 0) on δ�.

We assume balance laws for momentum and mass conservation, although with forces that need to be determined con-
sistently with the second law of thermodynamics (thermodynamic consistency). It is known that the lipid bilayer of a 
membrane resists any in-plane compression or stretching. Mathematically this leads to the constraint of constant local sur-
face area, which is equivalent to ∇� · u = P : ∇u at the membrane where P = I − n ⊗ n is the surface projection operator 
and ∇� = P∇ is the surface gradient. This is also termed surface incompressibility or inextensibility. To ensure local inex-
tensibility at the fluid–fluid interface we use the approach presented in [2]. Accordingly the Navier–Stokes equations are 
enriched by an additional variable λ which acts as a Lagrange multiplier and can also be interpreted as a surface tension. 
The inextensibility constraint is then added as additional equation restricted to the interface. The resulting Navier–Stokes 
system reads:

ρ(∂tu + u · ∇u) − ∇ · (νD) + ∇p = ∇ · (|∇φ|Pλ) + F, (11)

∇ · u = 0, (12)

ξε2∇ · (φ2∇λ) + |∇φ|P : ∇u = 0, (13)

where D = ∇u + ∇uT is the rate of strain tensor. The first term on the left hand side of Eq. (13) provides a harmonic 
extension of the tension λ off the interface, with ξ being a regularization parameter, see [2]. The force F is yet unspeci-
fied and will be determined below to ensure thermodynamic consistency. The sharp interface equations corresponding to 
Eqs. (11)–(13) are given in the Appendix in Eqs. (A.12)–(A.14). When inertial forces are small, the Stokes equations, which 
are simpler, could be solved instead of the full Navier–Stokes equations. The Stokes system also has an energy functional 
and an analogous set of diffuse interface equations can be derived.

We assume that the CIM concentration satisfies an advection equation, which is reasonable due to the very small interfa-
cial diffusion of large molecules such as clathrin (see previous section). This assumption will be relaxed later to incorporate 
molecular diffusion of CIMs on the membrane.

∂tc + u · ∇c = 0, in � (14)

Finally, for the phase field variable we assume convection together with a yet unspecified source term.

∂tφ + u · ∇φ = −γ g, in � (15)

where γ is a positive mobility constant. By plugging in the balance laws (11), (14), (15) into the energy time derivative we 
obtain after integration by parts
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∂tE =
∫
�

(
�(b̃ f ) − 1

ε
b̃ f

dF

dφ

)
(−u · ∇φ − γ g) − u ·

(
1

2ε
b̃′(c) f 2 − 1

ε
b̃ f

dF

dc

)
∇c

+ u · (−u · ∇u + ∇ · (νD) − ∇p + ∇ · (|∇φ|Pλ) + F) dx. (16)

Further integration by parts gives

∂tE =
∫
�

(
�(b̃ f ) − 1

ε
b̃ f

dF

dφ

)
(−u · ∇φ − γ g) − u ·

(
1

2ε
b̃′(c) f 2 − 1

ε
b̃ f

dF

dc

)
∇c

− ν

2
|D|2 + p∇ · u − |∇φ|P : ∇uλ + u · F dx, (17)

where the boundary integrals vanish by assuming the boundary conditions λ = 0 and m · (νD − pI) = 0 or u = 0 on δ�. 
Next, inserting (12) and (13) yields

∂tE =
∫
�

(
�(b̃ f ) − 1

ε
b̃ f

dF

dφ

)
(−u · ∇φ − γ g) − u ·

(
1

2ε
b̃′(c) f 2 − 1

ε
b̃ f

dF

dc

)
∇c

− ν

2
|D|2 − ξε2φ2|∇λ|2 + u · F dx. (18)

By choosing

g = �(b̃ f ) − 1

ε
b̃ f

dF

dφ
, (19)

F = g∇φ +
(

1

2ε
b̃′(c) f 2 − 1

ε
b̃ f

dF

dc

)
∇c, (20)

we obtain a non-increasing energy:

∂tE =
∫
�

−γ g2 − ν

2
|D|2 − ξε2φ2|∇λ|2 dx. (21)

Hence, a thermodynamically consistent evolution of a partially-covered membrane is given by the coupled inextensible 
Navier–Stokes–Willmore problem in Eqs. (11)–(15) with g and F from (19) and (20), respectively. The derivation of the 
corresponding sharp interface equations is given in the Appendix A.2.

2.2. The molecule advection equation

In the previous section we assumed a pure advection for the concentration of CIMs in Eq. (14). We can extend this 
equation to consider a small amount of diffusion in the tangential direction to account for diffusional transport of CIMs 
along the interface:

∂tc + u · ∇c − Dc��c = 0 (22)

We note that using this simple form of Fickian interface diffusion no longer guarantees that the energy E is non-increasing. 
While a more complicated surface flux could be chosen to ensure that E is non-increasing, we take the surface diffusivity Dc
to be small, which limits the effects of diffusion. Alternatively, if the membrane solely contains areas of no coverage (c = 0) 
and full coverage (c = 1), a Cahn–Hilliard equation can be used to maintain these distinct values with a sharp transition 
in between. This is particularly useful if large membrane molecules are considered (see Sec. 2). The surface Cahn–Hilliard 
equation reads

∂tc + u · ∇c = Dc��μ (23)

μ = −ε��c + ε−1(4c3 − 6c2 + 2c) (24)

Note that if μ is constant, so that the CIM concentration is in local equilibrium, then this equation reduces to the ad-
vection equation. Typically, deviations from local equilibrium are small. Both the Fickian and Cahn–Hilliard forms of the 
CIM evolution equation enable the use of finite-element or central difference approximations without additional numerical 
stabilization such as the streamline diffusion method or upwind discretizations.

Straightforward discretizations of these equations may not conserve the mass of the molecules along the interface. Note, 
that the continuous advection equation conserves mass along the interface if inextensibility is perfectly fulfilled, but this 
is not necessarily carried over to the discrete case, where inextensibility and incompressibility are subject to spatial dis-
cretization errors. To deal with the problem of interfacial mass conservation, we use the diffuse interface approach from 
[31]. In this approach, the equations are restricted to the interface by multiplying with an approximation to the interface 
delta function (here: taken to be |∇φ|). The advection–diffusion equation (22) becomes
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∂t(|∇φ|c) + ∇ · (|∇φ|uc) − Dc∇ · (|∇φ|∇c) = 0 (25)

and the Cahn–Hilliard equation (23)–(24) becomes

∂t(|∇φ|c) + ∇ · (|∇φ|uc) − Dc∇ · (|∇φ|∇μ) = 0 (26)

|∇φ|μ + ε∇ · (|∇φ|∇c) − ε−1|∇φ|(4c3 − 6c2 + 2c) = 0 (27)

If the diffusion constant Dc is large enough, the diffuse interface approach [31] ensures that c is extended off � constant 
in normal direction. This property is very important, since the bending stiffness and spontaneous curvature strongly depend 
on c. Having variations in these quantities across the interface makes no sense physically. However, for the very small Dc

that we consider here, it cannot be guaranteed that c is constant in normal direction. Therefore it is necessary to introduce 
additional normal diffusion that averages c across the diffuse interface and results in constant extensions of c off the 
interface, without affecting the accuracy of the solution on the interface. This approach has also been used in [13]. The 
resulting equation reads

∂t(|∇φ|c) + ∇ · (|∇φ|uc) − Dc∇ · (|∇φ|∇c) − Dn∇ · (|∇φ|n ⊗ n · ∇c) = 0 (28)

where Dn is the normal diffusion constant and should be chosen larger than Dc . In practice we empirically determine Dn

by increasing its value until a constant extension of c across the interface is ensured. Note, that in principle the accuracy 
and conservation of c along the membrane are not affected by the normal diffusion, even if Dn is very large.

The equations (28) or (26)–(27) both guarantee exact conservation of molecule mass on the interface: ∂t
∫ |∇φ|c dx = 0, 

in contrast to the original equations. With appropriate discretization this property is also carried over to the fully dis-
crete system. Matched asymptotic analysis shows convergence of Eq. (28) to the original equation (22) and convergence of 
Eqs. (26)–(27) to Eqs. (23)–(24), see [31].

2.3. Improving the accuracy of the inextensibility constraint

The strong tangential forces that arise from tangential gradients of the CIMs in F can lead to problems with satisfying the 
inextensibility condition in the discrete system. Hence, small stretching or compression of the membrane may occur and, if 
allowed to accumulate over time, these errors can strongly influence the simulation results. Therefore we use a relaxation 
mechanism to correct accumulated local errors in the inextensibility as proposed in [2]. Following this approach, we in-
troduce an additional variable s(x, t) to measure the accumulated local stretching and then we modify the RHS of Eq. (13)
as described below. Initially s(x, t) is set equal to 1 everywhere and for t > 0, s(x, t) is evolved by an advection–diffusion 
equation on the interface:

∂t s + u · ∇s + s∇� · u − Ds��s = 0. (29)

This equation ensures conservation of s along the interface and indeed s can be thought of as an interfacial species con-
centration. This implies that s > 1 in regions where the interface is compressed and s < 1 where the interface is stretched. 
Eq. (29) can be approximated using a diffuse interface formulation as done in the previous section for the CIMs:

∂t(|∇φ|s) + ∇ · (|∇φ|us) − Ds∇ · (|∇φ|∇s) − Dn∇ · (|∇φ|n ⊗ n · ∇s) = 0. (30)

The idea is now to not require that inextensibility holds (∇� · u = 0) but instead ∇� · u = ζ(s − 1)/s on �. Hence a slightly 
stretched or compressed interface will be driven back to a relaxed state. In the diffuse interface context, the relaxation 
model is realized by adding the term ζ |∇φ|(s − 1)/s to the RHS of Eq. (13).

In our simulations we will consider a part of the membrane, which implies that the membrane cuts the domain bound-
ary. Hence, the membrane area is allowed to change, due to flow into the computational domain. In this case a special 
boundary is necessary. Conservation of s on the membrane requires that the change in membrane area is equal to the 
amount of membrane flowing in from the boundaries. The membrane area can be expressed in terms of s by 

∫
�

|∇φ|s dx. 
Hence, ∂t

∫
�

|∇φ|s dx = ∫
∂�

−m · Pu|∇φ| dS , where m is the outer normal to the computational domain and we have 
assumed that the membrane outside of the computational is unstretched (s = 1). To ensure conservation (locally) we use

|∇φ|m · (us − Ds∇s − Dnn ⊗ n · ∇s) = |∇φ|m · Pu on ∂� (31)

as boundary condition to Eq. (30).

2.4. Governing equations

Let us now summarize the governing equations derived in the previous sections. The diffuse interface model for a 
membrane partially covered by CIMs consists of the following coupled system:
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1. The inextensible, incompressible Navier–Stokes equations for the fluid velocity

ρ(∂t u + u · ∇u) − ∇ · (νD) + ∇p = ∇ · (|∇φ|Pλ)

+ g∇φ + 3

4
√

2

(
1

2ε
b′(c) f 2 −

√
2

ε2
bf (φ2 − 1)εH ′

0(c)

)
∇c (32)

∇ · u = 0 (33)

ξε2∇ · (φ2∇λ) + |∇φ|P : ∇u = ζ |∇φ|(s − 1)/s (34)

with boundary conditions λ = 0 and u = 0 or (νD − pI) · m = 0 on δ�.
2. The evolution equation for the phase field variable

∂tφ + u · ∇φ = −γ g (35)

g = 3

4
√

2

(
�(bf ) − ε−2bf (3φ2 − 1 + 2

√
2φεH0(c))

)
(36)

f = ε�φ − ε−1(φ2 − 1)(φ + √
2εH0(c)) (37)

with boundary condition m · ∇φ = 0 and φ = φ(t = 0) on δ�.
3. The evolution equation for the stretching measure s on the diffuse interface

∂t(|∇φ|s) + ∇ · (|∇φ|us) − Ds∇ · (|∇φ|∇s) − Dn∇ · (|∇φ|n ⊗ n · ∇s) = 0 (38)

with boundary condition (31).
4. The evolution equation for the molecule concentration c on the diffuse interface

∂t(|∇φ|c) + ∇ · (|∇φ|uc) − Dc∇ · (|∇φ|∇c) − Dn∇ · (|∇φ|n ⊗ n · ∇c) = 0 (39)

or if the Cahn–Hilliard equation is used,

∂t(|∇φ|c) + ∇ · (|∇φ|uc) − Dc∇ · (|∇φ|∇μ) = 0 (40)

|∇φ|μ + ε∇ · (|∇φ|∇c) − ε−1|∇φ|(4c3 − 6c2 + 2c) = 0 (41)

with no flux boundary conditions.

3. Numerical method

To solve the system of equations numerically we split the time interval I = [0, T ] into equidistant time instants 0 =
t0 < t1 < . . . and define the time steps τ := tn+1 − tn (adaptive time steps could also be used). We define the discrete time 
derivative ∂t ·n+1 := (·n+1 − ·n)/τ , where the upper index denotes the time step number. We will use the notation (·)n to 
denote that all time-dependent variables in the brackets are evaluated at time step n. To correct any accumulated errors in 
the inextensibility, we choose the relaxation speed ζ = 1/τ in Eq. (34) as in [2].

The numerical approach for each subproblem is adapted from existing algorithms for the Navier–Stokes equations and 
the Helfrich model. We solve the overall system using an operator splitting approach meaning that we solve sequentially the 
series of sub-problems listed below. In particular, the Navier–Stokes equations are implicitly coupled to the inextensibility 
constraint and the Willmore problem for the phase field variable while the equations for the CIM concentration c and the 
stretching variable s are solved separately.

Hence, at each time step we solve

1. A linear coupled system for the flow (un+1, pn+1, λn+1) and the Willmore problem (φn+1, gn+1 f n+1):

ρn(∂tun+1 + un · ∇un+1) + ∇pn+1 − ∇ · (νnDn+1) − ∇ · (|∇φn|Pnλn+1)

= −gn+1∇φn + 3

4
√

2

(
1

2ε
b′(c) f 2 −

√
2

ε2
bf (φ2 − 1)εH ′

0(c)

)n

∇cn,

∇ · un+1 = 0,

ξε2∇ · ((φn)2∇λn+1) + |∇φn|Pn : ∇un+1 = τ−1|∇φn| sn − 1

sn
,

∂tφ
n+1 + un+1 · ∇φn = −γ gn+1,

gn+1 = 3

4
√

2

(
�(bn f n+1) − ε−2bn f n+1 (3(φn+1)2 − 1 + 2

√
2φn+1εH0(cn))

)
f n+1 = ε�φn+1 − ε−1((φn+1)2 − 1)(φn+1 + √

2εH0(cn))
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where ρn = ρ(φn) = ρ1(1 + φn)/2 + ρ2(1 − φn)/2, and νn is defined analogously. Further, Pn = I − ∇φn ⊗ ∇φn/|∇φn|2. 
In addition, we linearize the nonlinear terms using a Taylor series expansion of order one, e.g. ((φn+1)2 − 1)φn+1 =
((φn)2 − 1)φn + (3(φn)

2 − 1)(φn+1 − φn).
2. The advection–diffusion equation for the stretching variable sn+1:

|∇φn+1|sn+1 − |∇φn|sn

τ
+ ∇ · (|∇φn+1|un+1sn+1) − Ds∇ · (|∇φn+1|∇sn+1)

− Dn∇ · (|∇φn+1|nn+1nn+1 · ∇sn+1) = 0

with boundary condition (31).
4. The advection–diffusion equation for the species concentration cn+1:

|∇φn+1|cn+1 − |∇φn|cn

τ
+ ∇ · (|∇φn+1|un+1cn+1) − Dc∇ · (|∇φn+1|∇cn+1)

− Dn∇ · (|∇φn+1|nn+1nn+1 · ∇cn+1) = 0

or if the Cahn–Hilliard equation is used:

|∇φn+1|cn+1 − |∇φn|cn

τ
+ ∇ · (|∇φn+1|un+1cn+1) − Dc∇ · (|∇φn+1|∇cn+1) = 0

|∇φn+1|μn+1 + ε∇ · (|∇φn+1|∇cn+1) − ε−1|∇φn+1|(4c3 − 6c2 + 2c)n+1 = 0

Note, that the implicit coupling of Navier–Stokes and Willmore-problem increases the stability and allows larger time 
steps. This is in accordance with similar implicit coupling strategies for the Navier–Stokes (and other fluid flow equations) 
and Cahn–Hilliard equations, e.g., [43,6,1,5,9].

We solve the 3D-axisymmetric form of the governing equations using the adaptive finite element toolbox AMDiS [39]
for spatial discretizations. We use P 2/P 1 Taylor–Hood elements for velocity and pressure, extended by a P 2 element for λ. 
For φ, f , g , s and c, P 2 elements are also used. The resulting linear systems of equations are solved with UMFPACK [8]. 
The adaptive mesh refinement and coarsening are determined by gradients in the phase field function, which ensures high 
numerical resolution near the diffuse interface when small values of the interface thickness ε are used; coarse meshes are 
used away from interfacial regions. We find this refinement is also sufficient to accurately capture gradients in the velocity 
field.

4. Numerical results

We use our diffuse interface model and numerical method for an initial exploration of ultrafast CIM-mediated endocy-
tosis. We neglect several phenomena, such as the process by which CIM attach to the membrane. Here we are primarily 
interested in testing the efficacy of the method and exploring characteristic features, such as timescales, and dependence 
on parameters such as the size of the CIM-covered patch. The bending stiffness of clathrin was measured in [22] to be 
bc = 12bm , where bm = 1 × 10−19 kg m2/s2 is the bending stiffness of a typical uncovered membrane. For the spontaneous 
curvature we assume H0 = (14.1 nm)−1. According to these parameters we choose the concentration-dependent parameters 
H0(c) = c · (14.1 nm)−1 and b(c) = (1 + 11c) · 1 × 10−19 kg m2/s2.

We assume that the initial membrane is nearly flat, axisymmetric and covered with a circular region of CIMs, as il-
lustrated in Fig. 2. We thus implement the equations using cylindrical coordinates with the computational domain being 
� = [0, 80] × [0, 160] nm2. The circular membrane has a radius of 80 nm. For the circular CIM region we use different radii 
ranging from r = 20 nm to r = 60 nm. For the boundary conditions we pin the membrane at the outer domain boundary 
by imposing the condition φn = φ(t = 0) in the equation for g . Furthermore we enforce a 90 degree angle between the 
membrane and the domain boundary: m · ∇φ = 0, where m is the normal on the domain boundary. For the velocity we 
apply a free stress condition almost everywhere. The only exception to this condition is made where the outer domain 
boundary meets the membrane. There, in a small neighborhood of the membrane we impose zero force in horizontal di-
rection (1, 0) · (νD − pI) · m = 0 and zero vertical velocity u · (0, 1)T = 0. This corresponds to the pinning of the membrane, 
since it prevents the membrane from moving vertically, while still allowing inflow of membrane area into the computational 
domain. For the pressure we impose p = 0 in one grid point, to regularize the Navier–Stokes system.

The physical and numerical parameters are given in Table 1. Here, we briefly comment on the choice of some of the 
parameters. We choose a small mobility γ = 6.4 nm3/s such that the phase field is predominantly advected by the flow. 
The value of ε = 1.2 nm gives an interface thickness comparable to that of a real lipid interface. To improve efficiency, we 
use adaptive time stepping and adaptive spatial mesh refinement. Initially, we use τ = 0.01 ns and double this value every 
30 time steps up to τmax = 2 ns. An adaptive spatial grid is used to obtain high resolution near the membrane. The grid 
size h measures the diameter of the triangles used at the interface while the grid size away from the interface is 8h. We 
take h = 1.25 nm, which ensures that approximately five vertices on the mesh can be found across the interface.
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Table 1
Physical and numerical parameters used in the simulations.

Symbol Quantity Value Source

CIM parameters
H0 spont. curvature of CIM (14.1 nm)−1 [22]
bm membrane bending stiffness 1 × 10−19 kg m2/s2 [36]
bc bending stiffness of CIM 12 × 10−19 kg m2/s2 [22]
H0(c) general spont. curvature c · (14.1 nm)−1 see above
b(c) general bending stiffness b(c) = (1 + 11c) bc see above

Fluid parameters
ρ density 1000 kg/m3 [27]
ν1 extracellular viscosity 1 × 10−3 kg/ms [42]
ν2 intracellular viscosity 1 × 10−2 kg/ms [42]

Diffuse interface model
ε diffuse interface thickness 1.2 nm Sec. 4.1
γ mobility 6.4 nm3/s (standard) Sec. 4.1

4.2 nm3/μs (geometric evolution) Sec. 4.3
ξ inextensibility regularization 3.9 × 10+20 s/kg m [2]
Dc CIM diffusion 16 nm2/μs (Fickian) Sec. 2.2

64e+3 nm3/μs (Cahn–Hilliard) Sec. 2.2
Dn normal diffusion 1600 nm2/μs Sec. 2.2
Ds stretching diffusion 16 nm2/μs Sec. 2.3

Numerical parameters
τ time step size 0.01–2 ns (increased in time) Sec. 4.1
h grid size 1.25 nm Sec. 4.1, [3]

Table 2
Sensitivity of the membrane area (rel. change = |A − Aref|/Aref) at t = 0.5 μs to various parameters. See text for details.

γ Rel. change ε Rel. change τ Rel. change h Rel. change

12.8 nm3/s 1.84% 2.40 nm 8.53% 2.00 ns 0.74% 1.77 nm 3.74%
6.4 nm3/s 0.44% 1.70 nm 3.67% 1.00 ns 0.47% 1.25 nm 2.14%
3.2 nm3/s 0.26% 1.20 nm – 0.50 ns 0.33% 0.88 nm 0.01%
1.6 nm3/s – 0.25 ns – 0.63 nm –

4.1. Sensitivity of the numerical results to parameter variations

We first validate the numerical method by investigating the sensitivity of the results on the parameters ε , γ , h and τ . 
The strategy is to vary one of the parameters while keeping the others fixed at the values given in Table 1. However, when 
ε is varied the grid size is simultaneously adapted to ensure that the interface is resolved well enough by the grid. Also 
when the grid size is decreased a smaller time step size is used: τ = 0.1 ns. This was found to be necessary for solvability 
of the equations if the grid is refined and also ensures that the error in time stepping is small.

Simulations are conducted with the Cahn–Hilliard model for the molecule concentration equation. In all the simulations 
the membrane develops an out-of-plane deformation, forms a bud and finally evolves to stationary configuration consisting 
of a vesicle connected to the membrane by a thin neck. Since the stationary states for all parameters are quite similar, we 
measure the dependency of the parameters in the transient state at the early time t = 0.5 μs when the membrane starts to 
deform. The speed with which this occurs is highly dependent on the parameters. The out-of-plane deformation is accompa-
nied with an increase of membrane area over time, which makes the membrane area to be an excellent quantity to measure. 
Since we do not have an exact solution (convergence of the inextensible part of the membrane dynamics algorithm was 
shown previously in [2]), we measure the relative change between the area A for a particular parameter value and a refer-
ence value Aref, which corresponds to the membrane area from the smallest value of the respective parameter: rel. change =
|A − Aref|/Aref. The rate of decrease of this quantity gives an indication of the rate of convergence of the algorithm.

Table 2 shows the sensitivity of the membrane area to different model parameters (γ , ε) and numerical parameters
(h, τ ), respectively. The relative changes in all of the parameters seems to converge to zero for decreasing parameter values 
with rates that vary from sub-to-super linear. To better judge the significance of the given relative values we note that 
the average interface area at t = 0.5 μs is approximately A = 2.27 × 104 nm2. The membrane area is most sensitive to the 
interface thickness and grid size parameters ε and h, whereas the relative changes in area due to time step τ and mobility 
γ are comparatively small.

4.2. Molecule diffusion vs. Cahn–Hilliard surface dynamics

Next we investigate the differences between the two models of molecule transport. For classical surface Fickian diffusion 
we choose the diffusion constants Dc = 16 nm2/μs and Dn = 1600 nm2/μs in Eq. (39). Having Dn one hundred times 
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Fig. 3. Comparison of membrane evolution and CIM concentrations c when the curvature-inducing molecules are transported by the surface Cahn–Hilliard 
model (top) or Fickian surface diffusion (bottom). The Cahn–Hilliard model maintains sharp gradients of CIMs between the distinct values of 1 (covered) 
and 0 (uncovered) and produces a steady-state configuration consisting of a compact vesicle connected to the membrane by a small neck. Fickian diffusion 
decreases the gradients of the CIMs that transiently produces longer necks and more deformed vesicles.

larger than Dc ensures that c is approximately constant in normal direction away from the interface. The value of Dc is 
chosen as small as possible, e.g., a smaller value of Dc would require additional advection stabilization. The Cahn–Hilliard 
model allows a larger diffusion since the Cahn–Hilliard equation maintains sharp gradients in the molecule concentration. 
Accordingly, we use Dc = 64 × 10+3 nm3/μs in Eq. (40).

Fig. 3 shows the time evolution of the membranes colored by the molecule concentration using the Cahn–Hilliard model 
(top) and the Fickian model (bottom). Due to the presence of the CIM and its influence on the bending stiffness and 
preferred curvature, the membrane is initially very tense. To relieve this tension the membrane develops an out-of-plane 
deformation localized at the region covered with CIMs. The bud grows to form a vesicle, which remains connected to the 
rest of the membrane by a neck.

When the Cahn–Hilliard model is used (top), steep gradients in the CIM concentration are maintained in time. On the 
other hand, when the Fickian model is used (bottom), the gradients in the CIM concentration decrease due to dissipation. 
Consequently, in the Cahn–Hilliard case, the dynamics are faster, the resulting neck is smaller and the vesicle is more 
compact compared to that obtained using Fickian model. In addition, the Cahn–Hilliard evolution leads to a non-trivial 
stationary state of the system. However, the membrane and CIM concentration continue to evolve in the Fickian model up 
to the final time t = 36.0 μs. Moreover, in the Fickian case, the only steady state consists of a uniformly distributed CIM 
concentration on a flat membrane. In the following we only focus on the Cahn–Hilliard equation for the CIMs since this 
model is appropriate for large, slowly diffusing molecules such as clathrin and yields non-trivial steady-states and distinct 
endocytosing vesicles.

4.3. The influence of hydrodynamics

At nanometer length scales the question arises whether hydrodynamics actually has an effect on the dynamics of the 
system. In principle one could also use a pure geometric evolution of the membrane without considering the surrounding 
fluids. To the best of our knowledge there is no geometric diffuse interface evolution available that includes membrane 
inextensibility. Hence, we drop the inextensibility constraint and evolve the membrane using Willmore-flow coupled to the 
diffuse interface Cahn–Hilliard equation for the molecule concentration (40)–(41). This transports the molecules and ensures 
their conservation along the membrane even without flow. Accordingly, we solve only Eqs. (35)–(37) and (40)–(41) with 
u = 0. The parameters are as in the previous section except for the Willmore mobility, which is now the only driving force 
of the interface evolution. In this case, we set mobility γ = 4.2 nm3/μs so as to approximately synchronize the dynamics of 
the geometric and fluid models.

Fig. 4 shows a comparison of the interface evolution with (bottom) and without (top) flow. The simulation without flow 
shows a downwards movement of the membrane at early times since it costs no energy to push the fluid down. If flow is 
present this downwards movement is largely suppressed as an effect of the fluid incompressibility. After forming a neck the 
membrane quickly pinches off in the case of without flow. When flow is involved, this effect is not seen and the membrane 
rather assumes a stationary state with a stable neck. We assume inextensibility to be the main reason for this. In order for 
the neck radius to decrease, fluid needs to be drained out of the near contact region. Once the neck is sufficiently narrow, 
additional drainage would require tangential flow along the membrane due to viscosity. However this would stretch the 
membrane. As a result, membrane inextensibility inhibits fluid drainage in the near contact region, as can clearly be seen 
from the velocity vectors shown in the figure. This stabilizes the neck. This result is also in agreement with simulations 
presented in [2] where it was shown that inextensibility can prevent the close approach of membranes.

It is interesting that experimental results indicate that pinch-off cannot be triggered by clathrin alone, but rather requires 
the action of another molecule called dynamin [7]. In principle our model can be extended to account for the presence of 
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Fig. 4. Comparison of the membrane evolution and CIM concentrations with (bottom) and without flow (top) at times t = 2.90 μs, 7.46 μs, 14.02 μs, 16.98 μs
from left to right. After forming a neck the membrane pinches off without flow. This is not seen when flow is involved and the neck radius stops decreasing 
at a certain point. The arrows indicate the velocity direction and magnitude on a logarithmic scale.

Fig. 5. Stationary shapes of the membrane and CIM concentrations for different sizes of the initial CIM region using the surface Cahn–Hilliard model.

Fig. 6. Diameter of the vesicle and neck radius of the stationary membrane for different sizes of the initial CIM region.

dynamin and as presented in [44] an adhesive potential can be used to model fusion and fission in diffuse interface models. 
This will be considered in future work.

4.4. Varying the CIM region size

Now we investigate what effect the size of the covered region has on the dynamics and stationary state of the membrane. 
The radius of the initially circular CIM region is varied from 20 nm to 60 nm. Fig. 5 shows the stationary shapes at t =
20.0 μs. We find that for small amounts of CIM (radius ≤20 nm) the membrane deforms out-of-plane, but does not form a 
neck. For larger amounts (radius 28–40 nm) a neck forms and the endocytosing vesicle is small and nearly spherical. If the 
CIM region is increased further (radius >40 nm) the vesicle assumes a mushroom-like shape.

The lateral diameter and neck radius of the stationary vesicle are displayed as a function of CIM radius in Fig. 6. Both 
quantities are measured at t = 20 μs when the membrane has reached an (almost) stationary shape. The vesicle diameter 
is a linear function of the initial CIM radius as one might expect. For the neck radius the dependency on the CIM radius 
seems less regular. We find a critical CIM radius r = 40 nm which gives the most narrow neck. This value is right at the 
transition from spherical to mushroom-like vesicles. The occurrence of this minimal neck radius has been confirmed with 
refinement studies in ε and h. One possible explanation for the increasing neck radius for r > 40 nm is as follows: The 
mushroom-like shape of the vesicle more strongly inhibits fluid drainage from the neck region because more regions of the 
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Fig. 7. Time required for a bud to form for different initial radii of the CIM region.

membrane are brought in close approach near the neck. As described above, this inhibits tangential fluid flow both in the 
neck and in nearby regions because of membrane inextensibility.

To quantify the influence of the CIM region size on the dynamics we measure the time until budding occurs (see Fig. 7). 
We define this to be the time at which the neck radius falls below 5 nm. The results indicate a critical vesicle diameter of 
approximately d = 42 nm at which budding occurs fastest. This corresponds to the initial radius of the CIM region of 36 nm. 
Interestingly, these results are consistent with the sizes of vesicles produced by ultrafast endocytosis in [41] where synaptic 
vesicles were observed to have diameters 41.1 ± 0.1 nm.

5. Conclusions

Using an energy variation methodology, we have developed new diffuse interface models for the dynamics of inextensi-
ble vesicles in a viscous fluid with stiff, curvature-inducing molecules that influence the bending stiffness and spontaneous 
curvature of the membrane. The model couples the Navier–Stokes equations with membrane-induced bending forces with 
equations for molecule transport and for a Lagrange multiplier to enforce local inextensibility. Following [2], the Lagrange 
multiplier is harmonically extended off the interface and a relaxation scheme is used that dynamically corrects local stretch-
ing/compression errors thereby preventing their accumulation. This is critical to accurately capturing hydrodynamic effects 
during endocytosis.

Two forms of surface transport equations were considered: Fickian surface diffusion and Cahn–Hilliard surface dynamics. 
The surface equations were reformulated using the diffuse interface method where diffusion in the normal direction is 
added to ensure that the CIM concentration is extended off the interface constant in the normal direction, which improves 
accuracy and stability of the method.

Using an adaptive finite element method, the system was solved in 3D axisymmetric geometries with boundary condi-
tions that enabled the transport of membrane into and out of the computational domain. The membrane in the computa-
tional domain is thus interpreted as only a part of the cell membrane, which is much larger (e.g., micron scale).

The results showed that hydrodynamics can indeed enable the rapid formation of a small vesicle attached to the mem-
brane by a narrow neck. When the Fickian model is used, this is a transient state with the steady state being a flat 
membrane with a uniformly distributed molecule concentration due to diffusion. When the Cahn–Hilliard model is used, 
molecule concentration gradients are sustained, the neck stabilizes due to membrane inextensibility and the system evolved 
to a steady-state with a small, compact vesicle attached to the membrane.

The steady-state vesicle morphology in the Cahn–Hilliard model was found to depend on the initial coverage of CIMs 
on the membrane. When the coverage is too small, no neck formed. In an intermediate range of CIM coverages, the vesicle 
acquired a spherical shape. When the CIM coverage was large, the vesicle attained a mushroom-like shape as regions of 
negative curvature developed. By varying the membrane coverage of molecules in the Cahn–Hilliard model, we found that 
there is a critical (smallest) neck radius and a critical (fastest) budding time. We found that the vesicle diameter corre-
sponding to the fastest budding was consistent with the typical sizes of synaptic vesicles produced by ultrafast endocytosis 
in experiments [41].

An important, and potentially rate limiting step in CIM-orchestrated endocytosis and membrane fission is the transport of 
CIMs in the bulk fluid to and from the membrane as well as the details of adsorption and desorption processes at the mem-
brane. While we have not considered these effects here, they can straightforwardly be incorporated in our formulation using 
the diffuse interface methodology developed in [37,38] to couple bulk and surface transport. A similar methodology can also 
be used to investigate the influence of the budding dynamics, vesicle morphologies and corresponding fluid flows on the 
transport of soluble molecules and cargo from the exterior to the interior of a cell. Another important feature that should 
be investigated is the excess energy, or line tension, that may be associated with a CIM/clean interface on the membrane. 
Further, since the spatial scales are small, thermal fluctuations may also play a role in CIM transport and the membrane 
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Fig. A.1. Schematic of a partially covered membrane. While the observed membrane curvature is H̃ , a close-up shows that the membrane is curved differ-
ently in covered and uncovered regions (curvature Hc and Hm , resp.). The different curvatures are related by Eq. (A.2).

dynamics. Fully three dimensional geometries should also be considered as small non-axisymmetric perturbations could 
influence the results. These and other processes will be considered in future work.
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Appendix A

A.1. Energy of a partially-covered membrane

In [29] the energy of a membrane with CIMs was modeled using

E =
∫
�

1

2
bcc (H − H0)

2 + 1

2
bm H2 dA, (A.1)

where c was interpreted as a coarse-grained concentration. This is questionable for large molecules such as clathrin since 
the size of a clathrin molecule can be about the same order of magnitude as the considered domain size. There is also 
another reason why the above energy (A.1) is not necessarily a good choice. The transformation of (1) to (A.1) uses the 
simple ansatz 

∫
�c

· dA = ∫
�

c · dA, which is not appropriate if c is a coarse-grained concentration. In fact the whole energy 
(A.1) must be coarse-grained to account for different bending of covered and non-covered parts of the membrane.

Based on this principle we derive an alternative form, which is a the natural coarse-grained version of the energy (1). Let 
us consider a small control area on the membrane A ⊂ �. Let us assume the area is small enough such that the curvature 
can be assumed constant along A ∩ � and A ∩ �c , respectively. Hence,

H =
{

Hm in A ∩ (� \ �c)

Hc in A ∩ �c .

Fig. A.1 illustrates this setting. Since the control volume is very small, these small scale differences in the curvature will 
not be seen by the observer. The observed curvature is also a coarse-grained version of H and can be written as a linear 
combination of Hc and Hm:

H̃ = Hc|A ∩ �c|/|A| + Hm|A ∩ (� \ �c)|/|A|. (A.2)

Now, we can introduce the concentration c of the CIM species as

c = |A ∩ �c|/|A|,
which gives
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Fig. A.2. A comparison of linear and nonlinear constitutive laws for the bending stiffness (left) and spontaneous curvature (right) as labeled.

H̃ = cHc + (1 − c)Hm. (A.3)

Next, consider the energy of the control volume. From Eq. (1) we obtain

E A = 1

2
bc(Hc − H0)

2|A|c + 1

2
bm H2

m|A|(1 − c) + 1

2
bm H2

c |A|c. (A.4)

Assume that this energy is minimal, since A is small enough so that the system is in local equilibrium. Subject to Eq. (A.3)
and keeping H̃ fixed, E A is minimized for

Hm = (bc + bm)

(bc + bm) − c · bc

(
H̃ − H0

bc

bc + bm

)
, Hc = (H̃ − Hm · (1 − c))/c, (A.5)

which gives,

E A = 1

2

(bc + bm)bm

(bc + bm) − c · bc

(
H̃ − H0

bc

bc + bm
c

)2

|A| +P(c)|A|, (A.6)

where P(c) is a rational function of c, independent of H̃ . Since the above holds for arbitrary A we may conclude the energy 
of the whole membrane is

E =
∫
�

1

2

(bc + bm)bm

(bc + bm) − c · bc

(
H̃ − H0

bc

bc + bm
c

)2

+P(c)dA (A.7)

In the case of an inextensible membrane (∇� · u = 0) with purely advected CIM (∂tc + u · ∇c = 0), the functional 
∫
�
P(c) dA

will give a constant contribution to the energy, which allows one to drop this term in an energy variation argument. Hence, 
the spontaneous curvature of a partially-covered membrane depends linearly on c, while the bending stiffness is not a 
simple linear function of c. This is in contrast to the energy given in (A.1), which can be lumped to

E =
∫
�

1

2
(cbc + bm)

(
H̃ − H0

cbc

cbc + bm

)2

+P2(c)dA (A.8)

A comparison of the linear and nonlinear bending stiffnesses and spontaneous curvatures is shown in Fig. A.2. Here, we 
do not explore these differences in constitutive laws for the bending stiffness and spontaneous curvatures. This will be 
investigated in a future work.

A.2. Sharp interface model

In this section, we derive a sharp interface model for the membrane-CIM system using an energy variation argument. 
The approach is very similar to the diffuse interface case considered in Sec. 2.1.2. Consider the general energy of a partially-
covered membrane together with the kinetic energy of the surrounding fluids

E =
∫
�

b(c)

2
(H − H0(c))2 dA +

∫
�1∪�2

ρ

2
|u|2 dx. (A.9)

We vary the energy in H and c simultaneously by taking the time derivative of E . Using the Leibnitz rule and n · ∇c = 0, 
we obtain:
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∂t E =
∫
�

b(c) (H − H0(c)) (∂t H + n · ∇H u · n) + b(c)

2
(H − H0(c))2 Hu · n

+ ∂ E

∂c
∂tc dA +

∫
�1∪�2

ρ∂tu · u dx, (A.10)

where

∂ E

∂c
= 1

2
b′(c)(H − H0(c))2 − b(c)(H − H0(c))H ′

0(c). (A.11)

The above expression involves the time derivative of curvature. For this quantity to make sense, H must be extended off �, 
at least in a small neighborhood. The natural extension is such that H(x) for x /∈ � is the curvature of the unique surface 
containing x which assumes a fixed distance to �. Next, similar to the balance laws used in Eqs. (11)–(14), let us assume 
the following balance laws for momentum and mass conservation:

ρ(∂tu + u · ∇u) − ∇ · (νD) + ∇p = 0 in �1 ∪ �2 (Navier–Stokes) (A.12)

∇ · u = 0 in �1 ∪ �2 (incompressibility) (A.13)

P : ∇u = ∇� · u = 0 on � (inextensibility) (A.14)

∂tc + u · ∇c = 0 on � (species advection) (A.15)

where D = ∇u +∇uT and P = I − n ⊗ n. We assume pure advection here for the CIM concentration. Additionally we assume 
the jump conditions for velocity and flow stress tensor

[u]2
1 = 0 (A.16)

[−pI + νD]2
1 · n = F + ∇� · (λP)

= F + ∇�λ − Hnλ (A.17)

where ∇� = P∇ is the surface gradient and λ is a Lagrange multiplier that provides the tension needed to enforce local 
inextensibility (Eq. (A.14)). This is as an analogue of the pressure in the momentum equation, which is used to enforce local 
incompressibility of the fluid. The surface force F is yet unspecified and will be chosen later such that thermodynamically 
consistency is assured. Note, that the RHS of Eq. (A.17) corresponds to the singular forces introduced as RHS of the mo-
mentum equation in the diffuse interface case, Eq. (11). As shown in Appendix A.3, the time derivative of the curvature 
is

∂t H = −��(u · n). (A.18)

Using Eqs. (A.12)–(A.15) and (A.18), the time derivative of the energy becomes

∂t E =
∫
�

b(c) (H − H0(c)) (−�� + n · ∇H)(u · n) + b(c)

2
(H − H0(c))2 Hu · n

− ∂ E

∂c
∇c · u dA +

∫
�1∪�2

−ρu · ∇u · u − u · ∇p + u · ∇ · (νD)dx. (A.19)

Integration by parts (6 times) gives

∂t E =
∫
�

−�� (b(c)(H − H0(c))) u · n + b(c)(H − H0(c))n · ∇H u · n

+ b(c)

2
(H − H0(c))2 Hu · n

− ∂ E

∂c
∇c · u + u · [−pI + νD]2

1 · n dA −
∫

�1∪�2

ν

2
|D|2 dx. (A.20)

The boundary integrals on the outer domain boundary that arise from integration by parts vanish by assuming the boundary 
conditions of zero velocity, u = 0, or zero stress, m · (νD − pI) = 0, on δ�. Further, at the boundary of the membrane δ� we 
used normal pinning (u · n = 0) and we assumed that at the boundary the membrane was flat curvature (H = 0) and that 
there were no CIMs (c = 0). Next observe that∫

u · (∇�λ − Hnλ) =
∫

−λ∇� · u = 0, (A.21)
� �



J. Lowengrub et al. / Journal of Computational Physics 309 (2016) 112–128 127
by assuming the boundary condition λ = 0 on δ�. Using the above together with Eq. (A.17) gives

∂t E =
∫
�

−�� (b(c)(H − H0(c))) u · n + b(c)(H − H0(c))n · ∇H u · n

+ b(c)

2
(H − H0(c))2 Hu · n − ∂ E

∂c
∇c · u + u · F dA −

∫
�1∪�2

ν

2
|D|2 dx. (A.22)

Furthermore, we compute

n · ∇H = n · ∇ · (∇nT ) = ∇ · (n · ∇n) − ∇nT : ∇n = 0 − ∇n : ∇n = −‖∇�n‖2, (A.23)

where we have used that H = ∇ · n and ∇nT = ∇n = ∇�n. Using Eq. (A.23)

∂t E =
∫
�

−�� (b(c)(H − H0(c))) u · n − b(c)(H − H0(c))‖∇�n‖2u · n

+ b(c)

2
(H − H0(c))2 Hu · n − ∂ E

∂c
∇c · u + u · F dA

−
∫

�1∪�2

ν

2
|D|2 dx. (A.24)

The second law of thermodynamics requires the energy to be non-increasing, which can be accomplished with the choice 
of

F = �� (b(c)(H − H0(c))) n + b(c)(H − H0(c))‖∇�n‖2n

− b(c)

2
(H − H0(c))2 Hn + ∂ E

∂c
∇c. (A.25)

Hence, a thermodynamically consistent evolution of the membrane and the species concentration is given by Eqs. 
(A.12)–(A.15) with the stress jump condition

[−pI + νD] · n = ∇�λ − Hnλ + �� (b(c)(H − H0(c))) n

+ b(c)(H − H0(c))‖∇�n‖2n

− b(c)

2
(H − H0(c))2 Hn + ∂ E

∂c
∇c (A.26)

This is consistent with the jump condition derived in [20], although we have presented a simpler derivation. Putting 
everything together, a thermodynamically consistent model for a CIM-covered membrane in viscous fluids is given by 
Eqs. (A.12)–(A.15) together with jump condition (A.26).

A.3. Curvature time derivative

We will now calculate the time derivative of the curvature ∂t H used in Section A.2. Note that this is not the advected 
time derivative (material derivative). Hence, for this expression to make sense we assume H to be extended off �, at least 
in a small neighborhood. The natural extension is such that H(x) for x /∈ � is the curvature of a curve passing through x
parallel to �. To compute ∂t H we introduce a phase field φ to represent the interface position. The normal is given by 
∇φ/|∇φ| and hence

∂t H = ∂t∇ · ∇φ

|∇φ| = ∇ · ∂t
∇φ

|∇φ|
= ∇ ·

(∇∂tφ

|∇φ| − ∇φ∇φ · ∇∂tφ

|∇φ|3
)

= ∇ ·
(

P
∇∂tφ

|∇φ|
)

.

Now, since � (and hence also φ) are advected: ∂tφ = −u · ∇φ. We obtain

∂t H = −∇ ·
(∇�(u · ∇φ)

|∇φ|
)

= −∇ ·
(

∇�(u · n) + u · ∇φ
∇�|∇φ|
|∇φ|2

)
= −∇ · (∇�(u · n)) = −��(u · n),

as claimed.
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