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Smectic monolayer confined on a sphere:
topology at the particle scale

Elshad Allahyarov, †*abc Axel Voigtd and Hartmut Löwena

The impact of topology on the structure of a smectic monolayer confined to a sphere is explored by

particle-resolved computer simulations of hard rods. The orientations of the particles are tangential to

the sphere and either free or restricted to a prescribed director field with a latitude or longitude

orderings. Depending on the imprinted topology, a wealth of different states are found including

equatorial smectic with isotropic poles, equatorial smectic with empty poles, a broken egg-shell like

modulated smectic, a capped nematic with equatorial bald patches, equatorial nematic with empty

poles, and a situation with 4 or 8 half-strength topological defects. Potentially these states could be

verified in experiments with Pickering emulsions of droplets with colloidal rods. The unique nature of

dipolar structures consisting of positive and negative half-strength disclinations is revealed. These

structures, classified by their density and interaction with other defects in the system, relieve the strain

of the poles by separating closely positioned half-strength defects. The proximity of these structures to

the half-strength defects might enhance the structural diffusion of the defects across the system.

1 Introduction

Liquid crystals composed of particles with orientational degrees
of freedom typically exhibit phase diagrams with complex meso-
phases and show a plethora of novel effects in confinement1–6

which are interesting both from a fundamental point of view7

and for optical switching applications.8 One important meso-
phase is the smectic state which involves a one-dimensional
ordered stack of disordered layers. This liquid-crystalline phase
can be stable in three9,10 or two spatial dimensions,11 the latter
constituting a smectic monolayer. Particle-resolved computer
simulations of simple models such as hard rods have largely
contributed to our understanding of smectic phase stability.
Complex confinement can induce a curvature of the smectic
layers at the expense of elastic distortion energy7 which is
anisotropic and therefore highly nontrivial.

While the effect of curvature on nematic states has widely
been studied under various complex boundary conditions,12–22

only little theoretical studies have focused on smectics near

curved walls23,24 or on curved smectic shells.20,25,26 The latter
typically start from the phenomenological Landau–de Gennes free
energy for an inhomogeneous smectic phase27 which incorporates
bent smectic layers.

In this letter, we focus on a particle-resolved view of a
strongly curved smectic monolayer on a sphere. Our motivation
to do so is fivefold: first, a confinement on a compact manifold
will induce topological constraints for the orientational field.
This is even more complex if the orientations are imposed with
a fixed prescribed orientational field that contains topological
defects. The role of topology on the defect formation in a
smectic monolayer is expected to be dramatic. Second, we focus
here on a particle-resolved view which include fluctuations
which are ignored on the phenomenological mean-field level.
They are naturally included in simulations at densities away
from densest packing.28 Third, smectic layers are realizable in
experiments in various ways: by a double emulsion of a single29

or two concentric droplets30 filled with a molecular or colloidal
smectic,31–33 by smectic bubbles,34–36 by freely suspended
smectic films,37–39 by vesicles formed from block copolymers
with liquid-crystalline side chains,40–42 and by air bubbles covered
with rod-like nanoparticles.43 Fourth, membrane morphologies in
living cells, including membrane sculpting and tubulation, are
regulated by proteins containing a Bin/Amphiphysin/Rvs domain,
which consists of a banana-shaped rods.44,45 Finally, the sickle-cell
anemia disease is caused by a crowding of rod-like abnormal
hemoglobin mutants in red-blood cells.46 These conceptions also
challenges a deeper fundamental understanding of rods on curved
objects.
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Ordered structures on spherical interfaces always possess
topological defects.29,47–49 The polar singularities of the defects
can be functionalized by molecules, nanorods, polymers, lipids and
other linkers to create directional bonds akin to atomic bonds.50–52

The resulting colloidal spheres with anisotropic interactions can be
used for fabrication of mesoscale particles such as nanoparticle
chains, self-standing films, or diamond like structures from
tetravalent mesoatoms with sp3-like directional bonding.

Here, we study the impact of topology on the structure of a
smectic monolayer confined to a sphere by particle-resolved
computer simulations of hard rods. The orientations of the
particles are always tangential to the sphere. We consider two
situations where the orientation can freely rotate or are
restricted to a prescribed director field. The latter is either
along the lines of longitude, or along the lines of latitude. For
the two imprinted orientations, two integer defects at the poles
are imposed with expected huge impact on the smectic structure.
Depending on the imprinted topology, a wealth of different
states are found depending on rod area fraction, aspect ratio
and sphere diameter. These include equatorial smectic with
isotropic poles, equatorial smectic with empty poles, a broken
egg-shell like modulated smectic, a capped nematic with equatorial
bald patches, equatorial nematic with empty poles, and a situation
with 4 or 8 half-strength topological defects. Potentially all of these
structures could be verified in experiments with various set-ups
mentioned above. We also focus on the nature of dipolar structures
consisting of positive and negative half-strength defects. These
structures are classified by their density and interaction with other
defects in the system. In high density systems they relieve the strain
of the poles by separating closely positioned half-strength defects.
In low density systems, they are capable to enhance the structural
diffusion of half-strength defects across the system.

The remainder of this paper is structured as follows. The
details of our simulation model for the spherocylinders
anchored on a spherical surface are given in Section 2. In
Section 3 the simulation method is outlined. In Section 4 we
describe three different prescribed orientations in the system of
rods. The protocol of reaching high-density states, where the
nematic to smectic transitions take place, is described in
Section 5. We discuss the density modulations in smectic
phases on a spherical surface in Section 6. Simulation results
and the defect analysis for preordered and relaxed systems are
gathered in Section 7. We conclude in Section 8.

2 The model

We consider N hard-core spherocylinders of cylindrical length
L, width D, and the aspect ratio L/D anchored on the spherical
surface S2 of diameter 2R. The particle–particle excluded
volume interaction is defined as

uij ~rij ; Ôi; Ôj

� �
¼

1 if i and j overlap;

0 otherwise:

(
(1)

where the solid angle Ô ¼ Ôðy;jÞ describes the particle orien-
tation given by the spherical azimuthal angle j and the polar

angle y. The system set-up is schematically shown in Fig. 1. In
the simulations we fix the spherical surface radius to R = 40D.
The anchoring position for the i-th particle on S2 is given by its

radius-vector
-

Ri which points from the center of the sphere to
the geometrical center of the spherocylinder. The anchoring is
imposed by maintaining the center of the spherocylinder on

the surface of the sphere at all times, |
-

Ri| = R. The orientation of

the spherocylinder at the position
-

Ri is given by a unit vector -
ni,

which is directed along the long axis of the spherocylinder and

is perpendicular to
-

Ri. It is convenient to associate -
ni with the

angle oi defined as the angle in a clockwise rotation from
the angular vector -

ey, which is tangential to the meridian at the

point
-

Ri,
-
ey =

-

Ri � [-ez �
-

Ri], to the vector -
ni. Here -

ez is a unit
vector along the axis z, and the angle oi obeys cosoi = (-ni�

-
ey).

The vectors -
ey and -

ni, and the angle oi are shown schematically
in Fig. 1.

Each spherocylinder occupies an area Sp on S2 defined as

Sp = 2R2(2ap sin gp + p(1 � cosbp)) (2)

where the angles ap, bp, and gp, shown in Fig. 1, are defined as
follows: tan ap = L/(2R), tan gp = D/(2R), and tan bp ¼
2R

D
þ L

2R

L

D
þ 1

� �� ��1
. The area Sp can be viewed as the area

of the projection of the spherocylinder on S2. A curvature
factor c(L/R) = Sp/S2D, where S2D is cross-section area of the
spherocylinder, S2D = LD + pD2/4, can be introduced which
depends on the curvature parameter L/R and measures the ratio
between the projected and actual areas of the spherocylinder,
c(L/R) = 1 for R - N.

The areal packing fraction of the spherocylinders on
S2 reads

Z ¼ NSp

pð2RþDÞ2 (3)

Fig. 1 Left picture: A spherocylinder of length L and diameter D. Right picture:
A projection of spherocylinder with index i on the spherical surface S2. The
angle ap is the projection angle between the tip of the rod and its center, bp is
the angle between the tip of the spherocylinder and the tip of the rod, 2gp is the
angle related to the width D of the rod. Corresponding expressions for ap, bp,
and gp are given in the text. The orientation parameters n

-
j and oj are shown

separately for the spherocylinder with index j.
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In the limit of flat surface, R - N, this parameter has the
following asymptotics,

ZAA ¼ S2D

ðLþDþ aÞðDþ bÞ;

ZAB ¼ S2D

LðDþ bÞ þ ðDþ bÞ2
ffiffiffi
3
p 	

2

(4)

depending on what type of stacking, AA or AB is considered in
the crystal phase. In eqn (4) b is the separation distance
between the spherocylinders in the same layer, and a is the
gap between neighboring layers. In the crystal phase the AA

packing is maximal for a = b = 0 and ZAAða ¼ b ¼ 0Þ ¼

L=Dþ p=4
L=Dþ 1

which varies between 0.96 to 0.99 for L/D changed

from 4 to 24. Similarly the AB crystal has maximal packing for

b = 0, ZABðb ¼ 0Þ ¼ L=Dþ p=4

L=Dþ
ffiffiffi
3
p 	

2
, which varies between 0.97 and

0.99 for L/D from 4 to 24. Multiplying these numbers by the
curvature factor c(L/R) of the sphere of radius R = 40D we get
Zmax E 0.95 for these two phases on the sphere for 4 o L/D o 24.
In other words, for the spherical geometry the packing fraction
can reach the maximum value Z = 0.95 in the crystal phase.
According to data available in ref. 10, 53 and 54, the lower
boundary of the smectic phase at the smectic–nematic transi-
tion is about 25–30% below its upper boundary at the smectic-
columnar phase for L/D Z 5. Projecting those results to the
current study, it seems safe to expect that the smectic phase
will be stable within a 20% window below the maximal value
Z = 0.95. Therefore, for obtaining a smectic phase, the simula-
tions should be carried out for dense systems where the
packing fraction is at least Z Z 0.75. Covering the spherical
surface S2 up to this packing number with overlap-free configu-
ration of spherocylinders is a challenging task and demands
the implementation of particular steps. This issue is discussed
in the next section.

We will analyze the topology of the defect structures as a
function of the packing fraction Z and the aspect ratio L/D, see
Appendix B for more details on the defect topology. The full
defect structure will be discussed using the coding tPijk

lmn. Here t
is the total number of full- and half-strength defects recognized
on the sphere, P denotes the phase in which the defect was
observed, it takes values S for a smectic phase and N for the
nematic phase, i is the number of full defects with a charge s = 1
and an angular phase gs = 0 (the parameters s and gs are defined
in Appendix B), j is the number of full defects with a charge s = 1
and an angular phase gs = p/2, k is used for additional structural
information about the defect such as iso caps on the spherical
surface (k = c), or, bald patches on S2 (k = p), or, periodic in-layer
modulations in the smectic phase (k = m), l is the number of ++
defect pairs with a charge s = 1/2 and an angular phase gs = 0
(the total charge of the pair is +1), m is the number of +� defect
pairs with a charge s = 1/2 and an angular phase gs = p/2 (the
total charge of the pair is +1), and finally n is the number of
defect pairs with a charge s = 1/2 and s = �1/2, and an angular

phase gs = 0 (the total charge of the pair is 0). The total
topological charge of the tPijk

lmn defect is then

w(tPijk
lmn) = i + j + l + m (5)

Because the phase transitions only strictly happen in the
thermodynamic limit, and thus no phase transition is expected
in finite systems, we will refer to the obtained topological
structures as the states of the considered system.

3 Simulation method

Langevin dynamics simulations were carried out for different
systems of spherocylinders with packing fractions Z changed
between 0.3 and 0.9 by varying the aspect ratio of the rods in
the range 4 r L/D r 24 corresponding to the number of rods
700 o N o 4000. During the Langevin displacement step the
i-th particle position is changed from

-

Ri to
-

Rnew
i =

-

Ri + d
-

Ri, where
d

-

Ri connects the old and new anchoring points of the i-th
spherocylinder. Each positional displacement of the sphero-
cylinder is also supplemented by orientational displacement
move during which the orientation -

ni of the rod is changed to
-
nnew

i = -
ni + d-

ni through the rotation of the rod around its center.
At the new anchoring point the surface of the sphere is contacted
by the center of the spherocylinder. Also, at this anchoring
position the orientation -ni of the spherocylinder is always
perpendicular to

-

Rnew
i . Both d

-

Ri and d-
ni are taken from Gaussian

distributions. For the case of preordered orientation with angular
constraint oi = const, the rotational Langevin step is replaced by
the deterministic rotation of the rod. The new orientation -

nnew
i in

this case obeys the following three conditions,

-
nnew

i �-Rnew
i = 0, -

nnew
i �-ey = cosoi, |-nnew

i | = 1 (6)

Here -
ey =

-

Rnew
i � [-ez �

-

Rnew
i ]. Eqn (6) guarantees a constant

orientation of the rod relative to the longitudinal line of the
sphere at the new anchoring position of the rod. The angular
constraint, apparently, can be also managed by applying strong
external forces orienting the rods in a given direction.

Once the particle i acquires a new position Rnew
i and orienta-

tion -
nnew

i , the minimal distance r(m)
ij between it and its nearest

neighbors is calculated using the method developed by Vega
and Lago.55 If an overlapping configuration with r(m)

ij o D is
detected, then the particle i returned to its previous position

-

Ri

and orientation -
ni. In principle, it is possible to implement a

more refined procedure proposed by Rebertus and Sando56 for
defining the impact time between the particles and calculating
their new positions and orientations after each collision step.
However this procedure slows down the simulation without any
palpable gain in the precision of simulations.

Simulations were run in four consecutive steps. First, in the
initialization step of simulations, a startup configuration with
imprinted nematic order was created by anchoring the particles
at random positions on the surface of sphere and imposing
angular constraint on them. All anchored particles are allowed
to make Langevin moves on the S2. Second, in the equilibration
step of simulations, the startup configurations with prescribed
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ordering were equilibrated using Langevin dynamics. Third, in
the relaxation step of simulations, we run additional Langevin
simulations on the configurations with prescribed ordering and
allow the rods to rotate freely around their radius-vectors. These
free ordering simulations were run until a fully equilibrated state
is reached. Fourth, in the production step of simulations,
extended Langevin dynamics were run on the systems from the
step 2 and step 3 simulations. During this final step of simula-
tions necessary statistics on the density r(-r) and ordering para-
meter Q of spherocylinders were gathered with the aim to
recognize defect structures and ordered configurations.

In the Langevin dynamics simulations the characteristic
time t for the spherocylinder center of mass to cover a distance
D can be deduced from the typical kinetic energy of the

spherocylinder, kBT E (D/t)2. Thus, t � D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m= kBTð Þ

p
. In carried

simulations we use a time step h as a fraction of t, h = 10�3t. For
high density systems Z Z 0.8 the time step was reduced to
h = 10�4t for the better treating of the particle–particle over-
lappings. All preordered and relaxed configurations in the
production phase of simulations were run for simulation times
104t–105t.

4 Prescription of orientations

In the sequel, we consider three different systems with pre-
scribed orientations shown in Fig. 2. In these systems, while the
spherocylinders are anchored at random positions

-

Ri on S2,
their orientation is constrained to prescribed directions.

4.1 Prescribed longitude ordering

In this case, the orientations -
ni of all spherocylinders are kept

parallel to the longitude lines on the sphere by fixing the
orientation angle oi = 0 for all rods. The corresponding
morphology is shown in Fig. 2a. This configuration resembles
an aligned liquid crystal system under a strong external field

-

Ey

directed along the polar angle vector -
ey =

-

Ri � [-ez �
-

Ri].
Under this field, the system develops a pair of full strength

splay-like defects with the charges s = 1 and angular phases gs =
0 at the geometrical poles of the S2. This configuration can be
generated in experiments by putting electric dipoles on S2 and
placing oppositely charges particles on the poles of the S2.

4.2 Prescribed latitude ordering

For prescribed latitude ordering, the orientations -
ni of all

spherocylinder are kept parallel to the latitude lines on the
sphere at their anchoring point by fixing the orientation angle
oi = p/2 for all rods. The corresponding morphology is shown in
Fig. 2b. This configuration resembles a liquid crystal system
under a strong external field

-

Ej directed along the azimuthal
angle vector -

ej = [-ez �
-

Ri]. Under this field, the system develops
a pair of bending-like defects with the charges s = 1 and angular
phases gs = p/2 at the poles of the S2. This configuration can be
generated in experiments by considering magnetic dipoles on
S2 under the magnetic field of a current flowing through a wire
connecting the poles of the sphere.

4.3 Free ordering

For the case of free ordering, the orientation vector -
ni of the

spherocylinder is allowed to freely rotate around its radius
vectors

-

Ri. A corresponding system morphology is shown in
Fig. 2c.

5 Protocol to obtain high density
configurations

We develop a protocol for obtaining overlap-free initial configu-
ration for high packing fractions. A continuous filling of the S2

by a random insertion of spherocylinders has an acceptable
success rate until the packing fraction ZE 0.45 is reached. This
packing value slightly depends on the aspect ratio L/D of
spherocylinders. Above this threshold the jamming of rods on
S2 increases the rejection rate of the attempted insertions, and,
as a result of it, the random insertion method eventually stalls.
Overcoming this barrier is a complicated problem, and one of
the possible solutions to it is based on artificially generating
a smectic crystal at the desired packing fraction, and then
melting it in the simulations. This top down approach lacks
the crucial information about the onset of the smectic phase
formation from the nematic ordering.

We propose a new bottom up method consisting of two
consecutive stages which successfully resolves the jamming
issue observed for longitude and latitude orderings. In the first
stage of simulations we couple the particle insertion with the
Langevin dynamics displacement for all particles placed on S2.
In addition to the Langevin displacement of spherocylinders,
we also implement Monte-Carlo type long distance moves on
S2: for the randomly chosen particle j an attempt is made to
relocate it into other spots on S2. Both the Langevin displace-
ments and occasional Monte-Carlo moves tremendously
increase the chances to reach the packing fraction Z E 0.7,
which slightly depends on the aspect ratio L/D.

To go beyond this threshold, we implement another helpful
procedure in the second stage of simulations. We start to insert
thinner particles with reduced diameter Di = 0.85D, hence with
larger aspect ratio L/Di, and then, during the following Langevin
and Monte-Carlo-type displacements in the initialization step,
we calculate the minimum separation distance Dr between the

Fig. 2 Schematic pictures explaining the prescribed orientation fields: (a)
a system with prescribed longitudinal orientation (‘‘longitude ordering’’), (b)
a system with prescribed latitudinal orientation (‘‘latitude ordering’’), and (c)
a relaxed system (‘‘free ordering’’).
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thinner particle and its neighbors. The particle diameter is then
increased from Di to Di + Dr/2 during the next step in the
initialization phase. This procedure is repeated until Di reaches
D. An implementation of this procedure makes it possible to
reach higher densities as Z = 0.85 in the longitude preordered
systems, and Z = 0.9 in the latitude preordered systems in the
initialization startup part of simulations. We note that our
bottom up approach based on the above mentioned two stages
completely differ from previous studies for achieving a smectic
phase at high densities. Whereas in previous studies the smectic
phase was formed from the melting of the crystalline phase, our
approach presents a more natural way for generating high
density smectics with characteristic thermal fluctuation imprints
in it. Also, our approach differs from the one used in ref. 28
where only short spherocylinders L/D r 1 were considered for
getting close packed and random structures on spherical surfaces
without any focus on the nematic-to-smectic transition.

It should be noted that there is an alternative, and seemingly
more natural method for generating startup configurations
with higher density. In this method random particle positions
are generated on an oversized sphere. Then the sphere size is
slowly decreased until the required density is reached. Our test
simulations showed that the slowly decreasing sphere method
has its own limitations: around the density Z E 0.7 the method
becomes extremely slow because of the increased aggregation
of the moving particles into smectic-like clusters. These clusters
prevent further decreasing of the sphere size. Therefore, for
reaching higher densities Z = 0.9 the only available option is
still the random insertion of thinner particles described above.

6 Density modulations in smectics

In this section we will focus on the density modulations in
smectic phases. The layering of particles in the smectic phase
on the spherical surface of radius R is characterized by the
wavevector q = 2p/dy, where dy = Ry0. We consider a smectic phase
with longitudinal ordering when the normal to the smectic layer is
parallel to the unit vector -

ey tangential to the meridian, see the
schematic picture shown in Fig. 3. The particle density can be
developed in a Fourier series

r(j,y) = r0 + r1 cos[q(Ry + uy(j))] +� � � (7)

where uy(j) is the layer displacement field along the layer
normal from the equilibrium position y = ny0 of the n-th layer.
This displacement field depends on the in-layer position j
because of the Landau–Peierls fluctuations which become
stronger as the lateral size of the smectic layer Lj = Rj, or
equivalently, the the opening angle j of the layer becomes
larger. The mean square of these fluctuations in 3D smectic
phases57

u2ðrÞ

 �

3D
/ kBTffiffiffiffi

C
p ln

LSm

d

� �
(8)

diverges with the smectic layer lateral size LSm, resulting in the
loss of the smectic ordering when

ffiffiffiffiffiffiffiffiffi
u2h i

p
� dy. In eqn (8) C is

the elastic modulus of the layers.

In some particular cases the Landau–Peierls instability,
instead of destroying the smectic ordering, might generate
periodic modulations to the displacement field u(-r). For example,
recently Tavarone et al.58 detected such modulations for a bow
shaped particles on a flat surface. Assuming that similar density
oscillations might also develop in smectic layers generated on
spherical surfaces, we describe them as uy(j) = uy cos(Kj), where
K = 2p/lj and lj = Rj0 are the wavevector and wavelength of these
oscillations along the azimuthal angle j, respectively, and uy is
the amplitude of these oscillations along the polar angle y.
Consequently, the following smectic order parameter LSm can
be introduced to quantify the layer modulations,

LSmðq; KÞ ¼
1

N

XN
j¼1

ei~q~eyRyj ei~K~ejRjj

�����
�����

* +
(9)

Here -
ey and -

ej are the unit vectors tangential to longitude and
latitude lines at the anchoring position for the j-th rod. For larger
wavelengths lj Z 2pR, eqn (9) describes ordinary smectic order
parameter LSm(q) without in-layer modulations.59 We calculate
LSm(q,K) for different values of lj and directions

-

h and regard the
maximal value of the LSm as the smectic order parameter for the
considered system.58 A configuration with LSm Z 0.5 is regarded
as a smectic phase, otherwise it is assumed to be a nematic phase.
The threshold value 0.5 corresponds to the local fluctuations in
the particle position in each layer not exceeding 15% of the layer–
layer distance dy.

In the following we use the diameter of the spherocylinder D
as a unit for distance and thus the aspect ratio will be denoted
as L. Also, the caps and central area of the S2 will be referred as
the poles and equator of the sphere, respectively.

7 Simulation results
7.1 Rods with prescribed longitude ordering

The state diagram of the system of rods with prescribed long-
itude ordering is shown in Fig. 4 in the variables L and Z. Two
different smectic states develop from the nematic startup
configurations: the position of the nematic–smectic transition

Fig. 3 A schematic picture explaining the spacing dy = Ry0 between adjacent
layers, see the north hemisphere, and the modulation wavelength lj = Rj0, see
the south hemisphere, in the smectic phase with longitudinal ordering.
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line was defined from the smectic order parameter LSm from
eqn (9).

In Fig. 5 the normalized polar density of particles r(y)/r0 is
plotted for L = 6 and three packing fractions Z = 0.6, 0.7, and
0.8. Here r0 = N/(4pR2) is the average density of rods on the S2.
For Z = 0.6 and 0.7, which are shown as a nematic state in Fig. 4,
there are regular density fluctuations at the poles of S2. This
means that the smectic layering first forms at the poles, and
then gradually develops towards the equator of the sphere. For
Z = 0.8 the particle density fluctuations are strongly sinusoidal

which is the fingerprint of the smectic state. The distance
between the adjacent peaks of r(y) in this case defines the
inter-layer distance dy in the smectic ordering.

From the Fig. 5 it is seen than r(y) is zero at y = 0. This
observation has a simple explanation. The density r(y) was
calculated for 90 grid points with the grid width Dy = p/90. Thus,
r(0) corresponds to the number of particles inside a conical
segment centered at the north pole y = 0 with a cone opening Dy.
For Z = 0.8 and L = 6 the surface area of this polar segment
appears to be twice smaller than the average surface area 1/r0 per
particle on the S2. As a consequence, the polar segment has an
occupancy rate of less than 50%. Therefore, it is just a coin-
cidence that for the configurations used in Fig. 5 the polar
segment was empty from rods, r(0) = 0.

In Fig. 4, the N–S transition line starts at Z = 0.55 for the
smaller rods L = 4, and reaches Z = 0.85 for the longer rods
L = 24. This upturn tendency of the transition line can be
explained by the increase of the curvature effect at larger L/R
ratios. When L/R is big, the discrepancy between the orientations
of neighboring particles increases, which makes the clustering of
particles into smectic layers less effective. It should be noted that
the N–S transition observed here is completely different from the
previous studies, where the N–S transition was obtained from
the melting of the smectic state that was artificially created by
stacking of hexagonal ordered layers.10 In our study the smectic
state is formed consistently in a dense nematic state due to the
particle–particle hard-core interactions.

The two types of smectic states in Fig. 4 are tagged as blue
dots for L r 10, and red dots for L Z 12. The blue dot smectic
state, coded as 2S200

000, has 2 splay-like defects at the poles with
charges s = 1 and angular phases gs = 0. The snapshot pictures,
the orientation order parameter map, and a schematic picture
explaining the morphology of the particle distribution for this
state are shown at the bottom of Fig. 4 in the figure line 1 for

Fig. 4 State diagram of the system of rods with prescribed longitude
ordering. The black solid line indicates the nematic (N) to smectic (S)
transition. Different defect structures are identified by separate colors and
codes. The codes for the defects are given at the top of the diagram.
Representative side-view and top-view snapshots for each defect struc-
ture are provided below the state diagram together with 2D ordering map
for the eigenvalues l+ of the local orientation parameter Qi

l given by
eqn (10) and a schematic picture explaining the morphology of the particle
distribution on the spherical surface.

Fig. 5 Normalized polar density r(y)/r0 of particles for L = 6 from Fig. 4
for three packing fractions Z. The nematic–smectic transition appear
between Z = 0.7 (shifted upward by one unit) and Z = 0.8 (shifted upward
by two units).
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the simulation run for L = 6 and Z = 0.85. The orientation order
parameter map was plotted for the eigenvalues l+(ji,yi) of the
local orientation order tensor Qi

l with elements

Qi
ab ¼

1

2Ni

XNi

j¼1
3njanjb � dab

 !
(10)

where Ni is the number of neighboring rods around the i-th rod
with their anchoring points laying inside a spherical sector with
a cone opening angle p/6, a, b = x, y, z, dab is the Kronecker
delta, and nia and ni,b are the components of the molecular axis
of the i-th rod. In the 2D order map the x-axis represents the
azimuthal angle j and changes from 0 to 2p, and the y-axis
represents the polar angle y and changes from 0 to p. For
uniaxial nematics l+ 4 0 and the corresponding eigenvector -

n
gives the orientation of the nematic director field. The colors
from blue to red in the orientation order parameter map in the
figure lines of Fig. 4 correspond to the change of l+(ji,yi) from
0 to 1.

The defect positions at the poles are marked as a hollow
blue circle in the top view snapshot picture and as an oval blue
line in the orientation order parameter map. The yellow color at
the defect positions at the poles in the orientation order map in
the figure line 1 corresponds to less than 50% of orientational
ordering of the rods, and the dark red color at the equator of the
map corresponds to more than 90% of orientational ordering
of the rods. The same coloring scheme was also used for the
particles in the snapshot pictures.

It is interesting to note that the coloring of the rods in the
snapshots in Fig. 4 correlates with the ratio K1/K3 of the Frank
elastic constants. The Frank-Oseen elastic energy density depends
on the deformation of the local director field -

n(-r) as27

fel ¼
1

2
K1ð ~r �~nÞ2 þ

1

2
K3ð~n� ð ~r�~nÞÞ2 (11)

where K1 and K3 refer to the splay and bending modulii,
respectively. The splay-like structure of the defects in the figure
line 1 in Fig. 4 means that in the vicinity of the poles K1 { K3.
Hence, the yellow region on the S2 corresponds to the smaller
values of K1/K3. Away from the poles and towards the equator the
rods become more parallel to each other, and the splay energy
vanishes. Hence, the dark red region on the S2 corresponds to
the higher values of K1/K3. The exact values of the Frank
constants can be calculated using the Fourier transformation
of the Qi

l tensor (see eqn (10)).59–61

The red dot smectic state, coded as 2S20m
000 , has also two splay-

like defects with the charges s = 1 and angular phases gs = 0 at
the poles. However, away from the poles the smectic state has
azimuthal modulations with ‘‘broken egg-shell’’ like patterns.
Representative snapshots and orientation ordering map are
given in the figure line 2 for the simulation run for L = 12
and Z = 0.85. For better recognition of the zig-zag like structure
of this defect, we emphasize the layer modulations by showing
the layer boundaries as yellow lines in Fig. 6. The formation of

the broken-egg like structure can be examined by the calculation
of the zig-zag order parameter

C ua; lb
 �

¼ 1

Nj

XNj

j

cos
2p
da

Raj þ ua sin
2p
lb
Rbj

� �� �� �
(12)

where ua is the amplitude of the modulations, lb is the wave-
length of the modulations, a and b are the polar and azimuthal
angles of the rods in a spherical system of coordinates with -

z-axis
oriented in arbitrarily chosen direction. The values of the fitting
parameters ua and lb at which C Z 0.5 are considered as the
amplitude and wavelength of the zig-zag structure, respectively.
For the broken-egg structure oriented parallel to the equator, like
the situation observed in Fig. 6, the angles a and b in eqn (12)
should be replaced by the angles y and j respectively. For the
case when the broken-egg structure is oriented parallel to the
meridian lines of the sphere, the angles a and b in eqn (12)
should be replaced by the angles j and y respectively. For the
line 2 in Fig. 4 the order parameter was found to be C = 0.56 at
the equator area for the best fits uy E L and lj E 1.5L. We
believe that the origin of these modulations is the interplay
between the Landau–Peierls instability discussed in Section 6,
eqn (8), and the curvature effect at large L/R ratios. For getting a
better understanding of these periodic layer undulations, additional
simulations on the toroid surface which has total charge w = 0
should be run. In ref. 58 similar layer modulations were detected for
the 2D planar system with bow shaped particles.

Below the N–S transition line in Fig. 4, there are two types of
the nematic states, coded as 2N200

000 and 2N20p
000 and tagged as

cyan and yellow dots, respectively. Both these states have splay-
like defects at the poles with charges s = 1 and angular phases
gs = 0. Representative snapshots and orientation order maps for
these states are shown in figure lines 3 and 4 of Fig. 4 for the
simulation runs L = 16 and Z = 0.7, and L = 8 and Z = 0.75
respectively. The main difference between these two structures
is the existence of a particle-free bald patches in the 2N20p

000

structure (the index ‘p’ here means a ‘patch’) at the equator of
S2. The following two factors contribute to the emergence of
bald patches at the equator of S2. First, the distribution of rods
on S2 in the nematics corresponding to the yellow dotted area in
Fig. 4 is inhomogeneous: the particle density is higher at the poles
compared to their density at the equator of S2. This inhomogeneity
results from the competition between the excluded volume FZ and

Fig. 6 The ‘‘broken egg-shell’’ like modulated smectic state from Fig. 4
line 2. Left picture: A snapshot from simulations. Right picture: A schematic
picture. The yellow lines are a guide for the eye and show the boundaries
of the layers.
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orientation Fa parts of the free energy (see Appendix A). Since
the particles are prohibited to rotate freely, their excluded
volume free energy FZ has no dependence on the ordering
degree parameter a and is constant on the S2. The ordering
degree parameter a is 1 at the equator, and zero at the poles.
Therefore Fa in this area is smaller than its value at the equator.
This makes the poles energetically more favorable place for the
particles.

Second, the higher particle density at the poles generates
smectic ordering in that area. For example, as seen from the
snapshots of the state 2N20p

000 in the figure line 4 of Fig. 4, the
local packing fraction reaches 0.8 at the poles where a smectic
layering is observed. As a consequence, a transition region
appears between the low-density nematic phase at the equator
and the high-density smectic phase at the poles. This transition
region has a biphasic nematic–smectic structure. The width of
this coexistence region Dcoex depends on the curvature para-
meter L/R, the aspect ratio L/R, and the density Z of the rods.
If Dcoex 4 pR, which is the case for the figure line 4 of Fig. 4,
then the transition regions belonging to the north and south
hemispheres overlap at the equator. In other words, the pure
nematic phase at the equator will be annihilated. Though the
biphasic transition region has no impact on the continuous
transition in the polar density of rods, the local distribution of
particles inside the biphasic region will not be homogeneous.

The bald patches can be used in functionalization applica-
tions. For example, their functionalization with target mole-
cules or chemical linkers (see discussion in ref. 52) will provide
the spheres with directional interactions. As a result of this, the
spheres will be able to form 2D free standing sheets which can
be used to create other single layer structures such as graphene
tubes. Similar structures were found in the system of particles
accompanying Saturn-ring defects.62 Such defects form on the
particle surface placed in the nematic liquid: upon nematic
ordering, a closed disclination loop binds more than two
particles to form a sheetlike dynamically arrested structure.

7.2 Rods with prescribed latitude ordering

The state diagram of the system of rods with prescribed latitude
ordering is shown in Fig. 7. Five possible states are detected
with the three of them being in a smectic state and the two of
them being in a nematic state. The N–S transition line here was
also detected by calculating the smectic order parameter LSm

from eqn (9). The initial downturn of the transition line at low
L, between L = 4 and L = 8, is induced by the caging effect of
longer spherocylinders. The caging of the particle by its nearest
neighbors can be defined as the ratio of the cage size to the

particle length, G ¼
ffiffiffiffiffiffi
dA
p .

L. Here dA = 4pR2/N is the area

available per particle on the S2. Comparing two states with
L1 = 4 and L2 = 8 at Z = 0.5 in Fig. 7, and assuming that N1 E 2N2,

we get G2 ¼ 2R
ffiffiffiffiffiffiffiffiffiffiffi
p=N2

p
�

ffiffiffi
2
p

G1. In other words, the caging effect
tends to be stronger in systems with longer particles. In an
analogy with the N–S transition associated with the strengthening
of the caging effect when Z increases at the fixed L, it is reasonable
to expect a similar N–S transition for longer rods with higher

caging parameter G at fixed Z. Note that for larger L the
curvature effect L/R becomes stronger enough to destroy the
smectic layering at intermediate packing fractions Z. This
explains the upturn of the transition line at L Z 12 in Fig. 7.

All the states in Fig. 7 have bending-like configurations with
high bending energy near the defects (at the poles), and low
bending energy at the equator of S2. This inhomogeneous
distribution of the bending energy, or the Frank constant K3

(see eqn (11)), will definitely make the equator more energeti-
cally favorable place for the particles. Consequently, the orien-
tational coloring used in the snapshots in Fig. 7 correlates with

Fig. 7 Same as in Fig. 4, but now for latitude ordering. Different defect
structures are identified by separate colors and codes. The codes for the
defects are given at the top of the diagram.
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the ratio of the Frank constants, K1/K3. The yellow area at the
poles corresponds to the higher values of K1/K3, whereas the
dark red region at the equator corresponds to the smaller
values of K1/K3. The probing of the states in Fig. 7 by eqn (12)
showed that C o 0.5 for all possible configurations of a and b.
Therefore there is no pronounced broken egg-shell like struc-
ture in Fig. 7 for systems with prescribed latitude ordering.

The first smectic state, coded as 2S020
000, meaning a state with

two full defects with charges s = 1 and angular phases gs = p/2 at
the poles, is tagged as blue dots in Fig. 7. This state appears
only at the lowest particle length L = 4. Representative pictures
including snapshots, orientation order map and a schematic
picture are shown in the figure line 1 below the state diagram
for the simulation run for L = 4 and Z = 0.9.

The second smectic state, coded as 4S000
200, meaning a structure

with four half-strength defects with s = 1 and gs = p/2 near the
poles, is tagged as magenta dots in Fig. 7. Representative snap-
shots are shown in the figure line 2 below the state diagram for the
simulation run for L = 16 and Z = 0.8. As seen from the schematic
picture for this state, the pair of defects form a +� binding at the
poles, which is highlighted by the black lines. This binding is the
result of the splitting of the s = 1 and gs = p/2 full strength
defect shown in Fig. 11 in Appendix B. In ref. 63 it is shown that
such +� binding is curvature-driven and the interaction
between the defects depend on their separation. At very low
and large distances the two defects repel each-other, whereas at
intermediate distances they are attracted to each-other.

The third smectic state, coded as 0S000
000, meaning a structure

without any defects, is tagged as green dots in Fig. 7. Repre-
sentative snapshots are shown in the figure line 3 below the
state diagram for the simulation run for L = 8 and Z = 0.85.
Because of the high bending energy near the poles, the particles
mostly accumulate at the equator leaving the poles empty in the
systems with intermediate packing fractions Z. This type of
smectic morphology has never been reported in the literature.
A potential application of this state, after the functionalization
of its poles with target molecules, might be the formation of
string-like wires of the colloidal spheres.

The nematic state below the N–S line in Fig. 7, splits into two
different classes. The first class, coded as 2N020

000, meaning a
structure with two full defects with s = 1 and gs = p/2, is tagged
as cyan dots. Representative pictures for this low curvature L/R
and low Z state are given in the figure line 4 below the state
diagram for the simulation run L = 6 and Z = 0.45. The second
class, coded as 0N000

000, meaning a structure with empty polar
caps and no defects, is tagged as open cyan circles. Represen-
tative pictures for this state are given in the figure line 5 below
the state diagram for the simulation run L = 20 and Z = 0.7. This
state resembles the smectic state with empty poles 0S000

000, and
appear in systems with large curvature parameter L/R. This
state also can be used in colloidal applications to generate 1D
wires of colloidal spheres.

An interesting observation happens when Z increases from
0.3 to 0.9 for the fixed length L = 10. First, the nematic system
with empty poles converts into a nematic state with two full
defects at the poles. Second, this nematic state with polar

defects transfers into a smectic state with empty poles. Third, the
empty pole smectic evolves into a smectic state with +� binding
defects at the poles. These three-step N–S transition is different
from the single-step N–S transition on the flat surfaces.

7.3 Rods with free ordering on S2

When the orientational ordering constraint for the rods is
released, the systems with prescribed longitude and latitude
orderings will relax into new configurations. The thermaliza-
tion of the preordered morphologies will redistribute their
splay and bending energies evenly on S2. The resulting states
are shown in Fig. 8. Representative snapshot and schematic
pictures for the observed morphologies are gathered in Fig. 9.

According to Fig. 8, there is no N–S transition in relaxed and
freely rotated systems. This fact is associated with the existence
of the main topologically invariant half-strength defects and
the development of extra dipolar structures consisting of posi-
tive and negative half-strength defects. The structural diffusion
and even presence of these disclinations will destroy any
smectic ordering on the S2. Obviously, the finite size effects
also contribute to this picture. To minimize the finite size
effects larger systems with more particles on the surface of
bigger spheres with the same curvature parameter L/R are
needed.

As seen from Fig. 8, there is a universal threshold value
Z = 0.8 below which the relaxed states have no memory about
their initial state. All relaxed states are isotropic for L r 10, this
state is noted as I and is tagged as an open magenta circle in
the state diagram. Representative pictures for the state I are
shown in Fig. 9 on line 1 for L = 8 and Z = 0.8. There is a well-
defined cluster size of the smectic domains in high density
isotropic phases. The dependence of the cluster size on the
system parameters Z and L can be deduced from the correla-
tions in Qi

l.
For L 4 10 in both state diagrams in Fig. 8, two different

nematic states are observed. The first nematic state is close to
the threshold value Z = 0.8 and is coded as 4N004

000, meaning that
there are 4 half-strength defects with s = 1/2 and gs = 0. The
upper row index ‘4’ in the code indicates that all the four half-
strength defects are freely moving disclinations. This state is
tagged as a red circle with a red dot in it. Representative
pictures for this structure are shown in Fig. 9 on line 2 for
L = 16 and Z = 0.8. During the simulation runs the defects
occasionally form structures resembling the nodes of the tetra-
hedron. The morphology of the particle orientation between
the neighboring defects resembles a part of the baseball like
structure, as illustrated in the schematic picture for the 4N004

000

state in the figure line 2.
The second nematic state is close to the nematic–isotropic

(N–I) transition line and is coded as 8N004
002, meaning that it

has 8 half-strength defects, with 4 of them being positive with
s = 1/2 and gs = 0, and other 4 of them forming two dipolar
structures. This state is tagged as a red circle with a dark green
dot in it. Representative pictures for 8N004

002 are shown in Fig. 9
on line 3 for L = 16 and Z = 0.6. Each dipolar structure has a
positive and negative half-strength defects with charges s = 1/2
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and s = �1/2 and angular phases gs = 0, thus its total charge is
zero. From the shape of the director field -

n lines around the
dipolar structure, shown as black lines in the schematic picture
for this defect structure, it can be contemplated that the dipolar
structure has a cap near its positive charge area, and two legs
near its negative charge area. Like the state 4N004

000, here also the
defects change their position on S2 through structural diffusion
during the simulation runs. However, the positive and negative
defects of the dipolar structure are always closely associated
with each other, which is shown as a blue line in the representative
pictures for this state. Also, it was detected that one of the positive
half-strength defects has a close association with the leg part of the
dipolar structure, or more clearly, with the negative charge of
the dipolar structure. This association makes it possible for the
dipolar structure to structurally diffuse by accepting the positive
half-strength defect as a new cap and releasing its old cap as a
free positive half-strength defect. In other words, the reassem-
bling of the half-strength defect – dipolar structure configuration
into a dipolar structure – half-strength defect configuration adds

dynamics to the dipolar and defect structures. This mechanism
can be assumed as the macroscopic realization of the defect
motion in crystalline solids.64–66

Above the threshold value Z = 0.8, the relaxed system keeps a
partial memory about its initial configuration. For Z = 0.85 from

Fig. 8 The state diagram of a system relaxed from rods with prescribed
longitude ordering (a), and from rods with prescribed latitude ordering (b).
Different defect structures are identified by separate colors and codes. The
codes for the defects are given at the top of the diagram. Snapshots and
more details are given in Fig. 9.

Fig. 9 Representative pictures for the defect structures from Fig. 8. Same
as in Fig. 4 but now for free ordering. From top to bottom: I, 4N004

000, 8N004
002,

0S00c
000, 4N000

200, 4S00c
000, 8N000

022, 4N000
020, 4S000

020.
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the 2 types of smectic states in Fig. 4 for the system with
prescribed longitude ordering only the state 2S200

000 for L = 4
survives, though partially. The new relaxed state is now coded
as 0S00c

000 and tagged as a blue circle with a green interior in
Fig. 8a. In this state the initial smectic ordering is reduced to
the equator, whereas the poles have isotropic states (the index
‘c’ in the code means an iso-cap). Representative pictures for
this state are shown in Fig. 9 on line 4 for L = 4 and Z = 0.85. As
it was mentioned before in Section 7.1, the poles of the initial
state 2S200

000 has higher splay deformation energy compared to
the equator, thus it was the prime candidate to decrease its
elastic energy when relaxed. Accordingly, the equator with
lesser elastic energy in the initial state was able to survive the
relaxation process. The width of the equatorial band strongly
depends on L: as L increases, the curvature effects become
stronger meaning higher values for the single Frank constant K.
As a result of it, the isotropic phase at the poles of the relaxed
system will propagate deeper into the equator of S2 and thus
the band size will decrease.

The other smectic states at Z = 0.85 in Fig. 4, namely the
states 2S200

000 and 2S00m
000 , when relaxed, convert into the I state for

L = 6 and L = 8, and into a new nematic state 4N000
200 for L Z 10.

In this new state, tagged as a blue circle with a blue dot in it in
Fig. 8, there are 4 half-strength defects with s = 1/2 and gs = 0,
and the defects are paired into the ++ binding at the poles.
Representative pictures for 4N000

200 are shown in Fig. 9 on line 5
for L = 12 and Z = 0.85. In this type of binding, discussed in
Appendix B, the defects strongly repel each-other, however,
because of the extremely high density of the overall structure,
the defects cannot diffuse away from each-other. Only at
smaller packing fractions, see the line 3 in Fig. 9, the ++
binding dissolves into a pair of free half-strength defects.

The relaxation of the initially latitude oriented system at the
highest packing fractions Z = 0.85 and Z = 0.9 appears to be even
more complex. From the initial smectic states 2S020

000 and 4S000
020 in

Fig. 4 at Z = 0.85 only the two low aspect ratios L = 4 and L = 6
smectics partially survive the relaxation procedure. Again,
similar to the relaxed state 0S00c

000 in Fig. 8a, in the new state
the equator has smectic morphology whereas the poles become
isotropic. In this case, however, it is the high bending elastic
energy in the initial configuration which destroys the defects in
the cap during the relaxation process. The obtained new state is
coded as 0S00c

000 and tagged as a red circle with a green interior.
Representative pictures for this state are shown in Fig. 9 on line
6 for L = 6 and Z = 0.85. The only difference between this state
and the other similar state shown on line 4 is the orientation of
the smectic state at the equator. In the former state the
orientation of the rods was perpendicular to the cap boundary,
whereas in the latter state the rods are parallel to the cap
boundary.

All the other smectic states at Z = 0.85 for L Z 8 for the
initially latitude oriented system completely loss their initial
morphology during the relaxation process. For the L = 12 and
L = 16 cases the 4S000

020 smectic state with +� binding at the poles
relaxes to the nematic state 8N000

022. This state is tagged as a red
circle with a yellow dot in it, and has 8 half-strength defects

from which the 4 half-strength defects with s = 1/2 and gs = 0
form a +� binding in the cap areas of the S2. The other 4 defects
form 2 dipolar structures also in the cap area and near the +�
bound half-strength defects. Representative pictures for this
state are shown in Fig. 9 on line 7 for L = 16 and Z = 0.85. This
structure can be viewed as a transitional structure which, at the
low packing fractions Z, transfers into the 4N004

000 state through
the fusion of the negative charge of the dipolar structure with
one of the charges of the the +� binding. Such fusion results in
the dissolution of the dipolar structure and the +� binding,
and the formation of a pair of separate half-strength defects
with positive charges s = 1/2.

The other two smectics 4S000
020 in Fig. 7 for the initially

latitude preordered system at Z = 0.85 for L = 20 and L = 24,
relax into the nematic state 4N000

020 with the same 4 half-strength
defects with s = 1/2 and gs = 0 which group into +� bindings at
the poles In other words, the relaxation only affects the smectic
layering of the initial state, replacing it by the nematic ordering.
This state is tagged as a red circle with a blue dot in it, and the
representative pictures are shown in Fig. 9 on line 8 for L = 20
and Z = 0.9.

Finally, the smectic state 4S000
020 at the highest packing frac-

tion Z = 0.9 in the latitude preordered system basically keeps its
initial morphology for L r 10 during the relaxation process. In
these low curvature and high Z systems, the initial smectic
layering can be viewed as a morphology with frozen structure.
This state, similar to the state 4S000

020 in Fig. 7, is also tagged as
magenta dots and representative pictures are shown in Fig. 9
on line 9 for L = 10 and Z = 0.9. For L 4 10 the strong curvature
effects destroy the smectic layering during the relaxation pro-
cess. The resulting relaxed system appears to be in the nematic
state 4N000

020. The defects stay the same, only the smectic layering
is gone during the relaxation process.

The probing of the states in Fig. 9 by eqn (12) showed that C
o 0.25 for all possible configurations of a and b, a clear
indication of the absence of zig-zag like structures in relaxed
systems.

An interesting observation occurs in Fig. 8a, when for the
fixed L = 16 the packing fraction Z is decreased from 0.85 to 0.5
for the relaxed nematic state 4N000

200. This state has four half-
strength defects with ++ bindings at the poles. First, as the
density is decreased, the defects start to distance from each
other because of their mutual repulsion. They occupy random
positions on S2 and form a baseball like structure with their
neighbors. Second, near the N–I transition line additional
defects with dipolar structures appear, which interact with
the 4 half-strength defects and facilitate their structural diffu-
sion across the S2. Third, the highly mobile defects at low
densities disturb, and eventually damage the nematic state
pushing the system into the isotropic state.

If the starting position is chosen to be the highest density
state 4N000

020 at Z = 0.9 for the fixed L = 16, see Fig. 8b, then the
above step one, namely the separation of the defects in the high
energy +� binding, splits into two additional steps. In the first
step, a dipolar structures is generated next to the +� binding.
In the second step, a negative charge of the dipolar structure
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fuse with one of the positive charges of the the +� binding.
Such fusion results in the dissolution of the dipolar structure
and the +� binding, and the formation of a pair of separate half-
strength defects with positive charges s = 1/2. As a result of these
is two steps the high tension +� binding structurally diffuse into
a configuration containing two positive half-strength defects.
The rest of the transition steps 2 and 3 stay the same.

The existence of more than four half-strength defects in the
nematic state has been also reported by Bates in ref. 67, where
the excess defects were regarded as metastable structures. Our
simulation results, however, show that additional defects form
dipolar structures with zero charge and strongly interact with
other single or bound defects. We distinguish between high
density (HDDS) and low density (LDDS) dipolar structures. The
HDDS, a representative picture of which is shown in Fig. 9 line
7, usually appears in high density Z = 0.85 nematics in the
proximity of the +� bindings and helps to relieve the strain of
that binding. This is similar to the lining of many defects into
scars in the Thompson problem.16,68 At low Z, the HDDS
and the +� binding tend to fuse together with the ensuing
unbinding of the positive half-strength defects and the annihila-
tion of the dipolar structure. The LDDS, however, usually appears
in low density nematics near the N–I transition line and in the
vicinity of positive half-strength defects. It has a potential to
increase the structural diffusion of the defect by absorbing the
defect as a new cap, and releasing its old cap as a new half-strength
defect. This mechanism is similar to the defect motion in crystal-
line solids.64–66 In total, the dipolar structures are the essential part
of the morphology observed in ordered liquids placed on compact
surfaces.

As seen from Fig. 8a and b, there are similar high density
states with the same defect structures, which, however, have
developed from different initial configurations. For example,
the iso-cap smectic state 0S002

000 at Z = 0.85 and L = 4 can exist
either in the splay-like orientation of the rods, or in the
bending-like orientation of the rods at the equator, see
Fig. 8a, respectively. Similarly, the nematic states 4N000

200 in
Fig. 8a, and 4N000

020 in Fig. 8b corresponding to Z = 0.85 and
L = 20, differ from each-other only by the morphology of the
defect bindings. In order to detect which of these alike states is
a configuration with the lowest free energy, both alike systems
were shrunk the continuously through the decreasing of R. It
was found that the states with the splay-like deformation always
endure more shrinking. Therefore, for Z = 0.85 the more stable
configurations are in the states shown in Fig. 8a. We note that
the system pressure P can also be calculated using the virial
theorem and moment transfer between particles per unit
time.56,60,69–71

8 Conclusions

In conclusion, we explored topological structures of spherocy-
linders on a spherical surface in particular when they are in
the smectic state. We found several exotic topological states
which are highly nontrivial structures and are controlled by the

imprinted orientational pattern, by the sphere radius and the
spherocylinder aspect ratio and density. These exotic structures
include a broken egg-shell like modulated smectic shown in
Fig. 4 line 2, equatorial smectic with empty poles shown
in Fig. 7 line 3, equatorial smectic with isotropic poles shown
in Fig. 9 line 4, a capped nematic with equatorial bald patches
shown in Fig. 4 line 4, equatorial nematic with empty poles
shown in Fig. 7 line 5, and a situation with more than 4 half-
strength topological defects shown in Fig. 9 lines 3 and 7. We
expect that the topology of these structures is general and
independent on the specific shape of the rods. Some of these
structures can grow only in a very high density nematics
generated in specifically tailored simulations with the bottom
up architecture.

We found that there are stable smectic states at low curva-
tures L/R and high packing fractions Z = 0.9. The topological
structures of these smectics have four half-strength defects
which form a +� binding structure at the poles. At large
curvatures L/R the stable state appears to be high density
nematics with the same four half-strength defects at the poles.
However, in this case the defects form a ++ binding structure.

A detailed analysis of the exotic 8 half-strength topologies
showed that the additional 4 half-strength defects create 2
dipolar defect structures of zero charge. We have detected that
the high density dipolar structures appear next to the high
density +� defect bindings and help to relieve the strain of
these bindings. In this way they behave like the defect scars in
the Thompson problem.16 On the other hand, the low density
dipolar structures appear near the N–I transition line and next
to the single disclinations. They might enhance the structural
diffusion of the defect by absorbing the disclination as a new
cap, and releasing its own cap as a new half-strength disclina-
tion, a mechanism strongly resembling the defect motion in
crystalline solids65 and the Grotthuss hopping of protons in
water.72 In both cases the dipolar structures exert elastic
torques on the disclinations and strongly contribute to their
orientational mechanics.22,73 In this sense, it will be interesting
to analyze the role of the dipolar structures in active nematics
placed on a spherical surface. In ref. 73–75 it is shown that the
disclinations act as local sources of motion in 2D active
nematics. An open question then remains, how the dipolar
structures and their interaction with the disclinations will
affect the morphology of the active nematics.

The structural diffusion of the positive half-strength defects
guided by the dipolar structures reported in this work, can be
assumed as a directional move from the poles towards the
equator in high density systems. This directed strain-driven
diffusion resembles the field driven directed motion of sky-
rmions, the topological vortex-like defects in chiral nematic
liquid crystals under applied alternation current voltages.76 The
location and structural diffusion of the defects can be visua-
lized by the fluorescent carbon dot nanoparticles which tend to
accumulate at the cores of the topological defects.77,78 Here it is
important to note that, unlike the defect diffusion, which is
only structural without any physical displacement of the spher-
ocylinder on the S2, the migration of the nanoparticles will be a
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real transport. This will provide easy experimental verification
of the defect dynamics on the the spherical surface.79,80

Our results pave the way towards possible applications of the
structures found. In fact, steering the morphology of liquid crystal-
line shells is important for constructing switchable capsules optimal
for a controlled drug delivery81 where the defect positions determine
where the shells can be opened in a minimal destructive way.
Moreover, smectic shells with 4 integer defects are possible candi-
dates to form supramolecular building blocks for tetrahedral crystals
with important implications for photonics.82 They can also been
used for producing super-stable foams.83 The discovered exotic
states with particle-free areas, such as equatorial smectic with empty
poles, equatorial nematic with empty poles, and a capped nematic
with equatorial bald patches, are promising structures as building
blocks for composite soft matter. The construction of new metama-
terials based on these topologies remains as an interesting future
research line.
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Appendix
A Free energy of the ordered state

For the system of N hard-core spherocylinders of length L and
diameter D in a fixed volume V at a fixed temperature T, the
corresponding ensemble is the canonical ensemble, and the
corresponding thermodynamic potential is the Helmholtz free
energy, F(N,T,V). Under the equilibrium condition with no
particle overlappings and no external potential, the free energy
F has the following three contributions,

F = Fid[r(-r)] + FZ[r(-r)] + Fa[r(-r)] (A1)

The particle density rð~rÞ ¼
PN
i¼1

d ~r�~rið Þ
� �

is assumed homo-

geneous everywhere, r(-r) = N/V = r. The first term in eqn (A1) is
the Helmholtz free energy of the ideal gas of rods,

Fid

NkBT
¼ ln rL3

 �
� 1 (A2)

where kB is the Boltzmann’s constant, L is the thermal De-

Broglie wavelength, L ¼ h
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmkBT
p

,
The second term in eqn (A1) is associated with the excluded

volume interaction between particles, and in the limit of low
densities is given as

FZ

NkBT
¼ rL2D

ð
f Ô1

� �
f Ô2

� �
hj sin gjidÔ1dÔ2 þ 4Z (A3)

where Z = r(pD2L/4 + pD3/6) is the packing fraction of the

spherocylinders, dÔ ¼ sin ydydj denotes a surface element
spanning from y to y + dy and j to j + dj on a spherical surface

of unit sphere, f ðÔÞ is the orientational distribution function (ODF)

normalized as
Ð
f ðÔÞdÔ ¼ 1; g Ô1; Ô2

� �
¼ arccos cos y1 cos y2þð

sin y1 sin y2 cos j1 � j2ð ÞÞ is the angle between the rods which

depends on their orientations Ô1 and Ô2, and h� � �i is the statistical
averaging over all mutual orientations for the rod pairs. The term
�FZ/T is regarded as the positional entropy term for the rods.

The third term in eqn (A1) is associated with the orienta-
tional entropy loss in the nematic phase compared to the
isotropic phase and has the following form

Fa

NkBT
¼
ð
f ðÔÞ ln 4pf ðÔÞ

h i
dÔ (A4)

Here the parameter a represents the degree of alignment of the
spherocylinder.

The thermodynamic equilibrium of the system of N spher-
ocylinders corresponds to the minimum of the free energy F
over the parameter f. From the several trial functions proposed
for f 84–86 the Gaussian form seems to be a more convenient
choice,

f ða; yÞ ¼ CðaÞ exp �1
2
ay02

� �
(A5)

Here C(a) is the normalization factor and C(a) E a for larger a,
and y0 = y for 0 r yr p/2, and y0 = p–y for p/2 r yr p. Putting
the Gaussian ODF into eqn (A3) and (A4), we get for the the free
energy parts the following expressions,

FG
Z

NkBT
¼ pr0L

2Dffiffiffiffiffiffi
pa
p þ 4Z;

FG
a

NkBT
¼ ln a� 1 (A6)

It is obvious that FG
Z is a monotonically decreasing function of a,

whereas FG
a is a monotonically increasing function of a. The

competition between the increase in the positional entropy
�FZ/T and the loss of the orientational entropy �Fa/T mini-
mizes the total free energy F of the system of rods and drives the
system into a nematic phase at sufficiently high Z. At low Z, in
the isotropic phase with a = 0, f = 1/(4p), and thus

hj sin gji ¼
Ð Ð

sin gdÔ1dÔ2 ¼ p=4. In this case, according to
eqn (A3) and (A4), FI

Z/(NkBT) = pr0L2D/4 + 4Z, and FI
a = 0.

B Defect structures in nematics

On compact 2D surfaces (spheres, ellipsoids, etc.) each defect is
defined by its topological charge s corresponding to the change
of the director -

n when a full revolution of 2p is done around the
defect, and the angular phase parameter gs. The latter is
defined as the angle between the radius vector -

r = -
ri �

-
rs of

the point -
ri near the defect and the director -

n at this point,
cos(gs) = -r�-n/rn. A set of six fundamental and low-energy defect
structures on compact 2D surfaces is schematically illustrated
in Fig. 10. There are four full defects |s| = 1 and 2 half defects
|s| = 1/2. The phase parameter gs regulates the transition from a
purely splay-like defect (s = 1, gs = 0, K3 c K1) to a purely
bending-like defect (s = 1, gs = p/2, K1 c K3), which can be
induced by the external fields.52

Under equilibrium conditions the energy of the full strength
defect is higher than the summarized energy of the two half-
strength defects.87 As a result of this, the |s| = 1 defect tends to
split into a pair of |s| = 1/2 disclinations schematically shown in
Fig. 11. As seen from this figure, the local direction field -

n lines
between the half-strength defects resemble electric field lines
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between likewise charged (left picture in Fig. 11), or between
oppositely charged (right picture in Fig. 11) particles. We will
refer to these configurations as the ++ and +� binding of the
half-strength defects. The total charge of all defects w ¼P
i

si ¼ 2 on the compact surface S2 is a topological

invariant.88–90 This corresponds to either a pair of s = 1 defects
at the geometrical poles of the sphere, or to a pattern of four
s = 1/2 defects on S2. At low Z this pattern coincides with the
vertices of a regular tetrahedron with a baseball-like nematic
texture.47,50,91 At high Z the four defects are found to lie on a
great circle92–95 forming cut and rotate morphology.

There is an interesting analogy between the defects with
w = 2 on S2 and the 12 defects in the triangular lattice created by
the mutually repulsive discs placed on S2.96 In the latter case
each defect has 5 neighbors (a pentamer) instead of 6 neigh-
bors (a hexamer) expected in a defect-free triangular lattice.97

The lack of 1 neighbor at each defective pentamer is equivalent
to having 2p/6 angular increment (or 1/6 ‘‘charge’’) per penta-
mer. Thus, all the 12 defects of the triangular lattice on the
sphere will have the same topological charge w = 2 as the
spherocylinders on S2.

For the discs on S2 it is also known that at larger number of
particles additional 5–7 (pentamer–heptamer) pairs form defect
scars in the vicinity of the original pentamer defect. The scar
has zero topological charge and reduces the tension around the
pentamer defect.16,98 A similar observation, an existence of
more than four half-strength defects on the S2 in spherocylin-
der system has been made in ref. 67. The total charge of the
extra disclinations is also zero.
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