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We consider a thin film limit of a Landau–de
Gennes Q-tensor model. In the limiting process, we
observe a continuous transition where the normal and
tangential parts of the Q-tensor decouple and various
intrinsic and extrinsic contributions emerge. The main
properties of the thin film model, like uniaxiality and
parameter phase space, are preserved in the limiting
process. For the derived surface Landau–de Gennes
model, we consider an L2-gradient flow. The resulting
tensor-valued surface partial differential equation is
numerically solved to demonstrate realizations of the
tight coupling of elastic and bulk free energy with
geometric properties.

1. Introduction
We are concerned with nematic liquid crystals whose
molecular orientation is subjected to a tangential
anchoring on a curved surface. Such surface nematics
offer a non-trivial interplay between the geometry and
the topology of the surface and the tangential anchoring
constraint which can lead to the formation of topological
defects. An understanding of this interplay and the
resulting type and position of the defects is highly
desirable.

As an application, nematic shells have been proposed
as switchable capsules optimal for a steered drug
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delivery [1]. The defect structure thereby essentially determines where the shells can be
opened in a minimal destructive way. Moreover, nematic shells are possible candidates to
form supramolecular building blocks for tetrahedral crystals with important implications for
photonics [2].

Besides such equilibrium structures, defects also play a fundamental role in active
systems. In [3], the spatio-temporal patterns that emerge when an active nematic film
of microtubules and molecular motors is encapsulated within a lipid vesicle is analysed.
The combination of activity, topological constraints and geometric properties produces a
myriad of dynamical states. Understanding these relations offers a way to design biomimetic
materials, with topological constraints used to control the non-equilibrium dynamics of active
matter.

Defects in nematic shells are intensively studied on a sphere [4–10] and under more
complicated constraints (e.g. [11–16]). However, most of these studies use particle methods.
Despite the interest in such methods, a continuum description would be more essential for
predicting and understanding the macroscopic relation between position and type of the defects
and geometric properties of the surface. For bulk nematic liquid crystals, the Landau–de Gennes
Q-tensor theory [17,18] is a well-established field theoretical description. For a mathematical
review, we refer to [19]. However, its surface formulation is still under debate. Surface models
have been postulated by analogue derivations on the surface [20], by considering the limit
of vanishing thickness for bulk Q-tensors models [21,22] or via a discrete-to-continuum limit
[23]. The derived models differ in details and strongly depend on the made assumptions in
the derivation.

Our approach aims to derive a surface Q-tensor model by dimensional reduction via a
thin film limit of a general bulk Landau–de Gennes model. In contrast to previous work,
we only make assumptions on the boundary of the thin film where we admit only states
conforming to critical points of the free energy. In the limiting process, we observe a continuous
transformation where the normal and tangential parts of the Q-tensor decouple and various
intrinsic and extrinsic contributions emerge. The obtained surface Landau–de Gennes energy
is compared with that of previous models [20–23] and an L2-gradient flow is considered.
The resulting tensor-valued surface partial differential equation is solved numerically on
an ellipsoid.

The paper is structured as follows. In §2, we present the main results, including the surface
Landau–de Gennes energy, a formulation for the evolution problem, and numerical results to
illustrate the mentioned interplay between the geometry, the topology of the surface, and the
positions and type of the defects. §3 establishes the notation essential for the derivation of the
thin film limit, which is derived in §4 for the energy and the L2-gradient flow. A discussion of
mathematical and physical implications of the derived model and a comparison with previously
postulated thin film models is provided in §5. Conclusion is drawn in §6 and details of the analysis
are given in appendix A.

2. Main results
We consider Q-tensor fields on oriented compact (smooth) Riemannian manifolds M defined by
Q(M) := {t ∈ T(2)(M) : tr t = 0, t = tT}. We assume M as well as n-tensor bundles T(n)(M) to be
sufficiently smooth and consider two types of manifolds M, a regular surface S ⊂ R

3 without
boundaries and a thin film Sh := S × [−h/2, h/2] ⊂ R

3 of thickness h. We have Q(S) ⊂Q(Sh)|S
and we can tie a surface Q-tensor q ∈Q(S) with a restricted bulk Q-tensor Q ∈Q(Sh)|S by the
orthogonal projections Π = Id − ν ⊗ ν, with identity Id and surface normal ν and PQ a Q-tensor
projection defined in (4.8), i.e.

q = PQ(ΠQ|SΠ ) =ΠQ|SΠ + 1
2 (νQ|Sν)Π . (2.1)
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For Q-tensors Q ∈Q(Sh), we consider the elastic and bulk free energy FSh =FSh
el + FSh

bulk with

FSh
el [Q] := 1

2

∫
Sh

L1‖∇Q‖2 + L2‖div Q‖2 + L3〈∇Q, (∇Q)T(2 3) 〉

+ L6〈(∇Q)Q, ∇Q〉 dV

and FSh
bulk[Q] :=

∫
Sh

a tr Q2 + 2
3

b tr Q3 + c tr Q4 dV,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.2)

(e.g. [24]) with elastic parameters Li, thermotropic parameters a, b and c and T(2 3) a permutation
of the second and third tensor indices, see (3.9). For simplicity, we restrict our analysis to achiral
liquid crystals, i.e. L4 = 0, see the general form in [24]. Owing to a proper tensor calculus,
the energies (2.2) are coordinate-independent and thus can be seen as a generalization of the
Euclidean coordinate case in [24], see §3 for more details.

To allow a relation to the Frank–Oseen elastic constants in the uniaxial nematic-order state,
the L6 term is considered, see [25–27]. However, it should be pointed out that such a third-order
elastic energy term provides a thermodynamic incorrect theory, see [28]. Including the L6 term
makes the energy unbounded from below (e.g. [29]). We will address this issue in more detail
in §5.

Let ΠQν = νQΠ = 0 and νQν = β be essential anchoring conditions at ∂Sh, where β is
considered to be constant. Consequently, we obtain the natural anchoring conditions

Π ((L1 + βL6)(∇Q)ν + L3(∇Q)T(2 3)ν)Π = 0 at ∂Sh, (2.3)

which ensure vanishing boundary integrals in the first variation δFSh . For q as in (2.1), we obtain
in the thin film limit (1/h)FSh [Q] =FS [q] + O(h2) the corresponding surface free energy FS =
FS

el + FS
bulk with

FS
el [q] := 1

2

∫
S

L′
1‖∇q‖2 + L6〈(∇q)q, ∇q〉

+ M1 tr q2 + M2〈B, q〉2 + M3tr q2〈B, q〉 + M4〈B, q〉 + C0 dS

and FS
bulk[q] :=

∫
S

a′tr q2 + ctr q4 + C1 dS,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

and shape operator B = −(Π∇)ν. In contrast to (2.2), all operators are defined by the Levi–
Civita connection and inner products are considered at the surface. All parameter functions
L′

1, M1, M2, M3, M4, C0, C1 and a′ can be related to the thin film parameters Li, the thermotropic
parameters a, b and c, the surface quantities H (mean curvature) and K (Gaussian curvature), and
β, see (4.31). The L2-gradient flow ∂tq = −∇L2FS reads

∂tq = L′
1�

dGq + L6

(
(∇∇q) : q + (∇q) · div q − 1

2
(∇q)T(1 3) : ∇q + 1

4
‖∇q‖2g

)

− (M1 + M3〈B, q〉 + 2a′ + 2c tr q2)q −
(

M2〈B, q〉 + M3

2
tr q2 + M4

2

)(
B − 1

2
Hg
)

(2.5)

on S × [0, T] with the div-Grad (Bochner) Laplacian �dG. The same evolution equation also
follows as the thin film limit of the corresponding L2-gradient flow ∂tQ = −∇L2FSh for (2.2).

To numerically solve the tensor-valued surface partial differential equation (2.5), we use
a similar approach as considered in [30,31]. We reformulate the equation in R

3 Euclidean
coordinates and penalize all normal contributions q · ν, to enforce tangentiality of the tensor.
This leads to a coupled nonlinear system of scalar-valued surface partial differential equations
for the components of q, which can be solved using surface finite elements [32]. The approach
is implemented in the finite-element toolbox AMDiS [33,34]. Figure 1 shows the evolution on a
spheroidal ellipsoid. The initial configuration is set as in [30] (fig. 1), with two sinks, a source and
a saddle defect, which are placed along an equatorial plane. In accordance with the Poincaré–
Hopf theorem, the topological charges of these defects add up to the Euler characteristic of the
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Figure 1. Numerical simulation on an ellipsoid: (top) snapshots (side, top, bottom view) of defects and principal director. From
left to right: t1: initial state of four defects, threewith topological charge+1 (nodes: cyan, green, blue) and onewith topological
charge−1 (saddle node: red); t2: break down into pairs of six+ 1

2 (wedges) and two− 1
2 (trisectors) defects, respectively; t3:

attraction and repulsion of defects until two pairs of oppositely charged defects annihilate; t4: minimum energy state with
four+ 1

2 defects in deformed tetrahedral configuration as described in [20]. (bottom) From left to right: surface free-energy
FS plotted over time; defect positions in spherical coordinates with polar angle θ and azimuthal angle ϕ over time. The
colours (grey scale) correspond to the marked defects in the top row. Coloured (grey-scaled) dots mark emerging defects, black
diamonds indicate defect annihilation. The half-axis of the ellipsoid are [1, 1, 1.25] and parameters are L1 = L2 = −L3 = 1,
L6 = 0, M2 = M3 = 0 and a= − 2

3 , b= − 1
2 , c = 1. We further consider FS =FS

el + ωFS
bulk with ω= 100. (Online

version in colour.)

surface, 1 + 1 + 1 − 1 = 2. After some rearrangement, all four defects split into pairs of + 1
2 and − 1

2
defects, which move away from each other perpendicular to the initial equatorial plane. Equally
charged defects repel each other and oppositely charged defects attract each other. This leads to
an annihilation of two pairs of + 1

2 and − 1
2 defects. According to the geometric properties of the

ellipsoid, the remaining four + 1
2 defects arrange pairwise in the vicinity of the high curvature

regions, with each pair perpendicular to each other. This deformed tetrahedral configuration
is known to be the minimal energy state, see [35,36] for a sphere and [20] for ellipsoids. We
further observe the principal director to be aligned with the minimal curvature lines in the final
configuration. This alignment is a consequence of the extrinsic contributions in (2.4), where our
model differs from previous studies. Another remarkable feature of the derived surface Landau–
de Gennes model is the possibility of coexisting isotropic and nematic phases. Such coexistence is
known in three-dimensional models and results from the presence of the tr Q3 term in (2.2). Such
a term is absent in two-dimensional models in flat space. This difference in the three- and two-
dimensional model typically changes the phase transition type. In our model the dependency of
M1 on curvature, see (4.31), allows to locally modify the double-well potential in (2.4) and thus
allows for coexisting states due to changing geometric properties of the surface.

3. Notational convention and thin film calculus
For notational compactness of tensor algebra, we use the Ricci calculus, where lowercase indices
i, j, k, . . . denote components in a surface coordinate system and uppercase indices I, J, K, . . . denote
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components in the extended three-dimensional thin film coordinate system. Brackets [] and {} are
used to switch between components and object representation, i.e. for a 2-tensor t we write [t]ij =
tij for the components and {tij} = t for the object. Most of the tensor formulations in this paper are
invariant w.r.t. coordinate transformations, thus a co- and contravariant distinction in the object
representation is not necessary. However, if such a distinction is needed, we use the notation of
musical isomorphisms 
 and � for raising and lowering indices, respectively. These are extended

to tensors in a natural way, e.g. for a 2-tensor t = {ti
j} ∈ T1

1S we write �t
 = {t j
i } = g{ti

j}g−1 ∈ T 1
1 S

with metric tensor g in S. Finally, a tensor product denotes a contraction [st]ij := s k
i tkj and the

Frobenius norm of a rank-n tensor t will be denoted by ‖t‖g , i.e. ‖t‖2
g = 〈t, t〉g with 〈s, t〉g :=

si1···in ti1···in that has to be understood w.r.t. the corresponding metric g for raising and lowering the

indices.1

The first, second and third fundamental form are denoted by gij = 〈∂ix, ∂jx〉 (metric tensor),
[B]ij = −〈∂ix, ∂jν〉 (covariant shape operator) and [B2]ij = 〈∂iν, ∂jν〉, respectively. With this,
curvature quantities can be derived: K = detB
 (Gaussian curvature) and H= trB = Bi

i (mean
curvature). The Kronecker delta will be denoted by δ = {δi

j} and the Christoffel symbols (of second

kind) will be denoted by
Lk

ij = 1
2 gkl(∂igjl + ∂jgil − ∂lgij) at the surface and

LK
IJ = 1

2 GKL(∂IGJL +
∂JGIL − ∂LgIJ) in the thin film, where G is the metric tensor of the thin film Sh, e.g. GIJ = δIJ and
LK

IJ = 0 in the Euclidean case.
The surface S and the thin film Sh as Riemannian manifolds are equipped with different metric

compatible Levi–Civita connections ∇. We use ‘;’ in the thin film and ‘|’ at the surface to point out
the difference for covariant derivatives in index notation, e.g.

[∇Q]IJK = QIJ;K = ∂KQIJ − LL
KIQLJ − LL

KJQIK in Sh (3.1)

and
[∇q]ijk = qij|k = ∂kqij − Γ l

kiqlj − Γ l
kjqik in S. (3.2)

We define the coordinate in normal direction ν of the surface S by ξ ∈ [−h/2, h/2]. The local
surface coordinates are (u, v) defined on every chart in the atlas of S, s.t. the immersion x : (u, v) 
→
R

3 parametrize the surface. Adding these up, we obtain a parametrization X : (u, v, ξ ) 
→ R
3

of the thin film Sh, defined by X(u, v, ξ ) := x(u, v) + ξν(u, v). This means, the lowercase indices
i, j, k, . . . are in {u, v} and the uppercase indices I, J, K, . . . are in {u, v, ξ}. The canonical choices of
basis vectors in the tangential bundles are ∂ix ∈ TS and ∂IX ∈ TSh. Therefore, the metric tensors
are defined by gij = ∂ix · ∂jx and Gij = ∂IX · ∂JX. Consequently, it holds Giξ = Gξ i = 0, Gξξ = 1,
and by (A 28), we get for the inverse metric tensor Giξ = Gξ i = 0, Gξξ = 1. The pure tangential
components of the thin film metric and its inverse can be expressed as a second-order surface
tensor polynomial in ξB and a second-order expansion

Gij = gij − 2ξBij + ξ2[B2]ij and Gij = gij + 2ξBij + O(ξ2), (3.3)

respectively. Consequently, there is no need for rescaling while lowering or rising the normal
coordinate index ξ , i.e. for an arbitrary thin film tensor W it holds

W...ξ ...
... ... = Gξ IW... ...

...I... = W... ...
...ξ ... . (3.4)

Moreover, a contraction of two arbitrary thin film tensor W and W̃ restricted to the surface results
in a contraction of the tangential part w.r.t. the surface metric and a product of the normal part,
i.e.

W... ...
...I...W̃

...I...

... ... |S = GIJW... ...
...I...W̃

... ...

...J... |S = gijW... ...
...i...W̃

... ...

...j... |S + W... ...
...ξ ...W̃

... ...

...ξ ... |S
= W... ...

...i...W̃
...i...
... ... |S + W... ...

...ξ ...W̃
... ...
...ξ ... |S . (3.5)

To deal with covariant derivatives, we have to take the Christoffel symbols into account. It is
sufficient to expand

LK
IJ first order in normal direction, as we only use first-order derivatives and

1The suffix g will be omitted, if it is clear which metric the scalar product refers to.
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no partial derivatives of the symbols are necessary. Hence, (3.3) result in

Lk
ij = Γ k

ij + O(ξ ),
Lξ

ij = Bij + O(ξ ),
LK
ξξ = Lξ

Iξ = Lξ

ξ I = 0 and
Lk

iξ = Lk
ξ i = −Bij + O(ξ ). (3.6)

The volume element dV can be split up into a surface and a normal part by (A 36), i.e.

dV =
√

det G du dvdξ = (1 − ξH + ξ2K)
√

det g du dv dξ = (1 − ξH + ξ2K) dS dξ . (3.7)

We use a generalization of the tensor transpose operator T. This general transpose operator
Tσ : T(n)M→ T(n)M for n-tensors W on a Riemannian manifold M is defined w.r.t. a permutation
σ ∈ Symn by

WTσ (v1, . . . , vn) := W(vσ (1), . . . , vσ (n)), (3.8)

for co- or contravariant vector fields v1, . . . , vn ∈ TM, or T∗M, respectively. Hence, T(1 2) is the
ordinary transpose operator T for 2-tensors. The transpose Tσ is an operator on multilinear forms
and does not depend on any choice of coordinates as a consequence. However, if a coordinate
system is chosen, then Tσ is describable through σ -permuting the indices, e.g. for W ∈ T2

1M,
σ = (2 3) and indices α1,α2,α3 ∈ {1, . . . , dim(M)}, we obtain

{Wα1α2
α3

}T(2 3) = {Wα1 α2
α3

}. (3.9)

4. Thin film limit
Thin film limits require a reduction of degrees of freedom. We deal with this issue by setting
Dirichlet boundary conditions for the normal parts of Q and postulate a priori a minimum of
the free energy on the inner and outer boundary of the thin film. This is achieved by considering
natural boundary condition of the weak Euler–Lagrange equation. In this setting, we restrict the
density of FSh to the surface and integrate in normal direction to obtain the surface energy FS .
In the same way, we also show the consistency of the thin film and surface L2-gradient flows. The
next subsection considers the reformulation of the surface Landau–de Gennes energy to obtain the
formulation in (2.4), which allows a distinction of extrinsic and intrinsic contributions. Finally, we
present a strong formulation of the derived equation of motion.

(i) Derivation of thin film limits

The free energy (2.2) in the thin film Sh in index notation reads

FSh
el [Q] = 1

2

∫
Sh

L1QIJ;KQIJ;K + L2Q J
I ;JQ

IK
;K + L3QIJ;KQIK;J + L6QKLQIJ;KQIJ

;L dV

and FSh
bulk[Q] =

∫
Sh

aQIJQJI + 2
3

bQIJQJKQ I
K + cQIJQJKQKLQLI dV.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.1)

With respect to arbitrary thin film Q-tensors Ψ ∈Q(Sh), the corresponding first variations are

δFSh
el (Q,Ψ ) =

∫
Sh

ΨIJ;K(L1QIJ;K + L3QIK;J + L6QKLQIJ
;L) + L2Ψ

J
I ;J QIK

;K + L6

2
ΨIJQ

;I
KL QKL;J dV

(4.2)

and

δFSh
bulk(Q,Ψ ) = 2

∫
Sh

((a + cQKLQKL)QIJ + bQIKQJ
K)ΨIJ dV. (4.3)

To find local minimizers of the functional FSh =FSh
el + FSh

bulk, we are using the L2-gradient flow
∫
Sh

〈∂tQ,Ψ 〉 dV = −δFSh (Q,Ψ ) = −
∫
Sh

〈∇L2FSh ,Ψ 〉 dV, (4.4)
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for all Ψ ∈Q(Sh). However, integration by parts of (4.2) gives

δFSh (Q,Ψ ) =
∫
Sh

〈∇L2FSh ,Ψ 〉 dV +
∫
∂Sh

L2Q J
I ;JΨ

I
ξ + (L1QIJ;ξ + L3QIξ ;J + L6QξKQIJ;K)Ψ IJ dA,

(4.5)

where dA is the volume form of the boundary surfaces. For the choice of essential boundary
conditions, we require that Q has to have two eigenvectors in the boundary tangential bundle
and the remaining eigenvector has to be the boundary normal, i.e. for P ∈ T∂Sh a pure covariant
representation of Q at the boundary is

Q = S1P� ⊗ P� + S2ν
� ⊗ ν� − 1

3 (S1 + S2)G (4.6)

with scalar order parameter S1 and S2. Hence, it holds Qiξ = Qξ i = 0 and Qξξ = 1
3 (2S2 − S1). For

simplicity, we set the pure normal part of Q constant, i.e. Qξξ = β ∈ R at ∂Sh. Therefore,Ψ has to be
in Q0(Sh) := {Ψ ∈Q(Sh) : ΨIξ =Ψξ I = 0 at ∂Sh}, and we consider the natural boundary conditions
0 = (L1 + L6β)Qij;ξ + L3Qiξ ;j at ∂Sh, so that the boundary integral in (4.5) vanishes. Here, our
analysis differs from previous results, which deal with a global determination of the normal
derivatives in the whole bulk of Sh by parallel transport ∇ξQ = 0, or by ∂ξQ = 0, see [21,22].

With lemma A.7, we can relate the anchoring conditions to surface identities

Qξξ |S = β + O(h2), ∂ξQξξ |S =O(h2), (L1 + L6β)Qij;ξ |S + L3Qiξ ;j|S =O(h2)

and Qiξ |S = Qξ i|S =O(h2) ∂ξQiξ |S = ∂ξQξ i|S =O(h2).

⎫⎬
⎭ (4.7)

Evaluating Ψ ∈Q0(Sh) at the surface results in ΨIξ |S =Ψξ I|S = ∂ξΨIξ |S = ∂ξΨξ I|S =O(h2). The
restricted Q-tensor {Qij|S} ∈ T(2)S is not a Q-tensor, because trg{Qij|S} = trGQ|S − Qξξ |S =
−Qξξ |S . We thus project {Qij|S} to Q(S) with the orthogonal projection

PQ : T(2)S →Q(S), t 
→ 1
2 (t + tT − (trgt)g) (4.8)

and define q ∈Q(S) by

q := PQ{Qij|S} = {Qij|S} + β

2
g + O(h2). (4.9)

For Ψ ∈Q0(Sh), the tangential part is already a Q-tensor up to O(h2). Therefore, we define ψij :=
Ψij|S + 1

2ψξξ |Sgij =Ψij|S + O(h2), where ψ ∈Q(S). With (3.1), (3.2), (3.6), (4.7), (4.9) and the tensor
shift σω(q) := q − (ω/2)βg, we can determine all covariant derivatives restricted to the surface by

Qξξ ;ξ |S = ∂ξQξξ |S =O(h2),

Qiξ ;ξ |S = Qξ i;ξ |S = ∂ξQiξ |S − LK
ξ iQKξ |S =O(h2),

Qξξ ;k|S = ∂kQξξ |S − 2
LL

kξQLξ |S =O(h2),

Qiξ ;k|S = Qξ i;k|S = ∂kQiξ |S − Ll
kiQlξ |S − Lξ

kiQξξ |S − Ll
kξQil|S

= −βBik + (qil − β

2
gil)B

l
k + O(h2) = [σ3(q)B]ik + O(h2),

Qij;ξ |S = − L3

L1 + L6β
Qiξ ;j|S + O(h2) = − L3

L1 + L6β
[σ3(q)B]ik + O(h2)

and Qij;k|S = ∂kQij|S − Ll
kiQlj|S − Lξ

kiQξ j|S − Ll
kjQil|S − Lξ

kjQiξ |S
= ∂kQij|S − Γ l

kiQlj|S − Γ l
kjQil|S + O(h2) = [σ1(q)]ij|k + O(h2)

= qij|k + O(h2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

Analogously, for the components of the covariant derivative ∇Ψ |S , we obtain ΨIξ ;ξ |S =Ψξ I;ξ |S =
Ψξξ ;I|S =O(h2), Ψiξ ;k|S =Ψξ i;k|S = [ψB]ik + O(h2) and Ψij;k|S =ψij|k + O(h2). Note, in the absence
of natural boundary conditions for Ψ , the covariant normal derivatives Ψij;ξ |S of the tangential
components stay undetermined. However, as we will see, the thin film limit of the L2-gradient
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flow (4.4) does not depend on these derivatives. Adding up the three terms in (4.1) with factors
L1, L3 and L6, factoring ∇Q out, restricting to the surface and considering (3.4) and (3.5), results in

L1‖∇Q‖2
G|S + L3〈∇Q, (∇Q)T(2 3) 〉G|S + L6〈(∇Q)Q, ∇Q〉G|S

= QIJ;K(L1QIJ;K + L3QIK;J + L6QKLQIJ
;L)|S

= Qij;k(L1Qij;k + L3Qik;j + L6QklQij
;l)|S + Qξ j;k(L1Qξ j;k + L3Qξk;j + L6QklQξ j

;l)|S
+ Qiξ ;k(L1Qiξ ;k + L3Qik;ξ + L6QklQiξ

;l)|S + Qij;ξ (L1Qij;ξ + L3Qiξ ;j + L6QξξQij
;ξ )|S + O(h2)

=
(

L1 − β

2
L6

)
‖∇q‖2

g + L3〈∇q, (∇q)T(2 3) 〉g + L6〈(∇q)q, ∇q〉g +
(

2L1 − L2
3

L1 + L6β

)
‖σ3(q)B‖2

g

+ L3trg(σ3(q)B)2 + 2L6〈σ3(q)Bσ1(q), σ3(q)B〉g + O(h2). (4.11)

With tr q3 = 0, we obtain for the remaining terms

‖divQ‖2
G|S = Q J

I ;JQ
IK

;K|S = Q j
i ;jQ

ik
;k|S + Q j

ξ ;jQ
k
ξ ;k|S + O(h2)

= ‖divq‖2
g + (trg(σ3(q)B))2 + O(h2), (4.12)

trGQ2|S = QIJQJI|S = QijQ
ji|S + (Qξξ )2|S + O(h2)

= trg

(
q − β

2
g
)2

+ β2 + O(h2) = trgq2 + 3
2
β2 + O(h2), (4.13)

trGQ3|S = QIJQJKQ I
K |S = QijQ

jkQ i
k |S + (Qξξ )3|S + O(h2)

= trg

(
q − β

2
g
)3

+ β3 + O(h2) = 3
2
β

(
β2

2
− trgq2

)
+ O(h2) (4.14)

and trGQ4|S = 1
2

(trGQ2t)2|S = trgq4 + 3
2
β2trgq2 + 9

8
β4 + O(h2). (4.15)

Adding all these up, we can define FS :=FS
el + FS

bulk by

FS
el [q] := 1

2

∫
S

(
L1 − β

2
L6

)
‖∇q‖2 + L2‖div q‖2 + L3〈∇q, (∇q)T(2 3) 〉

+ L6〈(∇q)q, ∇q〉 +
(

2L1 − L2
3

L1 + L6β

)
‖σ3(q)B‖2 + L2(tr(σ3(q)B))2

+ L3tr(σ3(q)B)2 + 2L6〈σ3(q)Bσ1(q), σ3(q)B〉 dS

and FS
bulk[q] :=

∫
S

1
2

(2a − 2bβ + 3cβ2)tr q2 + ctr q4 + β2

8
(12a + 4bβ + 9cβ2) dS

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.16)

and by the rectangle rule and (3.7), we obtain for h → 0

1
h
FSh = 1

h

∫
Sh

FSh dV = 1
h

∫ h/2

−h/2

∫
S

(1 − ξH + ξ2K)FSh dS dξ =
∫
S

FS dS + O(h2)

=FS + O(h2) −→FS . (4.17)

Consequently, the energies FS and FSh are consistent w.r.t. the thickness h. To show a similar
asymptotic behaviour for the L2-gradient flows, we investigate the first variation δFSh = δFSh

el +
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δFSh
bulk in (4.2) and compare with the first variation δFS = δFS

el + δFS
bulk, where

δFS
el (q,ψ) =

∫
S

(
L1 − β

2
L6

)
〈∇q, ∇ψ〉 + L2〈div q, divψ〉 + L3〈∇q, (∇ψ)T(2 3) 〉

+ L6

(
〈(∇q)q, ∇ψ〉 + 1

2
〈(∇q)ψ , ∇q〉

)
+
(

2L1 − L2
3

L1 + L6β

) 〈
σ3(q)B,ψB

〉
+ L2〈σ3(q), B〉〈B,ψ〉 + L3〈Bσ3(q),ψB〉
+ L6(2〈σ3(q)Bσ1(q),ψB〉 + 〈B(σ3(q))2,ψB〉) dS (4.18)

and δFS
bulk(q,ψ) =

∫
S

(2a − 2bβ + 3cβ2)〈q,ψ〉 + 2c tr q2〈q,ψ〉 dS. (4.19)

Proceeding as before, we restrict the terms under the integral of δFSh in (4.2) to the surface.
For δFSh

el , we obtain

ΨIJ;K(L1QIJ;K + L3QIK;J + L6QKLQIJ
;L)|S

=Ψij;k(L1Qij;k + L3Qik;j + L6QklQij
;l)|S

+ Ψiξ ;k(2L1Qiξ ;k + L3(Qik;ξ + Qkξ ;i) + 2L6QklQiξ
;l)|S + O(h2)

=ψij|k
((

L1 − β

2
L6

)
qij|k + L3qik|j + L6qklqij

|l

)

+ [ψB]ik

((
2L1 − L2

3
L1 + L6β

)
[σ3(q)B]ik + L3[σ3(q)B]ki

)

+ 2L6[ψB]ik[σ3(q)Bσ1(q)]ik + O(h2), (4.20)

Ψ
J

I ;J QIK
;K|S =ψ

j
i |j qik

|k + [ψB]j
j[σ3(q)B]k

k + O(h2) (4.21)

and 1
2ΨIJQ

;I
KL QKL;J|S = 1

2Ψij(Q
;i

kl Qkl;j + 2Q ;i
kξ Qkξ ;j)|S + O(h2)

= 1
2ψijq

|i
kl qkl|j + ψij[B(σ3(q))2B]ij + O(h2) (4.22)

and for δFSh
bulk

2(a + cQKLQKL)QIJΨIJ|S = (2a + 2cqklq
kl + 3cβ2)

(
qijψij − β

2
ψ i

i

)
+ O(h2)

= (2a + 3cβ2)〈q,ψ〉 + 2ctrq2〈q,ψ〉 + O(h2) (4.23)

and

2bQIKQ J
K ΨIJ|S = 2bQikQ j

k Ψij|S + O(h2) = 2b

(
[q2]ij − βqij + β2

4
gij

)
ψij + O(h2)

= −2bβqijψij + b

(
trq2 + β2

2

)
ψ i

i + O(h2)

= −2bβ〈q,ψ〉 + O(h2). (4.24)

where we used corollary A.4, i.e. 2q2 = (tr q2)g, particularly. In summary, we see that
〈∇L2FSh ,Ψ 〉|S = 〈∇L2FS ,ψ〉 + O(h2) is valid. Moreover, as ∂tg = 0 for a stationary surface, we
obtain [∂tQ|S ]ij = [∂tq]ij + O(h2). Finally, as in (4.17), we argue with the rectangle rule in normal
direction and observe

1
h

∫
Sh

〈∇L2FSh + ∂tQ,Ψ 〉 dV =
∫
S
〈∇L2FS + ∂tq,ψ〉 dS + O(h2). (4.25)
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(ii) Surface energy

To have a better distinction between extrinsic terms, i.e. 〈B, q〉, and terms depending only on scalar
curvatures H and K in the surface energy (4.16), we use corollary A.4 and obtain the substitutions

(tr(σ3(q)B))2 = 〈B, q〉2 − 3βH〈B, q〉 + 9
4β

2H2, (4.26)

tr(σ3(q)B)2 = 〈B, q〉2 + Ktr q2 − 3βH〈B, q〉 + 9
4β

2(H2 − 2K), (4.27)

‖σ3(q)B‖2 = 1
2 (H2 − 2K)tr q2 − 3βH〈B, q〉 + 9

4β
2(H2 − 2K) (4.28)

and 〈σ3(q)Bσ1(q), σ3(q)B〉 = 1
2H tr q2〈B, q〉 − β(3〈B, q〉2 + 1

4 (H2 + 10K))tr q2

+ 15
4 Hβ2〈B, q〉 − 9

8β
3(H2 − 2K), (4.29)

at the surface S. Terms with invariant measurement of the gradient ∇q differ only in zero-order
quantities for a closed surface, see lemma A.1. Adding all these up, we obtain (2.4) and therefore
in index notation

FS
el [q] = 1

2

∫
S

L′
1qij|kqij|k + L6qklqij|kqij

|l + M1qijq
ij + M2BijBklqijqkl

+ M3Bijqijq
klqkl + M4Bijqij + C0 dS

and FS
bulk[q] :=

∫
S

a′qijq
ij + cqijq

jkqklq
li + C1 dS,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.30)

with coefficient functions

L′
1 := L1 + 1

2
(L2 + L3 − L6β),

M2 := L2 + L3 − 6L6β,

M3 := L6H,

M1 := 1
2

(
−L6(H2 + 10K)β +

(
2L1 − L2

3
L1 + L6β

)
(H2 − 2K) + (L2 + L3)K

)
,

M4 := −3

(
2L1 + L2 + L3 − 5

2
L6β − L2

3
L1 + L6β

)
βH,

C0 := 9
4

((
2L1 + L3 − L6β − L2

3
L1 + L6β

)
(H2 − 2K) + L2H2

)
β2,

a′ := 1
2

(2a − 2bβ + 3cβ2)

and C1 := β2

8
(12a + 4bβ + 9cβ2).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.31)

(iii) Surface equation of motion

To obtain the strong form of the surface L2-gradient flow ∂tq = −∇L2FS , we have to ensure

∫
S
〈∂tq,ψ〉 dS = −

∫
S
〈∇L2FS ,ψ〉 dS, ∀ψ ∈Q(S), (4.32)
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w.r.t. the L2 inner product over the space of Q-tensors and thus ∇L2FS ∈Q(S). While for the first
variations δ w.r.t. q in direction ψ

1
2
δ

∫
S

‖∇q‖2 dS =
∫
S
〈−div ∇q,ψ〉 dS, (4.33)

1
2
δ

∫
S

tr q2 dS =
∫
S
〈q,ψ〉 dS (4.34)

and
1
2
δ

∫
S

tr q4 dS =
∫
S
〈(tr q2)q,ψ〉 dS, (4.35)

the left argument of the inner product is already in Q(S), we have to apply PQ defined in (4.8) for
the remaining terms, i.e.

1
2
δ

∫
S
〈(∇q)q, ∇q〉 dS =

∫
S

(
−(qij|kqkl)|l + 1

2
qkl|iqkl

|j

)
ψ ij dS

=
∫
S

(
−qij|k|lqkl − qij|kqkl

|l + 1
2

[PQ{qkl|iqkl
|j}]ij

)
ψ ij dS

=
∫
S

(
−qij|k|lqkl − qij|kqkl

|l + 1
2

qkl|iqkl
|j − 1

4
qkl|mqkl|mgij

)
ψ ij dS

=
∫
S

〈
(−∇∇q) : q − (∇q) · divq + 1

2
(∇q)T(1 3) : ∇q − 1

4
‖∇q‖2g,ψ

〉
dS, (4.36)

1
2
δ

∫
S
〈B, q〉2 dS =

∫
S
〈〈B, q〉B,ψ〉 dS =

∫
S
〈〈B, q〉PQB,ψ〉 dS

=
∫
S

〈
〈B, q〉

(
B − 1

2
Hg
)

,ψ
〉

dS, (4.37)

1
2
δ

∫
S

trq2〈B, q〉 dS =
∫
S

〈
1
2

trq2B + 〈B, q〉q,ψ
〉

dS =
∫
S

〈
1
2

trq2PQB + 〈B, q〉q,ψ
〉

dS

=
∫
S

〈
1
2

trq2
(

B − 1
2
Hg
)

+ 〈B, q〉q,ψ
〉

dS (4.38)

and
1
2
δ

∫
S
〈B, q〉 dS =

∫
S

〈
1
2

B,ψ
〉

dS =
∫
S

〈
1
2

PQB,ψ
〉

dS

=
∫
S

〈
1
2

(
B − 1

2
Hg
)

,ψ
〉

dS. (4.39)

Finally, with [�dGq]ij := q |k
ij |k, the div-Grad (Bochner) Laplace operator, we get the equation of

motion (2.5), which reads in index notation

∂tqij = L′
1q |k

ij |k + L6

(
−qij|k|lqkl − qij|kqkl

|l + 1
2

qkl|iqkl
|j − 1

4
qkl|mqkl|mgij

)

− (M1 + M3Bklq
kl + 2a′ + 2cqklq

kl)qij

−
(

M2Bklq
kl + M3

2
qklq

kl + M4

2

)(
Bij − 1

2
Hgij

)
. (4.40)

After establishing weak consistences for the energies and the L2-gradient flows in the thin
film and at the surface in (4.17) and (4.25), we also have pointwise consistence for the evolution
equation in the Q-tensor space restricted to the surface for sufficient regularity, i.e.

‖PQ[Π (∂tQ + ∇L2FSh [Q])|SΠ ] − (∂tq + ∇L2FS [q])‖g =O(h2), (4.41)

w.r.t. boundary conditions for Q at ∂Sh and initial condition q|t=0 =ΠQ|(S,t=0)Π + νQ|(S,t=0)ν.
This means, the order of performing the limit h → 0 and formulating the local dynamic equation,
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w.r.t. ∇L2 flow, does not matter, i.e. the diagram

(4.42)

commutes.

5. Discussion
We now discuss similarities and differences between the thin film and surface Landau–de Gennes
energy and their physical implication. Besides the terms containing the extrinsic quantity B and
its scalar-valued invariants, the surface Q-tensor energy (2.4) is similar to the thin film Q-tensor
energy (2.2). While we have three scalar invariants for the gradient ∇GQ in the thin film controlled
by L1, L2 and L3, at the surface we need only one for ∇gq to formulate the distortion of q, see
lemma A.1. This behaviour seems to be a consequence of reducing the degree of freedoms of
Q-tensors. Particularly, Q(Sh) is a five-dimensional function-vector space, while Q(S) is only a
two-dimensional function-vector space with improper rotation endomorphisms in the tangential
bundle as basis tensors. Moreover, at the surface, we only consider the trace of even powers of q
for the bulk energy as for r ≥ 0 it holds

tr q2(r+1) = 〈(q2)r+1, g〉 = 2−(r+1)(tr q2)r+1‖g‖2 = 2−r(tr q2)r+1 (5.1)

and

tr q2r+1 = 〈(q2)r, q〉 = 2−r(tr q2)rtr q = 0, (5.2)

see corollary A.4. This has several consequences. In principle, it leads to a change in phase
transition type, as coexistence between a nematic and an isotropic phase is not possible without
the tr q3 term. However, as we will see, our model still allows coexistence. We first show that
we can preserve the phase diagram of the thin film bulk energy. To limit complexity, we have
considered νQν = β to be constant. Similar assumptions have been made in [20,21]. Our approach
chooses β such that surface and thin film formulation of bulk energy match. For β = − 1

3 S∗, where

S∗ = (1/4c)(−b +
√

b2 − 24ac) indeed the minima of FSh
bulk and FS

bulk are equal and are achieved for
S = S∗, with S = S1 = S2 or S = S1 if S2 = 0 or S = S2 if S1 = 0. The reconstructed thin film Q-tensor
Q = q − (β/2)Π + βν ⊗ ν is uniaxial with eigenvalues [ 2

3 S, − 1
3 S, − 1

3 S]. Figure 2 shows the phase
diagram. Contrary to the modelling via degenerate states with β = 0 (e.g. [20]) the phase diagram
of the bulk energy is preserved for β = − 1

3 S∗.
With the emergence of defects, the assumption β = const becomes questionable and a more

precise modelling would require to treat β as a degree of freedom. However, this would lead
to an excessive amount of additional coupling terms in the elastic energy and thus makes the
complexity of the model infeasible. A detailed derivation and interpretation of the additional
terms thus remains an open question.

Considering the elastic energy, the surface model provides a set of new terms consisting of
combinations of tr q2 and 〈B, q〉. These terms interact with the double-well potential a′tr q2 + ctr q4

of the surface bulk energy. By this interaction, the bulk potential can be deformed locally, as
e.g. M1tr q2, depends on geometric properties M1 = M1(H,K). So, while the bulk potential itself
inhibits isotropic-nematic phase coexistence, a global phase coexistence can emerge on surfaces
by local variance of geometric properties (figure 3).

The term 〈B, q〉 imposes restrictions on energetic favourable ordering. This term can be
expressed in terms of principal director P of q by 〈B, q〉 = PBP − 1

2H‖P‖ illustrating a geometric
forcing towards the ordering along lines of minimal curvature. Such forcing does eliminate the
rotational invariance of the four + 1

2 defect configuration on an ellipsoid as demonstrated in
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Figure 2. Phase diagram of bulk energy versus choice of β . (a) Double-well potential phase diagram for β = 0 exhibiting
two domains enabling the existence of (A): stable nematic ordering S∗ �= 0 or (B): stable isotropic ordering S∗ = 0. (b) Phase
diagram for β = − 1

3 S
∗ enabling additional stable phases discriminating between (C): only tangential nematic ordering is

stable, S∗ > 0 or (D): only normal nematic ordering is stable, S∗ < 0. As we are interested only in tangential anchoring, (D) is
not within the scope of this paper. (Online version in colour.)

1.000

0.825

0.650

A
n/

|S|

0.5 1.0
B

1.5

Figure 3. Curvature controls isotropic-nematic phase coexistence. Relative area of the nematic phase An/|S| as a function of
the geometry of the ellipsoid, parametrized by its axis B. For prolates (B< 1.0), the isotropic phases are located at the high
curvature regions at the poles. They increase with increasing curvature for B� 0.6. For oblates (B> 1.0), the isotropic phase
is located at the high curvature region along the rim. It increases with increasing curvature for B� 1.2. The non-monotone
behaviour in between results from a rearrangement of two regions on a prolate to four regions on an oblate, which merge for
larger B. The inlets show realizations with red (light grey) corresponding to the nematic and blue (dark grey) to the isotropic
phase. The corresponding shape parameters are highlightedwith red (light grey) trianglemarkers. To distinguish between both
phases, a threshold of 10% of the expected norm ofq is used. Themodel parameters are the same as in figure 1, exceptω= 2.5
to highlight the behaviour already for moderate curvatures. (Online version in colour.)

figure 4. The same effect has also been observed in surface Frank–Oseen model for surface polar
liquid crystals [30].

Combining these effects provides a wide range of intriguing mechanisms coupling geometry
and ordering with significant impacts on minimum energy states and dynamics. A more detailed
elaboration of these interactions as well as a detailed description of the used numerical approach
will be given elsewhere.

As a complementary result, we point out that the surface model for degenerate states in [20]
can be reproduced by our model by choosing β = 0, k = L1 = (1/

√
2)L2 = −(1/

√
2)L3, k24 = −√

2k
and defining 2a = A, 2c = C. A one-to-one comparison with the models derived in [21–23] is more
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Figure 4. 〈B, q〉 term removes rotational invariance of elastic energy: (from left to right) elastic energy contribution of∫
S M4〈B, q〉dS under rotation �θ of Q-tensor field q . Energetic minimum at �θ = 0 with director parallel to lines of

minimal curvature (marked in red), increased energy at intermediate state at �θ = π/4 and maximal energy for director
orthogonal to lines of minimal curvature at�θ = π/2. Energy contributions of L′1 and M1 are invariant under rotation and
therefore constant. The model parameters are the same as in figure 1. (Online version in colour.)

complicated, as in contrast to our approach, which only uses the Levi–Civita connections ∇, other
surface derivatives are introduced in [21–23], which make these models depending on the chosen
coordinate system. A detailed comparison of numerical simulations might allow to point out
similarities and differences.

At the end, we would like to come back to the raised issues concerning the third order L6
term in (2.2). Owing to the unboundedness of the energy, which cannot be compensated by a
polynomial bulk energy, the equation ∂tQ = −∇L2FSh [Q] is ill-posed [29]. However, it remains
open if this result also holds for ∂tq = −∇L2FS [q]. In [37], it is shown that, under convenient
choice of parameters, boundary conditions and initial conditions, the L2-gradient flow does not
diverge in a flat two-dimensional setting. We are confident, that this result is generalizable to
curved surfaces and hence also for a thin shell, if h is sufficiently small. If this is not possible,
the energy (2.2) should be modified. One possibility is to include fourth-order terms. A fully
general theory of elastic energies, with a minimal set of SO(3)-invariant terms up to order four,
is developed in [28]. This approach will alter the derived thin film limit and lead to additional
terms that can be derived in a straightforward manner. But, it is also possible to replace the bulk
energy in (2.2) by a singular potential, so that the entire energy is bounded from below (e.g. [29]).
Note that, if such a bulk potential does not contain any derivatives affecting the natural anchoring
condition in the variation, like the one used in [29], the thin film limit for the elastic part remains
and thus, at least qualitatively, all our results also hold. We leave these analytical questions for
future work and, to be on the safe side, restrict our numerical investigations to the case L6 = 0.

6. Conclusion
We have asymptotically derived a surface Q-tensor model by performing the thin film limit.
Instead of making assumptions on the Q-tensor field in the thin film we have prescribed a
set of boundary conditions for the thin film. By requiring the normal components of Q to be
compatible with the minimum of the bulk energy we were able to transfer main features of the
thin film model, like uniaxiality or parameter-phase space, to the surface model. Nonetheless,
these features break down in areas of defects. It still remains an open question how to treat defect
areas properly in surface Q-tensor models.

The proposed approach to derive thin film limits is general and can also be used for other
tensorial problems, e.g. in elasticity. Note that for deriving thin film limits containing higher-
order derivatives, also higher-order expansions for thin film metric quantities are needed, e.g.
Lk

ij = Γ k
ij + ξΘ k

ij + O(ξ2) with Θ k
ij := B k

i |j + B k
j |i − B |k

ij for the pure tangential components of
Christoffel symbols to express second-order covariant derivatives like the Laplace operator �
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in the thin film. Our analysis also indicates that the surface evolution equation can be derived
directly without a detour of a global energy minimization problem. However, there is no general
theory regarding sufficient prerequisites of this analysis, and we can not ensure, that, for example,
every well-posed tensorial thin film problem results in a well-posed tensorial surface problem.

Even with the made approximations in the modelling approach, the numerical results provide
new insights on the tight coupling of topology, geometry, and energetic minimal states as well
as dynamics. In a next step, the derived coupling terms should be investigated systematically
and the model should be validated versus experimental data. Various extensions of the proposed
model, like coupling to hydrodynamics and/or activity open up a wide array of possible physical
applications in material science or biophysics. For recent work on hydrodynamics on surfaces, we
refer to [31,38–40]. Also investigations on energy minimization and dynamics on moving domains
seem now feasible. However, to deal with these problems numerically requires a more detailed
investigation of the regularity. In contrast to our assumption for the tensor fields to be sufficiently
smooth, which was made for simplicity, tensorial Sobolev spaces should be investigated (e.g. [41]).
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Appendix A
Lemma A.1. For all surface q-Tensors q ∈Q(S) holds

∫
S

‖div q‖2 dS =
∫
S

1
2
‖∇q‖2 + Ktr q2 dS (A 1)

and ∫
S
〈∇q, (∇q)T(2 3) 〉 dS =

∫
S

1
2
‖∇q‖2 − K tr q2 dS. (A 2)

Proof. With the surface Levi–Civita tensor E ∼= dS defined by

Eij := dS(∂ix, ∂jx) =
√

det gεij (A 3)

with Levi–Civita symbols εij, we use the 2-tensor curl

[rotq]i := [−∇q : E]i = −Ejkq jk
i (A 4)

and observe

[−E · rotq]i = EilEjkqlj|k = (gijglk − gikglj)q
lj|k = ql

i|l − q j
j |i = q l

i |l = [divq]i. (A 5)

Moreover, in this case, −E· is isomorph to the Hodge-star operator ∗ on differential 1-forms and
therefore it can be seen as a length preserving pointwise counterclock quarter turn, that is why
‖rotq‖ = ‖ − E · rotq‖ = ‖div q‖ holds for the norm. We remark that E ∈ T(2)S is compatible with
∇ and hence, we calculate

∫
S

‖divq‖2dS = 1
2

∫
S

‖divq‖2 + ‖rotq‖2 dS = −1
2

∫
S

(q k
i |k|l + EkjElmq k|j|m

i )qil dS

= −1
2

∫
S

(q k
i |k|l + q |j

il |j − q k
i |l|k)qil dS. (A 6)
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The Riemannian curvature tensor has only one independent component on surfaces and is given
by R =KE ⊗ E ∈ T(4)S. Hence, for changing the order of covariant derivatives, holds

q k
i |k|l − q k

i |l|k = Rj
iklq

k
j − Rk

jklq
j

i =K((δj
kgil − δ

j
lgik)q k

j − (δk
kgjl − δk

lgjk)q j
i ) = −2Kqil. (A 7)

Finally, we get
∫
S

‖divq‖2 dS = −1
2

∫
S

(q |j
il |j − 2Kqil)q

il dS =
∫
S

1
2
‖∇q‖2 + Ktrq2 dS (A 8)

and ∫
S
〈∇q, (∇q)T(2 3) 〉 dS = −

∫
S

q k
i |l|kqil dS = −

∫
S

(q k
i |k|l + 2Kqil)q

il dS

=
∫
S

‖divq‖2 − 2Ktrq2 dS =
∫
S

1
2
‖∇q‖2 − Ktrq2 dS. (A 9)

�

Lemma A.2. For all 2-tensors t ∈ T(2)S at surface S holds

t2 = (tr t)t + 1
2 (tr t2 − (tr t)2)g. (A 10)

Proof. With the surface Levi–Civita tensor E defined in (A 3), the quarter turn in the row and
column space of a 2-tensor t ∈ T(2)S is

[EtE]ij = EikEljt
kl = (gilgkj − gijgkl)t

kl = tji − tk
kgij = [tT − (tr t)g]ij. (A 11)

Particularly, (A 11) is also valid for the square of t, i.e.

Et2E = (t2)T − (tr t2)g. (A 12)

On the other hand, with EE = −g, (A 11) and (tT)2 = (t2)T, we calculate

Et2E = −(EtE)2 = −(tT − (tr t)g)2 = −(tT)2 + 2(tr t)tT − (tr t)2g

= −(t2)T + 2(tr t)EtE + (tr t)2g. (A 13)

Averaging identities (A 12) and (A 13) results in

Et2E = (tr t)EtE + 1
2 ((tr t)2 − tr t2)g. (A 14)

Finally, we obtain (A 10) by a quarter turn with E in the row and column space of (A 14). �

Lemma A.3. For all full covariant 2-tensors t ∈ T0
2S on surface S holds

(tr t)2 − tr t2 = 2
det t
det g

= 2 det t
, (A 15)

where det means the determinant of the matrix proxy.

Proof. We can interpret t as its matrix proxy with components tij due to the stipulation of the
height of the indices. Hence, the determinant can be calculated applying the Levi–Civita symbols
εij ∈ {−1, 0, 1}, i.e.

det t = 1
2

∑
i,j,k,l

εijεkltiktjl. (A 16)

With the Levi–Civita tensor defined in (A 3), we obtain the transformation property

Eij = 1
det g

Eij = 1√
det g

εij. (A 17)

Therefore, (A 16) results in

det t = det g
2

EijEkltiktjl = det g
2

(gikgjl − gilgjk)tiktjl = det g
2

(t i
i t j

j − t j
i t i

j ). (A 18)
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Additionally, we observe

det t
 = det(t · g−1) = det t
det g

. (A 19)

�

Corollary A.4. For shape operator B and Q-tensor q ∈Q(S), the following identities are valid.

‖B‖2 = trB2 =H2 − 2K, (A 20)

B2 =HB − Kg, (A 21)

〈B2, q〉 =H〈B, q〉, (A 22)

q2 = 1
2 (tr q2)g, (A 23)

‖Bq‖2 = 1
2 (tr q2)(H2 − 2K) (A 24)

and tr(Bq)2 = 〈B, q〉2 + Ktr q2. (A 25)

Proof. The proofs here are very straightforward with all the spadework above. (A 20) is a
consequence of lemma A.3 for B ∈ T(2)S and hence, we obtain also (A 21) with lemma A.2. As
q ∈Q(S) is trace-free, we follow from (A 21) that t〈B2, q〉 =H〈B, q〉 − 2Ktr q and therefore (A 22).
Again, q is a Q-tensor and thus lemma A.2 results in (A 23). The shape operator B is self-adjoint,
so with (A 23) we can calculate

‖Bq‖2 = 〈Bq, Bq〉 = 〈B2, q2〉 = 1
2 (tr q2)〈B2, g〉 = 1

2 (tr q2)trB2 (A 26)

and get (A 24) with (A 20). We note that 〈B, q〉2 = (trBq)2. Therefore, lemma A.3 results in (A 25),
because

(tr(Bq))2 − tr(Bq)2 = 2 det(Bq)
 = 2(det B
)(det q
) =K((tr q)2 − tr q2) = −Ktr q2. (A 27)

�

Lemma A.5. For the inverse thin film metric G−1 holds

Gij =
(

gik +
∞∑
l=1

ξ l[Bl]ik

)(
δ

j
k +

∞∑
k=1

ξk[Bk] j
k

)

=
⎡
⎣(g +

∞∑
k=1

ξkBk

)2
⎤
⎦

ij

,

Gξξ = 1

and Giξ = Gξ i = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 28)

Proof. First, we define the pure tangential components of the thin film metric tensor as Gt :=
{Gij}. With δ = {δi

j} the Kronecker delta, we can write down in usual matrix notation

G · G−1 =
[

Gt O
O 1

]
·
[

{Gij} {Giξ }
{Gξ i} Gξξ

]
=
[
δ O
O 1

]
. (A 29)

Thus, we obtain

Gξξ = 1, (A 30)

Giξ = Gξ i = 0 (A 31)

and {Gij} = G−1
t = (g − ξB)−2 = (g − ξB)−1 · (δ − ξB
)−1. (A 32)
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For h small enough, so that ξ‖B‖ ≤ h‖B‖< 1 and exponent with a dot indicate matrix
(endomorphism) power, we can use the Neumann series

(δ − ξB
)−1 = δ +
∞∑

k=1

ξk(B
)·k, (A 33)

and therefore the assertion, because with Bk = (B · g−1)·k · g we get

(B
)·k = (B · g−1)·k = Bk · g−1 = (Bk)
 (A 34)

and

(g − ξB)−1 = ((δ − ξB
) · g)−1 = g−1 · (δ − ξB
)−1 (A 35)

�

Lemma A.6. For the determinant of the thin shell film tensor det G holds

det G = (1 − ξH + ξ2K)2 det g, (A 36)

Proof. The mixed components are zero, so we get

det G = Gξξ det Gt = det Gt. (A 37)

Now, we define
√

G

t := (g − ξB)
 as a square root of G


t , because

G

t = ((g − ξB)2)
 = ((g − ξB)
(g − ξB))
 = (g − ξB)
(g − ξB)
 =

(√
G


t

)2
. (A 38)

Hence, we can calculate

det G = det Gt = det G

t g = det G


t det g = det
√

G

t

2
det g. (A 39)

For the determinant of
√

G

t , we regard that g
 = δ is the Kronecker delta, so we obtain

det
√

G

t = det(g
 − ξB
) = (1 − ξB u

u )(1 − ξB v
v ) − ξ2B v

u B u
v (A 40)

= 1 − ξ (B u
u + B v

v ) + ξ2(B u
u B v

v − B v
u B u

v ) = 1 − ξ trB + ξ2 det B
 (A 41)

= 1 − ξH + ξ2K. (A 42)

�

Lemma A.7. Let W be an arbitrary n-tensor in the thin film (with sufficient regularity), which vanish
at the boundaries, i.e. W ∈ {Ψ ∈ T(n)Sh : Ψ = 0 at ∂Sh}, holds

W|S = ∂ξW|S =O(h2). (A 43)

Proof. We denote the boundary at ξ = h/2 byΥ + andΥ − at ξ = −h/2, s.t.Υ + ∪ Υ − = ∂Sh. Taylor
expansions at the surface result in

0 = W|Υ ± = W|S ± h
2
∂ξW|S + h2

8
∂2
ξW|S + O(h3). (A 44)

And we yield

0 = W|Υ + + W|Υ − = 2W|S + O(h2) (A 45)

and

0 = W|Υ + − W|Υ − = h∂ξW|S + O(h3). (A 46)

�
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