
Chapter 7
Discrete Exterior Calculus (DEC)
for the Surface Navier-Stokes Equation

Ingo Nitschke, Sebastian Reuther, and Axel Voigt

Abstract We consider a numerical approach for the incompressible surface Navier-
Stokes equation. The approach is based on the covariant form and uses discrete
exterior calculus (DEC) in space and a semi-implicit discretization in time. The
discretization is described in detail and related to finite difference schemes on
staggered grids in flat space for which we demonstrate second order convergence.
We compare computational results with a vorticity-stream function approach for
surfaces with genus g.S/ D 0 and demonstrate the interplay between topology,
geometry and flow properties. Our discretization also allows to handle harmonic
vector fields, which we demonstrate on a torus.

7.1 Introduction

We consider a compact smooth Riemannian surface S without boundary and an
incompressible surface Navier-Stokes equation

@tvCrvv D � gradS pC 1

Re

���dRvC 2	v� (7.1)

divS v D 0 (7.2)

in S � .0;1/ with initial condition v .x; t D 0/ D v0.x/ 2 TxS. Thereby v.t/ 2 TS
denotes the tangential surface velocity, p.x; t/ 2 R the surface pressure, Re the
surface Reynolds number, 	 the Gaussian curvature, TxS the tangent space on
x 2 S, TS D [x2STxS the tangent bundle and rv; gradS ; divS and �dR the
covariant directional derivative, surface gradient, surface divergence and surface
Laplace-DeRham operator, respectively. As in flat space the equation results from
conservation of mass and (tangential) linear momentum. However, differences are
found in the appearing operators and the additional term including the Gaussian
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178 I. Nitschke et al.

curvature. The Laplace-DeRham operator and the Gaussian curvature term thereby
result from the divergence of the deformation tensor and the non-commutativity
of the second covariant derivative in curved spaces, see e.g. [4, 23]. The unusual
sign in front of the Laplacian results from the definition of the Laplace-DeRham
operator [1], see Sect. 7.2. Alternatively, the equations can also be derived from
the Rayleigh dissipation potential [9]. The equations are related to the Boussinesq-
Scriven constitutive law for the surface viscosity in two-phase flow problems
[6, 35, 36] and to fluidic biomembranes [4, 5, 15, 21]. Further applications can be
found in computer graphics [14, 26, 40].

While a huge literature exists for the two-dimensional Navier-Stokes equation in
flat space, results for its surface counterpart equations (7.1) and (7.2) are rare. For
treatments in the mathematical literature we refer to [13, 23]. Numerical approaches
are considered in [29, 32], where a surface vorticity-stream function formulation is
introduced. This follows by considering the velocity v as the curl of a smooth scalar
valued function  , i.e. v D rotS  . For the correct definition of the curl operator
rotS.�/we refer to [27]. On a compact, boundaryless, oriented Riemannian manifold
of genus g.S/ D 0, this representation is unique up to a constant by the Hodge
decomposition theorem [1]. The resulting equations, after taking the curl and written
as a system of two second order scalar surface partial differential equations, read

@t� C J. ; �/ D 1

Re
.
S� C 2 divS.	 gradS  // (7.3)

� D 
S (7.4)

in S� .0;1/ with initial condition .x; t D 0/ D  0.x/ 2 R. Here � is the surface
vorticity, 
S the Laplace-Beltrami operator and J. ; �/ D hrotS  ; gradS �i the
Jacobian. Equations (7.3) and (7.4) are either solved using the surface finite element
approach [11, 12, 41], see [29, 32] for details, or the diffuse interface approach [31],
see [33] for details. The equations, but without the Gaussian curvature term, has also
been discretized using a discrete exterior calculus (DEC) approach [25]. We are not
aware of any direct numerical approach for Eqs. (7.1) and (7.2), which will be the
purpose of this paper. Such an approach will be desirable for surfaces with genus
g.S/ ¤ 0, as it allows to also deal with harmonic vector fields. We will introduce a
DEC approach and validate the results against a surface finite element discretization
for the vorticity-stream function formulation in Eqs. (7.3) and (7.4) on surfaces with
g.S/ D 0 and show nontrivial solutions with divS v D 0 and rotS v D 0 on a torus.

The paper is organized as follows. In Sect. 7.2 we introduce the necessary
notation and provide the formulation in covariant form. In Sect. 7.3 the DEC
discretization is described in detail and compared with known discretizations in
flat space. After some analytical results for the surface Navier-Stokes equation
we use the properties of Killing vector fields to validate the approach on various
surfaces and demonstrate the strong interplay of geometric and vortex interactions in
Sect. 7.4. Conclusions are drawn in Sect. 7.5. In the Appendix we provide additional
notation and prove second order convergence for the corresponding finite difference
scheme in flat space.
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7 Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation 179

7.2 Formulation in Covariant Form

For the readers convenience we here briefly review the basic notion. A more detailed
description can be found in [27]. The key ingredient for a covariant formulation in
local coordinates � and � is the positive definite metric tensor

g D
�
g�� g��
g�� g��

�
D g�� d�

2 C 2g�� d� d� C g�� d�
2 . (7.5)

g can be obtained from a surface parametrization x W R2 � U ! R
3I .�; �/ 7!

x .�; �/, which maps local coordinates to the embedded R
3 representation of the

surface S D x.U/. The covariant components of the metric tensor are given by
R
3 inner products of partial derivatives of x, i.e. gij D @ix � @jx. The components

of the inverse tensor g�1 are denoted by gij and the determinant of g by jgj. We
denote by

˚
@�x; @�x


the canonical basis to describe the contravariant (tangential)

vector v.x/ 2 TxS, i.e. v.x/ D .u�; u� / D u�@�x C u�@�x at a point x 2 S.
Furthermore, with the arising dual basis fd�; d�g we are able to write an arbitrary
1-form (covariant vector) u.x/ 2 T�

xS as u.x/ D u�d� C u�d� . This identifier
choice of the covariant vector coordinates ui in conjunction with representation of
v as above implies that u and v are related by u D v[ and v D u], respectively.
Explicitly lowering and rising the indices can be done using the metric tensor g by
ui D gijuj and ui D gijuj, respectively. The scalar p.x/ is also considered as a 0-form.

We now use exterior calculus (EC) to describe all present first order differential
operators by the Hodge star � and the exterior derivative d, which arise algebraically
(see [1] for details). In [1] the Laplace-deRham operator is defined for k-forms
on a n-dimensional Riemannian manifold by �dR WD .�1/nkC1 .�d � dC d � d�/.
For vector fields the Laplace-deRham operator can thus be defined canonically as
composition .] ı�dR ı [/. This leads to �dRv D � ��RR C�GD� v, with the Rot-
Rot-Laplace �RRv WD rotS rotS v and Grad-Div-Laplace �GDv WD gradS divS v.
Due to the incompressibility constraint divS v D 0 we thus have �dRv D ��RRv
and therefor in our case only�dRu D �.�d�d/u. Equations (7.1) and (7.2) read in
their covariant form

@tuCruu D �dpC 1

Re
..�d � d/uC 2	u/ (7.6)

�d � u D 0 (7.7)

in S � .0;1/ with Œruu�i D ujuij j to be discussed below and initial conditions
u.x; t D 0/ D u0.x/ 2 T�

xS.
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180 I. Nitschke et al.

7.3 DEC Discretization

The mathematical foundation of discrete exterior calculus (DEC) can be found in
[8, 20, 22]. It follows by successively utilizing a discrete version of the Hodge
star � and the Stokes theorem for the exterior derivative d. The approach has
been successfully used in computer graphics, e.g. surface parametrization, see e.g.
[17, 19, 38], and vector field decomposition and smoothing, see e.g. [16, 30, 37].
A rigorous treatment of the connection between discrete and continuous settings
is given in [3]. We discuss the discretization for each term, introduce a time
discretization and compare the resulting discrete system with known discretization
schemes in flat space. However, we first introduce the degrees of freedom (DOFs)
and rewrite the advection term to be suitable for the DEC discretization.

7.3.1 Degrees of Freedom (DOFs)

We consider a simplicial complexK D VtEtT containing sets of vertices V , edges
E and (triangular) faces T which approximate S. The quantities of interest in our
DEC discretization are 0- and 1-forms, p 2 �0.S/ with p.x/ 2 R and u 2 �1.S/ D
T�S, respectively. The discrete 0-forms are considered on v 2 V , ph.v/ WD p.x/jxDv.
For 1-forms we introduce DOFs as integral values on the edges e 2 E , i.e. uh.e/ WDR
�.e/ u , with the gluing map � W E ! S, which projects geometrically the edge e

to the surface S. The mapping uh 2 �1
h.K/ is called the discrete 1-form of u, since

uh.e/ approximates u.e/  u.e/ D ˝
v; e
˛

on an intermediate point � 2 �.e/ � S,
where the edge vector e exists in T�Sj�.e/ by the mean value theorem. Therefore,
we approximate 1-forms on the restricted dual tangential space T�Sj�.e/, which is
a one dimensional vector space in � 2 S likewise the space of discrete 1-forms
�1

h .K/ je D �1
h .feg/ restricted to the edge e, see [27] for details. Furthermore,

a discrete 1-form uh.e/ can be approximated as jej˝v; e˛.c.e// by the midpoint rule,
with the midpoint c.e/ D v1Cv2

2
of the edge e D Œv1; v2�. If the mesh is considered to

be flat and the faces are considered to be squares, we obtain the same DOF positions
as for discretizations on a staggered grid, see Sect. 7.3.6.

7.3.2 Approximation of the Advection Term

The advection term in Eq. (7.6) is not yet written in an appropriate form for a DEC
discretization. We linearize this term using a Taylor expansion with a known 1-form
Qu and obtain

Œruu�i D u juij j � Qu j Quij j C Quij j
�
u j � Qu j

�C Qu j
�
uij j � Quij j

�

D u j Quij j C Qu juij j � Qu j Quij j D ŒrQuuCru Qu� rQu Qu�i .
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With the Levi-Cevita-tensor E (defined by the volumetric form E.u; Qu/ D �.u; Qu/)
we obtain for u; Qu 2 T�S

.rotS u/ Œ�Qu�i D EilEjk Qulujjk D
�
gijglk � gikglj

� Qulujjk D Qul �uijl � ulji
�

D ŒrQuu�i �
	 Qu] � gradS u



i
:

We further have

	 Qu] � gradS uC u] � gradS Qu


i
D Qululji C ul Qulji D

�Qulul
�

ji D @i h Qu;ui

and thus also 2
	
u] � gradS u



i
D @i kuk2. Putting everything together and using

rotS Qu D � divS.�Qu/ we thus obtain

ruu � d
�
hu; Qui � 1

2
kQuk2

�
C .rotS u � rotS Qu/ .�Qu/ � divS.�Qu/.�u/

which provides a suitable form for a DEC approach. By using rotS u D �du and
divS u D �d � u we obtain

ruu � d
�
hu; Qui � 1

2
kQuk2

�
C .�du � �d Qu/ .�Qu/� .�d�/.�Qu/.�u/ (7.8)

which will be used for discretization.

7.3.3 Time-Discrete Equations

We consider a semi-implicit Euler discretization and use the approximation of the
advection term with Qu D uk, the solution at time tk. For �k WD tkC1 � tk and initial
condition u0 we get a sequence of linear systems for k D 0; 1; 2; : : :. We introduce
the generalized pressure qkC1 D pkC1 C hukC1;uki � 1

2
kukk2 and solve for ukC1,

qkC1 and pkC1

1

�k
ukC1 C dqkC1 C .�dukC1/.�uk/� .�d�/.�uk/.�ukC1/

� 1

Re
..�d � d/ukC1 C 2	ukC1/ D 1

�k
uk C .�duk/.�uk/ (7.9)

hukC1;uki C pkC1 � qkC1 D 1

2
kukk2 (7.10)

�d � ukC1 D 01
1

(7.11)

on S.
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7.3.4 Fully-Discrete Equations

The used notation follows [27], see also Appendix 1. For the discrete 0-forms
ph; qh 2 �0

h.K/, 1-forms uh 2 �1
h.K/, sign mappings sı;ı 2 f�1;C1g, volumes

j�j, Voronoi cells ?v, Voronoi edges ?e and the “belongs-to” relations � and � we
obtain for�RR, divS and rotS

.�d � d/u.e/ � � jejj?ej
X

T	e

sT;e
jTj

X

Qe�T

sT;Qe uh.Qe/ ,

.�d � u/.v/ � � 1

j ? vj
X

Qe	v
sv;Qe
j ? Qej
jQej u.Qe/ ,

.�du/.c.e// � 1
P

T	e jTj
X

T	e

.du/.T/ D 1
P

T	e jTj
X

T	e

X

Qe�T

sT;Qeu.Qe/

respectively. The last line above follows from a special Hodge dualism between
midpoint c.e/ and face union

S
T	e T DW O?c.e/, such that function evaluations at

c.e/ are integral mean values over O?c.e/. This allows to approximate

.�du/.�Qu/.e/ � .�Qu/.e/
P

T	e jTj
X

T	e

X

Qe�T

sT;Qeu.Qe/ ,

.�d � Qu/.�u/.e/ � �1
2

 
X

v�e

1

j ? vj
X

Qe	v
sv;Qe
j ? Qej
jQej Qu.Qe/

!

.�u/.e/ .

With the Stokes theorem we further have .dq/.e/ D q.vj/ � q.vi/ for e D Œvi; vj�.
What remains to define is a discrete Hodge operator and a discrete version of the
inner product. We approximate

.�u/ .e/ � ~uh.e/

D 1

4

X

T	e

X

Qe�TQe¤e

seQeq
jej2 jQej2 � .e � Qe/2

�
.e � Qe/ uh.e/� jej2 uh.Qe/

�
.

For other possibilities we refer to [24]. For the inner product we follow [27] and
define

h Qu;ui .c.e// � 1

jej2 . Qu.e/u.e/C .�Qu/ .e/ .�u/ .e// .
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7 Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation 183

Fig. 7.1 Circumcentric
subdivision of a simple
simplicial complex around a
vertex v. The Voronoi cell ?v
is marked light gray and the
part Ave dark gray

v

e

In order to approximate the inner product at a primal vertex we consider the
decomposition of the Voronoi cell ?v D P

e	v Ave, with jAvej D .jej j?ej/=4, see
Fig. 7.1. We thus obtain

hQu;ui .v/ � 1

j?vj .� hQu;ui/ .?v/ D
1

j?vj
X

e	v
.� hQu;ui/ .Ave/

� 1

j?vj
X

e	v

jej j?ej
4
h Qu;ui .c.e//

� 1

4 j?vj
X

e	v

j?ej
jej . Qu.e/u.e/C .�Qu/ .e/ .�u/ .e// .

In case 	 is not given analytically, a numerical approximation is required, which can
effectively be done using a DEC approach for the Weingarten map [28].

7.3.5 Linear System

Putting everything together and using an additional equation

~ukC1.e/� .�u/kC1.e/ D 0 (7.12)

for all e 2 E to determine the Hodge dual 1-form defines a linear system for
ukC1; .�u/kC1 2 �1

h.K/ and qkC1; pkC1 2 �0
h.K/. An appropriate assembly over

e 2 E and v 2 V results in a sparse matrix MkC1 2 R
2.jEjCjVj/�2.jEjCjVj/ and the

right hand side vector rk 2 R
2.jEjCjVj/. To determine the pressure we replace a row

in MkC1 and rkC1 to ensure pkC1.v0/ D 0 at v0 2 V . The linear system is solved
using umfpack.

axel.voigt@tu-dresden.de



184 I. Nitschke et al.

7.3.6 Comparison with Finite Difference Schemes on Uniform
Rectangular Meshes in Two Dimensions

To compare the resulting scheme with known discretization schemes we consider
the two-dimensional Navier-Stokes equation in flat space. The Gaussian curvature 	
vanishes and the surface operators reduce to the classical two-dimensional operators
grad, div, rot and
. Instead of the simplicial complex K we consider for simplicity
a uniform rectangular mesh. The DEC discretization can then be considered as
introduced above.

We identify the vector-components in the midpoints of the edges as the discrete
1-form uh. We thus obtain with the grid spacing h and the notation in Fig. 7.2

uxij WD ux.c.exi;j// D
1

h
uh.e

x
i;j/; uyij WD uy.c.eyi;j// D

1

h
uh.e

y
i;j/

For the pressure we obtain with the discrete 0-form qh

qi;j WD q.vi;j/ D qh.vi;j/ .

To analyze the scheme we here only consider the discretization of the Laplace
operator, which is restricted to� D ��RR in the present case, with

�
�RRu

�x D @2yux � @x@yuy;
�
�RRu

�y D @2xuy � @x@yux (7.13)

Fig. 7.2 Staggered grid with
dual mesh and orientation.
The components of the
velocity ux and uy are defined
on the midpoints of the edges,
ux on the horizontal ex and uy

on the vertical ey, and the
pressure is defined on the
vertices v. Such meshes are
also known as Arakawa
C-meshes [2]

vi,j vi+1,j

exi,j

exi,j−1

exi,j+1

eyi,j eyi+1,j

eyi,j−1 eyi+1,j−1
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and with our DEC discretization

.�RRu/xi;j D
1

h2

�
uxi;jC1 C uxi;j�1 � 2uxi;j C uyi;j � uyiC1;j C uyiC1;j�1 � uyi;j�1

�

.�RRu/yi;j D
1

h2

�
uyiC1;j C uyi�1;j � 2uyi;j � uxi;j C uxi;jC1 � uxi�1;jC1 C uxi�1;j

�
:

(7.14)

This unusual stencil is visualized in Fig. 7.3. For the full Laplace operator � D
� ��RR C�GD�, as considered in [27] and also typically used in flat space, we
obtain

.�u/fx;ygi;j D
1

h2

�
ufx;yg
iC1;j C ufx;yg

i�1;j C ufx;yg
i;jC1 C ufx;yg

i;j�1 � 4ufx;yg
i;j

�

which is the usual five-point stencil, again visualized in Fig. 7.3. We thus have
.�u/fx;ygi;j ¤ .�RRu/fx;ygi;j , even if the identity holds in the continuous case under
the incompressibility constraint. However, the order of consistency is O.h2/ for
both stencils, which can be shown by a Taylor expansion for each component, see
Appendix 2 for details.

+1 -2 +1

+1

-1

-1

+1

+1

-2

+1

+1 -1

-1 +1
ux
i,j

uy
i,j

+1 -4 +1

+1

+1

+1

-4

+1

+1

+1

ux
i,j

uy
i,j

Fig. 7.3 Left: Illustration of the difference schemes for
�
�RRu

�x
(red) and

�
�RRu

�y
(blue). Right:

Illustration of the schemes for .�u/x (red) and .�u/y (blue), which is the well known five-point
stencil
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186 I. Nitschke et al.

The lower order terms can be compared in a similar way and lead to typical
finite difference discretizations. However, a comparison of the full model strongly
depends on the approximation of the advection term and will thus not be done.
We conclude that the proposed DEC discretization, if considered on a uniform
rectangular mesh in flat space, can be related to finite difference schemes with
the same order of consistency as established approaches. Similar comparisons with
finite difference schemes have also been considered for scalar valued problems
in [18].

7.4 Results

7.4.1 Energy Dissipation

As in flat space we can show that PE D d
dt
1
2

R
S kuk2 � D

R
S hu; Pui� � 0. The only

term which requires a remark is the viscous part 1
Re ..�d � d/uC 2	u/. By using

the Frobenius inner product for tensors we obtain

Z

S

�
u;

1

Re
..�d � d/uC 2	u/

�
� D 1

Re

Z

S
hu; divS Lugi�

D 1

Re

Z

S
ui ŒLu]g�ij

jj� D � 1

Re

Z

S
uijj
�
uij j C ujji

�
�

D � 1

Re

Z

S

˝
gradS u; gradS uC .gradS u/T

˛
�

.�/D � 1

2Re

Z

S

�
�gradS uC .gradS u/T

�
�2 � D � 1

2Re

Z

S
kLu]gk2 � � 0;

with the Lie-derivativeLu] and .�/ following from the component wise computation

uijj
�
uij j C ujji

�

D 1

2

�
uijj C ujji C uijj � ujji

� �
uij j C ujji

�

D 1

2

h�
uijj C ujji

� �
uij j C ujji

�C
�
uijjuij j � ujjiujji

�
C
�
uijjujji � ujjiuij j

�i

D 1

2

�
uijj C ujji

� �
uij j C ujji

�
.

As in flat space we obtain a non-dissipative system for the corresponding surface
Euler equation (Re ! 1). However, the system is also non-dissipative for
Lu]g D 0, so called Killing vector fields [1], which can be realized on rotational
symmetric surfaces. We will use this property in various examples.
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Fig. 7.4 Streamlines of stationary solution on a sphere together with the error in the kinetic
energy and the experimental order of convergence (EOC) for different mesh sizes h (maximum
circumcircle diameter of all triangles) at time t D 10 for both numerical methods. E0 denotes the
exact kinetic energy. The timestep is � D 0:1 and Re D 1

7.4.2 Numerical Dissipation

We first consider a stationary solution on a sphere, with  0.x/ D z and v0.x/ D
.y;�x; 0/T with coordinates .x; y; z/ 2 R

3. Figure 7.4 shows the streamlines for the
rotating flow together with the computed errors for the kinetic energy. The results
essentially show second order convergence for both methods, the DEC approach for
the surface Navier-Stokes equation and the surface finite element method (SFEM)
for the vorticity-stream function equation.

7.4.3 Geometric Interaction

As already analyzed in detail in [32] the vortices in the flow, in the considered case
two C1 defects, repel each other and are attracted by regions of high Gaussian
curvature. We first consider an ellipsoid, represented by the level-set function
e.x/ D .x=a/2 C .y=b/2 C .z=c/2, with .x; y; z/ 2 R

3, a D b D 0:5 and c D 1:5.
We consider the initial solutions  0.x/ D yC 0:1z and v0.x/ D rotS  0.x/ and use
a timestep � D 0:1. Figure 7.5 shows the geometric properties, the streamlines at

axel.voigt@tu-dresden.de



188 I. Nitschke et al.

Fig. 7.5 Top: Distances on the ellipsoid together with the streamlines at t D 0; 4; 8; 12; 16 and 20
for the rotating flow. Results are shown for Re D 10. Bottom: Kinetic energy over time and the
height for the upper vortex over time for both numerical approaches and various Re

various times for Re D 10 as well as the kinetic energy over time and the position
of one vortex over time for both methods and various Re. The flow converges to a
stationary solution with the vortices located at the high Gaussian curvature regions.
However, these positions also favors the long range interaction between the vortices
as they maximize their distance. We thus cannot argue on a geometric interaction.
The time to reach the stationary solution strongly depends on Re, the lower Re the
faster it is reached.

The second example considers a biconcave shape, represented by the level-set
function e.x/ D .a2 C x2 C y2 C z2/3 � 4a2.y2 C z2/ � c4, with .x; y; z/ 2 R

3,
a D 0:72 and c D 0:75. We consider the initial solutions  0.x/ D y C z
and v0.x/ D rotS  0.x/ and use a timestep � D 0:1. Figure 7.6 shows the
geometric properties together with the trajectories of one vortex for different Re,
the streamlines at various times, a plot of the Gaussian curvature and the kinetic
energy over time. Again the flow converges to a stationary solution with the vortices
located at the high Gaussian curvature regions. Here the location of the vortices
clearly is a result of the geometric interaction, as their distance is not maximized.
Again the time to reach the stationary solution strongly depends on Re, the lower
Re the faster it is reached.

axel.voigt@tu-dresden.de



7 Discrete Exterior Calculus (DEC) for the Surface Navier-Stokes Equation 189

Fig. 7.6 Top: Distances on the biconcave shape together with the Gaussian curvature. Middle:
Streamlines at t D 0; 7; 14; 21; 28; 35; 42; 49; 56 and 200 (left to right, top to bottom) for the
rotating flow. Results are shown for Re D 10. Bottom: Kinetic energy over time for both numerical
approaches and various Re together with two examples for the vortex trajectories for Re D 10

(left) and Re D 100 (right)

7.4.4 Surfaces with Genus g.S/ ¤ 0

As mentioned above we will consider nontrivial solutions with divS v D 0 and
rotS v D 0. The vorticity-stream function formulation in Eqs. (7.3) and (7.4) is
based on the Hodge decomposition of the velocity field v which can be written as

v D vdiv C vrot C vharm (7.15)

on a general surface S with a divergence free vector field vdiv, a curl free vector
field vrot and a divergence as well as curl free vector field vharm. The first two parts
are usually rewritten as vdiv D rotS  and vrot D gradS ˚ with scalar functions  
and ˚ . Since we require incompressibility of v one can easily verify that the curl
free part vrot vanishes identically. Furthermore, on spherical surfaces (g.S/ D 0)
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we can drop the harmonic part since it is not possible to write a vector field that
is divergence and curl free except of the zero vector field. Finally, this leads to the
substitution v D rotS  which is used in the vorticity-stream function approach in
the prior sections. On surfaces with g.S/ ¤ 0 the situation changes and the har-
monic part vharm does not vanish generally. To demonstrate this property we use the
torus which has genus g.S/ D 1. A torus can be described by the levelset function
e.x/ D .

p
x2 C z2 � R/2 C y2 � r2, with .x; y; z/ 2 R

3, major radius R and minor
radius r. Throughout this section we use R D 2 and r D 0:5. Let � and � denote
the standard parametrization angles on the torus. Then, the two basis vectors can be
written as @�x as well as @�x and read in Cartesian coordinates @�x D .�z; 0; x/ as
well as @�x D .� xyp

x2Cz2
;
p
x2 C z2 � 2;� yzp

x2Cz2
/ which are schematically shown

in Fig. 7.7. We find two (linear independent) harmonic vector fields on the torus

vharm� D .4C cos.�//�2@�x D 1

4 .x2 C z2/
@�x

vharm� D .4C cos.�//�1@�x D 1

2
p
x2 C z2

@�x

written in local and Cartesian coordinates, respectively, and shown in Fig. 7.8.
One can easily verify that divS vharm� D rotS vharm� D 0 as well as divS vharm� D
rotS vharm� D 0.

To start with, consider the vector field v D @�x, which has zero divergence and
non-zero curl. The Hodge decomposition equation (7.15) leads to vrot D vharm D 0.
In that case the substitution v D rotS. / holds. The stream function  of the
vector field @�x can then be analytically written in local coordinates as  D
� 1
4

sin.�/ C � � � . The linear contribution causes a discontinuity at � D 2� ,
which is shown in Fig. 7.7 together with the streamlines of @�x (contour lines of  ).

Fig. 7.7 Left: Streamlines and values of the discontinuous stream function  to represent the
velocity field v D @�x on the torus and the two basis vectors @�x and @�x. Right: Plot of the stream
function values over the gray contour line in the left figure
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Fig. 7.8 Top: Harmonic vector fields vharm� and vharm� and kinetic energy E over time t for the
simulation with vharm� as initial condition on both equally spaced and logarithmic scales (right).
Bottom: Numerical solution of v for the simulation with 1

2
.vharm� C vharm� / as initial condition

computed with the DEC algorithm at t D 0; 2; 10; 30 and 60 (left to right). The arrows are rescaled
for better visualization

Solving the surface Navier-Stokes equations (7.1) and (7.2) directly circumvents the
discontinuities.

In the next example we use the mean of the two harmonic vector fields as
initial condition, i.e. v0.x/ D 1

2
.vharm� C vharm� /. By considering the vorticity-stream

function approach we have the initial conditions �0 D  0 D 0 and thus only the
trivial solution. However, solving the surface Navier-Stokes equation directly covers
also the harmonic parts. Figure 7.8 shows the numerical solution of v with the DEC
algorithm in which we used the timestep � D 0:1 and Re D 10. In this case the
reached steady state is again a Killing vector field and is proportional to the basis
vector @�x. Interestingly, the curl of the vector field @�x does not vanish.

Other linear combinations of the two harmonic vector fields vharm� and vharm� as
initial condition leads to the same steady state solution (up to a proportionality
constant) except of v0.x/ D vharm� . In that case the vector field does not change its
direction by symmetry and dissipates to zero. The results are shown in the energy
plot in Fig. 7.8 which clearly shows the vanishing energy over time.

7.4.5 Comparison

All results for surfaces with genus g.S/ D 0 demonstrate the accuracy of the
DEC discretization. The plotted vortex trajectories and kinetic energy values over
time are almost indistinguishable from the SFEM results obtained by solving the
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vorticity-stream function formulation. The computational cost is larger for the DEC
discretization, which however is also a consequence of the implementation. Both
methods are implemented in the finite element toolbox AMDiS [41, 42], where
the datastructures are optimized for SFEM, but not for DEC. A new general DEC
toolbox is work in progress.

7.5 Conclusions

Even if the formulation of the incompressible surface Navier-Stokes equation is
relatively old, numerical treatments on general surfaces are very rare. This also has
not changed with the development of various numerical methods to solve scalar-
valued partial differential equations on surfaces, such as the surface finite element
method [12] or the diffuse interface approach [31]. They are not directly applicable
to vector-valued partial differential equations on surfaces. One has to define what
it means for a vector to be parallel on the discrete representation K of S. The
concept of discrete parallel transport can be easily realized using discrete exterior
calculus (DEC), see [7] for details. DEC thus provides an ideal framework to solve
vector-valued partial differential equations on surfaces. In [27] this is shown in
detail for a surface Frank-Oseen model. We here use the approach to discretize
the incompressible surface Navier-Stokes equation. The discretization is based on
the covariant form and utilizing a discrete version of the Hodge star � and the
Stokes theorem for the exterior derivative d. Non-standard in our discretization is
the treatment of the discrete Hodge star and the discrete inner product. If considered
in flat space the described discretization can be related to a finite difference schemes
on a staggered grid. The resulting unusual stencil shows second order consistency.

Computationally we compare results of the DEC discretization with a vorticity-
stream function approach for surfaces with genus g.S/ D 0. The examples use the
properties of Killing vector fields and demonstrate the interplay between topology,
geometry and flow properties. The numerical results are almost indistinguishable for
all considered examples, varying the underlying surface S and the Reynolds number
Re. We also demonstrate the possibility to deal with harmonic vector fields using the
DEC approach. It would be interesting to compare the considered vortex trajectories
for larger Re with results for point vortices on closed surfaces, as e.g. considered in
[10] for ellipsoids or in [34] for toroidal surfaces.
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Appendix 1: Notation for DEC

We often use the strict order relation � and � on simplices, where � is proverbial
the “contains” relation, i.e. e � v means: the edge e contains the vertex v.
Correspondingly � is the “part of” relation, i.e. v � T means: the vertex v is part
of the face T. Hence, we can use this notation also for sums, like

P
f	e, i.e. the sum

over all faces T containing the edge e, or
P

v�e, i.e. the sum over all vertices v being
part of the edge e. Sometimes we need to determine this relation for edges more
precisely with respect to the orientation. Therefore, sign functions are introduced,

sT;e WD
(
C1 if e � T and T is on the left side of e

�1 if e � T and T is on the right side of e ,

se;Qe WD
(
C1 if ].e; Qe/ < �
�1 if ].e; Qe/ > �

sv;e WD
(
C1 if v � e and e points to v

�1 if v � e and e points away from v ,

to describe such relations between faces and edges, edges and edges or vertices and
edges, respectively. Figure 7.9 gives a schematic illustration.

The property of a primal mesh to be well-centered ensures the existence of a
Voronoi mesh (dual mesh), which is also an orientable manifold-like simplicial
complex, but not well-centered. The basis of the Voronoi mesh are not simplices,
but chains of them. To identify these basic chains, we apply the (geometrical) star
operator ? on the primal simplices, i.e. ?v is the Voronoi cell corresponding to
the vertex v and inherits its orientation from the orientation of the polyhedron jKj.
From a geometric point of view, ?v is the convex hull of circumcenters c.T/ of all
triangles T � v. The Voronoi edge ?e of an edge e is a connection of the right face
T2 � e with the left face T1 � e over the midpoint c.e/. The Voronoi vertex ?T of a

Fig. 7.9 These formations
always yield positive signs
C1 for sT;e (top left), sv;e
(bottom left) and se;Qei (right)
for i 2 f1; 2; 3; 4g,
respectively. Every
odd-numbered change in edge
orientations results in a
change of the sign s�;�

e

ẽ2ẽ1

ẽ3ẽ4

e

T

e
v
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face T is simply its circumcenter c.T/, cf. Fig. 7.1. For a more detailed mathematical
discussion see e.g. [20, 39].

The boundary operator @ maps simplices (or chains of them) to the chain of
simplices that describes its boundary with respect to its orientation (see [20]), e.g.
@.?v/ D �Pe	v sv;e.?e/ (formal sum for chains) and @e DPv�e sv;ev.

The expression j�j measures the volume of a simplex, i.e. jTj the area of the
face T, jej the length of the edge e and the 0-dimensional volume jvj is set to be 1.
Therefore, the volume is also defined for chains and the dual mesh, since the integral
is a linear functional.

Appendix 2: Second Order Convergence

In this section we show that the discretization equation (7.14) of �RR, defined in
Eq. (7.13) on a staggered grid, has a truncation error of order two. Without loss of
generality, by a quarter turn of the difference scheme in Fig. 7.3 (left), we only
elaborate on the discretization of .�RRu/x along the horizontal x-direction. The
first three terms in Eq. (7.14) show the well-known second order central difference
approximation in vertical direction of the first term in Eq. (7.13), i.e.

1

h2
�
uxi;jC1 C uxi;j�1 � 2uxi;j

� D �@2yux
�x
i;j
CO.h2/ .

For the remaining terms, we first carry out a Taylor expansion on central vertices
viCk;j 2 V for k 2 f0; 1g in the vertical edge columns, i.e.

uyiCk;j�l D
�
uy C .�1/l h

2
@yu

y C h2

8
@2yu

y C .�1/l h
3

48
@3yu

y C h4

384
@4yu

y

�

iCk;j

CO.h5/

for all l 2 f0; 1g. An additional horizontal expansion of sufficient order at the edge
midpoint c.exi;j/ results in

uyiCk;j�l D
�
uy C.�1/kC1 h

2
@xu

y C h2

8
@2xu

y C.�1/kC1 h
3

48
@3xu

y C h4

384
@4xu

y

C.�1/l h
2
@yu

y C.�1/lCkC1 h2

4
@x@yu

y C.�1/l h
3

16
@2x@yu

y

C.�1/lCkC1 h4

96
@3x@yu

y C h2

8
@2yu

y C.�1/kC1 h
3

16
@x@

2
yu

y

C h4

64
@2x@

2
yu

y C.�1/l h
3

48
@3yu

y C.�1/lCkC1 h4

96
@x@

3
yu

y C h4

384
@4yu

y
�x

i;j

CO.h5/
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for all l; k 2 f0; 1g. Finally, we obtain

1

h2

�
uyi;j � uyiC1;j C uyiC1;j�1 � uyi;j�1

�

D �
�
@x@yu

y C h2

96
@x@y

�
@2xu

y C @2yuy
��x

i;j

CO.h3/

and thus a truncation error at most O.h2/ regarding .�RRu/xi;j generally.
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