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One of the major difficulties in employing phase-field crystal (PFC) modeling and the associated amplitude
(APFC) formulation is the ability to tune model parameters to match experimental quantities. In this work, we
address the problem of tuning the defect core and interface energies in the APFC formulation. We show that the
addition of a single term to the free-energy functional can be used to increase the solid-liquid interface and defect
energies in a well-controlled fashion, without any major change to other features. The influence of the newly
added term is explored in two-dimensional triangular and honeycomb structures as well as bcc and fcc lattices in
three dimensions. In addition, a finite-element method (FEM) is developed for the model that incorporates a mesh
refinement scheme. The combination of the FEM and mesh refinement to simulate amplitude expansion with a
new energy term provides a method of controlling microscopic features such as defect and interface energies
while simultaneously delivering a coarse-grained examination of the system.
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I. INTRODUCTION

In the past few decades, phase-field (PF) models have
been used extensively for modeling the ordering of nano- and
microstructures. Such models provide a suitable framework
for the investigation of a wide range of phenomena, such
as solidification processes, grain growth, surface diffusion,
heteroepitaxy, and even dislocation dynamics [1–5]. Despite
their versatility, strong limitations arise for PF models when
looking at material properties closely related to atomic
arrangement and periodicity. To account for these microscopic
properties, the so-called phase-field crystal (PFC) model was
developed [6,7]. It consists of a continuum field theory that
describes the local atomic probability density. Moreover, it
allows one to cope with the dynamics of atomic structures at
diffusive time scales so that the fast dynamics of vibration of
atoms is filtered out [8]. The downside of the PFC approach is
that the spatial resolution required in numerical simulations is
determined by the lattice constant. Therefore, simulations of
PFC models are restricted to systems much smaller than can
be accessed in standard PF models.

To overcome the length scale limitation of PFC models, the
amplitude expansion, also referred to as renormalization-group
reduction, of the PFC model (APFC) [9–11] was developed.
It is based on the idea that the continuous density in PFC
models can be described by the amplitude of the minimum set
of Fourier modes or wave vectors needed for a given crystal
symmetry. To allow for crystals in arbitrary orientations,
strained systems, and/or defects, the amplitudes are complex
functions. Roughly speaking, the magnitude of the amplitudes
accounts for the liquid and solid phases, while the phase
incorporates elasticity and crystal rotations. The combination
of the magnitude and phase allows for defects. In this approach,
a coarser spatial resolution than standard PFC can be used, thus
allowing for the simulation of much larger systems. Moreover,
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this representation enables the use of an optimized spatial
discretization [12].

Simulations of the APFC model have been shown to be
very useful for studying a wide variety of phenomena. The
method has been applied to the study of polycrystalline films
and the motion of grain boundaries (GBs) [9–11,13], the
study of heteroepitaxial ordering of ultrathin films [14–17],
structural phase transitions [18], and grain-boundary energies
in graphene [19]. The method has also been extended to binary
systems [20–22]. Moreover, it has been used to examine
the influence of compositional strains on interfaces [23],
heteroepitaxy in binary systems [20,21], and the elastically in-
duced interaction of GBs and compositional interfaces [24,25].
While the original APFC model was introduced for two-
dimensional systems with triangular symmetry, the method
has been extended to fcc and bcc systems in three dimensions
[20,26] and honeycomb lattices in two dimensions [16,19].
Other advances include exploiting the phase of amplitudes
to achieve instantaneous mechanical equilibrium even under
extreme conditions [27]. Most of these investigations were
performed with simulations using simple numerical methods
on a fixed grid. In this paper, we adopt a more advanced
computational method, i.e., an adaptive finite-element method
(FEM) with a semi-implicit integration scheme.

The main purpose of this work is to propose a method
to control the energies of dislocation cores and ordered-
disordered interfaces in APFC models. PFC and APFC models
are similar to traditional PF models. They are both essentially
long-wavelength theories, i.e., only the lowest order gradients,
or Fourier modes, are retained in the free energies that enter
such models. This implies that the predictions of such models
on small length scales are not accurate. For example, the exact
shape of domain walls (often described by hyperbolic tanh
profiles in φ4 models [28]) in PF models or the density profiles
near dislocation cores in PFC models are unlikely to match
experimental systems.

The validity of PF models, however, can be shown by
taking the limit for vanishing thicknesses of the interfaces
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between phases and showing that they reduce to traditional
sharp interface (SI) models [4]. This matching is advantageous
as it connects the parameters that enter continuous models
with those that enter the SI models, which are typically well
characterized in terms of known constants, such as surface
tension, capillary lengths, diffusion constants, etc. A very
important point is that although the predictions of the PF
models on small length scales (i.e., interfacial or domain-
wall thicknesses) are qualitative, they can be used to make
quantitative predictions on long length scales. The reason for
this dichotomy is that the dynamics are strongly influenced by
the existence of small length scale features, such as surfaces
and dislocation cores, but not necessarily the exact spatial
variation on small scales.

In much the same way, PFC modeling can be thought of as
a long-wavelength model, even though it creates structure on
the atomic scales, as explicitly considered in the derivation
via dynamical density-functional theory [29,30]. It is also
straightforward to show that for small deformations, long-
wavelength limit PFC models reduce to continuum elasticity
theory [6,27]. Similarly, in binary PFC models, it is easy to
show that they reduce to traditional phase-field models of
binary alloy solidification with elastic interactions, such as
Vegard’s law [20,21]. In addition, PFC models go beyond
linear elasticity theory since they incorporate dislocations in
a natural manner and can be shown to reproduce well-known
results, such as the Read-Shockley equation for low-angle GBs
that consist of an array of dislocation cores [6,7,19,31]. While
these results in some sense validate the PFC approach, it is
difficult to match the original model to experimental systems.

The main reason for this difficulty is that the original PFC
model essentially contains only two adjustable parameters, as
obtained by rewriting the free energy in dimensionless units
[7] (i.e., by scaling to a dimensionless length, density, and
temperature). These parameters are related to temperature
and the average density. Clearly in a system that has, for
example, several distinct elastic moduli, only one of them
can be fitted exactly. For example, in a three-dimensional (3D)
bcc system, the original PFC model gives C11 = C22 = C33

and C12 = C13 = C23 = C44 = C55 = C66 = C11/2, thus it is
not possible to fit, for example, C11 and C12 independently.
This is a serious deficiency, although considering the lack of
parameters that enter the original mode, it is not a surprising
result. Fortunately, adding more modes, or including higher-
order gradients, does lead to more flexibility in selecting the
elastic moduli [19,32–34].

Perhaps a more difficult problem in PFC modeling is
controlling the defect core energies, which naturally will
play a very important role in polycrystalline materials. The
goal is not to accurately describe the structure of the cores
(similarly to traditional PF modeling not accurately describing
interfacial profiles in most cases), but to tune the cores to match
experiments or other theoretical predictions.

In this paper, we consider adding a modification to APFC
models such that the energy of solid-liquid interfaces and
dislocation cores can be tuned. An additional term in the
free energy is considered, which is nonvanishing when the
order of the solid phases changes. A similar approach has been
recently proposed for the PFC model in order to include phase
transition [35] and to introduce an adjustable interface energy

[36]. Here we propose a suitable formulation to account for
these effects in APFC models, exploiting an order parameter
directly connected to the amplitude functions.

The work is organized as follows. In Sec. II the standard
APFC approach is reported, highlighting its generality with
respect to the symmetry of the crystalline phase. Then, the
additional term in the free energy allowing for a tuning of the
energy of defects and interfaces is introduced in Sec. II A. In
Sec. II B the main features of the numerical method adopted in
this work are illustrated. The effect of the newly introduced en-
ergy term on the shape and the energetics of solid-liquid inter-
faces is discussed in Sec. III. The results concerning tuning the
core energy of defects forming at straight GBs between tilted
crystals are addressed in Sec. IV, focusing on the case of 2D
honeycomb structures. The possibility to control the energy of
GBs as a whole is also illustrated therein. Section V addresses
the control of the energy of defects in multilayered strained
systems, where both 2D and 3D symmetries are explicitly
considered. Conclusions and remarks are given in Sec. VI. The
symmetry-dependent terms in the APFC equations, the time-
integration scheme, and additional details concerning some
specific setups for simulations are reported in the Appendixes.

II. MODEL

The free-energy functional, Fn, in the PFC model can be
written in terms of the dimensionless density difference, n, in
the following form:

Fn =
∫

�

[
�B0

2
n2 + Bx

0

2
n(1 + ∇2)2n − t

3
n3 + v

4
n4

]
dr, (1)

where �B0, Bx
0 , v, and t are parameters that control the phase

diagram and properties of the system; see [29]. This free energy
describes a first-order phase transition from a disordered or
liquid state (n constant) at high �B0 to a crystalline state
(n periodic) at low or negative �B0. In Refs. [9–11] it is
shown that a so-called amplitude expansion can be derived by
coarse-graining the density n. In this approach, n is written as

n = n0 +
N∑

j=1

[ηj (x,t)eikj ·x + η∗
j (x,t)e−ikj ·x], (2)

where N is the number of reciprocal-lattice vectors kj required
to reproduce a specific symmetry (N = 3 for 2D triangular or
honeycomb symmetry, N = 6 for bcc lattices, and N = 7 for
fcc lattices; see Ref. [20]). The kj vectors for the lattices
considered in this work are reported in Appendix A.

The ηj ’s are the complex amplitude functions. With the
exception of [13] and [21], the average n (i.e., n0) is assumed
to be constant in space, and with an appropriate definition it
can be set to zero without loss of generality [20]. Assuming
that ηj varies on length scales larger than the atomic spacing
(i.e., 2π/|kj |), the free-energy functional reads

F =
∫

�

⎡⎣�B0

2
A2 + 3v

4
A4 +

N∑
j=1

(
Bx

0 |Gj ηj |2 − 3v

2
|ηj |4

)

+ f s({ηj },{η∗
j })

⎤⎦dr, (3)
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where Gj ≡ ∇2 + 2ikj · ∇ and A2 ≡ 2
∑N

j=1 |ηj |2.
f s({ηj },{η∗

j }) is set in agreement with the appropriate
symmetry, as reported in Appendix A. The evolution law in
the long-wavelength limit is

∂ηj

∂t
= −|kj |2 δF

δη∗
j

, (4)

with

δF

δη∗
j

= [
�B0 + Bx

0G2
j + 3v(A2 − |ηj |2)

]
ηj

+ δf s({ηj },{η∗
j })

δη∗
j

. (5)

In an equilibrium crystalline state, A2 is a constant inde-
pendent of crystal orientation. Thus, it supplies information
about the order of the crystal phase. In particular, it has the
maximum value in the relaxed crystal, decreases at defects and
solid-liquid interfaces, and vanishes in the disordered or liquid
phase. For bulk crystals, the amplitude functions are constant.
By assuming the amplitudes to be real and equal, i.e., ηj = φ0,
it is possible to determine φ0 by minimizing the free energy
in Eq. (3). The assumption of equal amplitudes holds true
for triangular-honeycomb and bcc symmetries. For the fcc
symmetry, the amplitudes are found to have different values
depending on the magnitude of kj , i.e., they can be written
as ηj = φ0,j = ξ for j � 4 and ηj = φ0,j = ψ for j � 5,
since |kj�5| = 2/

√
3|kj�4|. Details about calculating φ0, ξ ,

and ψ according to the selected lattice symmetry are reported
in Appendix A (hereafter, we just use φ0 to denote φ0,j ).

When rotated or strained crystals are considered, the
ηj ’s become complex functions. For instance, the amplitude
complex functions of a crystal phase rotated by an angle θ

about the z axis are given by

ηj = φ0 eiδkj (θ)·r, (6)

where

δkj (θ ) = [
kx
j (cos θ − 1) − k

y

j sin θ
]
x̂

+ [
kx
j sin θ + k

y

j (cos θ − 1)
]
ŷ. (7)

On the other hand, a strained crystal can be described by

ηj = φ0 eikj ·u(r), (8)

where u(r) corresponds to the displacement field with respect
to the relaxed crystal. Equations (6) and (8) will be used
in order to set the initial conditions for stressed and rotated
crystals.

A. Additional energy term

In Ref. [36], a term to control the interfacial free energy
was introduced in the PFC model. This was achieved by
considering a contribution to the free energy as |∇ñ|2,
where ñ = ∫

drχ (r − r′)n(r) and χ (r − r′) is a smoothing
function [35], chosen to select density contributions on long
wavelengths. With this choice, variations of the density on
short length scales are filtered out, while those present at the
interfaces between phases remain, i.e., ñ is constant within bulk
regions and changes only at solid-liquid interfaces. Although

not addressed in Ref. [36], this term would also impact the
energy of dislocations or any defects in the crystal since the
density is typically lower near such regions.

In this work, we consider the APFC model in the absence
of an average density term. Thus, the approach proposed in
Ref. [36] cannot be directly considered within our framework.
However, similar information is directly gathered from A2,
which is a measure of the crystalline order, and from its
variation in space. To control the energy of interfaces or
defects, we thus focus on a term involving only the gradient
of A2. In particular, in analogy with the gradient term in
interfacial free energies [28], we introduce the following
additional energy contribution in Eq. (3):

Fβ =
∫

�

β

4
|∇A2|2dr, (9)

where β is a free parameter. This leads to an additional term
to Eq. (5) as

δFβ

δη∗
j

= −βηj∇2A2. (10)

The additional energy term in Eq. (9) is then introduced
phenomenologically. In the next sections, the influence of this
term on the energy and morphology of interfaces and defects
is investigated.

In the following, we refer to the total energy F as the sum of
the contributions in Eqs. (3) and (9). As mentioned above, the
specific form in Eq. (9) was chosen to modify the energy near
dislocations and interfaces, but not to alter the elastic or other
properties within bulk phases. In this formulation to leading
order, elastic strains in the system are incorporated in the phase
of the complex amplitudes, of which A2 is independent. For
very large strains, the magnitude of the complex amplitudes
will be slightly altered and thus will alter A2, but not ∇A2.
If the strain varies greatly over the sample, Eq. (9) will be
nonzero, but still small compared to the values near dislocation
cores and interfaces.

B. Numerical approach

A semi-implicit time discretization scheme is used in order
to solve the set of equations defined in (4) and (5), and it
is reported in detail in Appendix B 1. It consists of solving
four second-order partial differential equations (PDEs) for
each amplitude function. Different amplitudes are coupled
due to the terms involving f s and A2 in the evolution law,
which are treated explicitly. For similar numerical approaches
in solving PDEs for materials-science applications, see, e.g.,
Refs. [37,38]. The spatial discretization is done by FEM
exploiting the adaptive finite-element toolbox AMDIS [39,40].
We consider a refinement of the spatial discretization where
the real and complex parts of ηj oscillate, i.e., the regions
where strained or tilted crystals are present. Additionally,
the refinement is increased at solid-liquid interfaces and
defects, that is, where A2 changes. Further details are given
in Appendix B 2. Periodic boundary conditions (PBC) are
considered for every simulation reported in the following. All
the simulations are performed in parallel.

Figure 1 shows sample simulations in two and three
dimensions. In a relaxed crystal, a rotated spherical crystal
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FIG. 1. Illustrative application of the APFC model in two dimensions (a), (b) and three dimensions (c). (a) Definition of a spherical tilted
crystal with triangular lattice symmetry embedded in a relaxed crystal with the same crystal structure. The amplitudes, here illustrated by
means of the real (bottom) and imaginary (top) part of η1, are constant and real in the surrounding relaxed crystal, while they oscillate in the
embedded tilted crystal. (b) Various visualizations (clockwise from the upper left panel): A2, the definition of defects according to a threshold
of A2, mesh refinement, and reconstruction of the crystalline structure. (c) Dislocations network for a 3D rotated spherical grain in an fcc
crystal superimposed to a central slice of the simulation domain showing the real part of η1. Details are given in the main text.

of the same symmetry is embedded. In both cases, the initial
configuration first forms a set of regular defects defining the
GB. Then, in order to minimize the grain-boundary energy,
the embedded crystal begins to rotate and shrinks [13]. Here
we show snapshots when the defects are well defined and
before much grain shrinkage occurred.

In the 2D case, reported in Figs. 1(a) and 1(b), the embedded
crystal is rotated by 10◦ with respect to the surrounding matrix.
Thus, the real and imaginary parts of the amplitudes vary in
agreement with Eq. (6). Even though the single amplitudes
oscillate in the embedded crystal, A2 is constant and only
varies at the defects. The defects are located using a threshold
for A2: A2 < 0.75 max(A2) [see Fig. 1(b), upper part]. The
computational grid is refined in the embedded crystal due to
the variation in ηj and at the defects due to the variation in A2

[see Fig. 1(b), lower right corner]. Reconstructing the density
according to Eq. (4) allows us to directly show the crystalline
structure and identify the defects as illustrated in Fig. 1(b),
lower left corner. Solid red lines therein correspond to the
A2 = 0.75 max(A2) isolines.

The equivalent situation in three dimensions is shown in
Fig. 1(c) for a fcc crystal. The spherical GB is defined by a
network of defects reflecting the cubic symmetry of the fcc
crystal. Such defects are illustrated by means of the region
where A2 is below the threshold as in Fig. 1(b), upper right
corner. A central slice of the simulation domain is also shown,
illustrating the oscillation of the real part of η1 in the tilted
crystal. A more detailed discussion of defect networks is given
in Sec. V.

III. TUNING THE SOLID-LIQUID INTERFACIAL ENERGY

Let us consider a solid-liquid interface, where the solid
is a relaxed crystal with ηj = φ0 in the bulk and ηj = 0
in the liquid phase. Without loss of generality, we focus
here on the 2D triangular symmetry for the crystalline solid
phase. We consider the equilibrium condition at which the
solid and the liquid phase have the same energy by setting

�B0 = 8t2/(135v). As addressed in Ref. [41], by assuming
real and identical amplitudes and focusing on the �B0 > 0
case, the equation describing the interface profile φ is in the
long-wavelength limit,

2Bx∇2φ − �B0φ + 2tφ2 − 15vφ3 + 6βφ∇2φ2 = 0, (11)

which corresponds to a stationary interface. Moreover, the
condition φ = φ0 in the bulk crystal and φ = 0 in the
liquid phase must be satisfied. For β = 0 this can be solved
analytically by assuming a tanh profile for φ perpendicular to
the solid-liquid interface:

φ = φ0

2

[
1 − tanh

(
x

χ

)]
. (12)

Equation (11) is then solved by

χ = 4

φ0

√
Bx

15v
= 3

√
15vBx

t
, (13)

where φ0 = 4t/(45v) at equilibrium. For β �= 0, this ansatz
does not lead to a solution of Eq. (11). However, it is expected
to properly describe the amplitude profile at the solid-liquid
surface in the β → 0 limit [41]. Thus, in this limit, we can
estimate the contribution due to β assuming that φ is not
significantly influenced by the additional energy term. For a
straight interface, the energy contribution due to β from Eq. (9)
is approximately

�β

4

∫ ∞

−∞
|∇A2|2dx = 18φ4

0

5χ
�β, (14)

where � is the length of the interface.
To evaluate the contribution to the interfacial energy of the

term in Eq. (9), to show the change in the interface morphology,
and to check the validity of the approximation in Eq. (14),
we solve the equations of the APFC model numerically for
a straight, solid-liquid interface. The parameters are set as
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FIG. 2. Effect of the additional energy term on the solid-liquid
interface properties. (a) Profiles perpendicular to the solid-liquid
interface at equilibrium in terms of φ = √

A2/6 with β ∈ [0; 50].
(b) Energy density corresponding to the different profiles in
panel (a).

follows: Bx = 0.98, v = 1/3, t = 1/2, and �B0 in order
to achieve equilibrium condition. The results are shown in
Fig. 2, which illustrates the effect of different β values on the
solid-liquid interface. In particular, Fig. 2(a) shows the profile
perpendicular to the interface in terms of φ, obtained as φ =√

A2/6, which minimizes the energy for different β values.
For β = 0, it is well described by the function in Eqs. (12) and
(13) in agreement with Ref. [41]. By increasing β, the width of
the interface increases. Moreover, the region closer to the solid
phase undergoes a more significant smearing than the one close
to the liquid phase. Thus, it does not qualitatively correspond to
a tanh profile as described in Eq. (12). Figure 2(b) illustrates
the changes of the energy density f , such as F = ∫

�
f (r)dr, at

the interface with increasing β. According to the modification
of the interface profile, the region with an energy density larger
than zero increases for larger β, with a smaller gradient toward
the solid phase. The maximum value of f is found to be not
significantly affected by the additional energy contribution,
and it shifts slightly toward the solid phase.

In Fig. 3, the change in the total energy due to β is shown.
For small β, the increase of the interface energy density is
nearly linear and corresponds well with the approximation
reported in Eq. (14). In this case, the morphology of the
profile of φ is not significantly altered, and the assumption
leading to Eq. (14) is well fulfilled. For larger β, more
significant deviations are observed, providing a sublinear
behavior. Within the range of β’s used, a relative scaling
factor of up to ∼1.6 can be achieved, and no restrictions are
present for larger values. This can be used in order to match
the solid-liquid interface energies from experiments or first-
principles approaches, while they are typically underestimated
in classical PFC methods [36]. Negative values of β, even small
ones, lead to instabilities in the solid phase. This restricts β to
be positive in practice.

FIG. 3. Excess of energy per unit length due to the presence of
the interface as a function of β, [F (β) − F (0)]/�. The dots represents
the simulations, shown here with a solid guideline. The dashed
line represents the values predicted by neglecting the changes in
the interface profile as in Eq. (14). Additionally, the right y axis
shows the relative change in the surface energy F (β)/F (0), with
F (0) = 0.005 574.

IV. TUNING THE ENERGY OF DEFECTS BETWEEN
TILTED CRYSTALS

In this section, we describe the effect of the additional
energy term in Eq. (9) on the morphology of defects occurring
between tilted crystals and on their energy. In particular, the
relevant case of the 2D honeycomb structure is considered
[19]. The parameters are set as in the previous section, with
�B = 0.02 and t = −1/2 for which the equilibrium state is a
honeycomb crystalline phase. A rectangular domain, Lx × Ly

with x̂ = [10] and ŷ = [01], is considered with a straight
vertical GB at the center, forming between two 2D tilted
crystals. The relative tilt angle between the two crystals, θ ,
is set by initializing the ηj functions with Eqs. (6) and (7)
and imposing a ±θ/2 tilt for the left and the right part of the
simulation domain, respectively, as also illustrated in Fig. 4(a).
By using PBC, a GB with infinite extension is considered.
Moreover, a second GB is expected, which is shared between
the left and right boundary of the simulation domain. Lx (twice
the distance between GBs along the x̂ direction) can be chosen
arbitrarily, and it is set here to be significantly larger than the
spacing of the defects at the GB. Additionally, care has to
be taken in choosing Ly , so that the periodicity of amplitudes
along the ŷ direction fit the domain. The details about choosing
θ and the domain size in order to ensure this condition are
summarized in Appendix B 3.

The APFC approach well describes GBs for small θ . For
large tilts, it does not predict their correct morphologies [22].
However, the GB obtained for large θ can be simulated by
considering a similar tilt as before, called here θ̄ , but with a
horizontal GB. Therefore, ±θ̄/2 are set in the top and bottom
region of the rectangular domain [as shown in Fig. 4(e) after
a rotation of the domain by 90◦]. The results with the two
configurations can then be compared considering θ = 60◦ − θ̄ .
In this case, Ly is chosen larger than the spacing between
defects, and Lx is set as described in Appendix B 3.
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FIG. 4. Dislocations forming at the grain boundaries. (a) θ =
6.3◦, (b) θ = 18.8◦, and (c) θ = 26.3◦, for vertical GBs. (d) Magnifi-
cation of the defect showing a graphenelike, continuous density n as
obtained from Eq. (2) using the amplitudes in panel (a). (e) θ̄ = 7.8◦,
(f) θ̄ = 14.7◦, and (g) θ̄ = 26.3◦, for horizontal GBs after rotation by
90◦. (h) As in panel (d), the n is reconstructed using the amplitudes
in panel (e). The 5|7 structure of defects is illustrated in panels (d)
and (h). ax = 4π/

√
3.

Let us consider first the β = 0 case. Figures 4(a)–4(c)
show the defects at the vertical GB for different values of
θ by means of A2. The larger the tilt is, the larger is the
density of dislocations along the GB. The morphology of
defects is similar for the different cases, but for large tilts
their superposition increases. Figures 4(e)–4(g) show similar
behavior obtained by increasing θ̄ for the horizontal GB and
rotating the domain by 90◦ in order to provide a better com-
parison to the aforementioned case. The angular dependence
of dislocation density is similar, but the arrangement of the
defects is different.

To more closely examine the dislocations, amplitude
functions can be used to reconstruct the density by means of
Eq. (2) for a honeycomb lattice. This is done in Figs. 4(d) and
4(h) for a vertical and horizontal GB, as discussed before. The
two different grain boundaries observed for these structures,
namely the armchair (AC) GB in Figs. 4(a)–4(d) and the zigzag
(ZZ) GB in Figs. 4(e)–4(h), are observed. As highlighted in
the corresponding figures, both cases are compatible with the
peculiar 5|7 arrangement of atoms at the defects between tilted
graphene layers [19].

The effect of nonzero β values is shown in Fig. 5. Here
a single dislocation at a vertical GB with θ = 12.8◦ is
highlighted. Figure 5(a) shows A2 at the defect for β = 0.
Figure 5(b) shows the excess of the energy density with
respect to the bulk crystal, f − f0, for such a defect. The
same quantities are shown in Figs. 5(d) and 5(e) for β = 10.

FIG. 5. Effect of the core-energy term on the defect features.
Parts (a) and (b) show the values of A2 and f − f0, respectively, for
a dislocation forming at an AC-GB with θ = 12.8◦ with β = 0. Parts
(d) and (e) show A2 and f − f0, respectively, for the same dislocation
as in (a) and (b) with β = 10. Isolines are also shown corresponding
to A2 = 0.16 in panels (a) and (d) and f − f0 = 10−5 in panels (b)
and (e). Parts (c) and (f) show n at the defects with β = 0 and 10,
respectively.

The change in the A2 field can be easily noticed. The depth of
the minimum decreases with increasing β, while the energy
density increases with increasing β. Despite these changes, the
reconstructed density as shown in Figs. 5(c) and 5(f) remains
unaltered. This is mainly due to the fact that the extension
of the region where A2 decreases and f − f0 is larger than
zero does not change significantly by increasing β (see the
solid, white isolines). According to these results, the effect
of the additional energy term consists of an increase of the
energy at the defect, without affecting the type of defect and
the corresponding arrangement of atoms in the crystal lattice.

A more quantitative comparison is performed in Fig. 6,
which shows A2 and f − f0 along a horizontal line passing
through the center of the defect and perpendicular to the
straight GB line to which it belongs. In particular, the order
parameter A2 is slightly broader for larger β values, as
illustrated in Fig. 6(a). However, Fig. 6(b) shows that the
additional energy contribution controlled by β is localized at
the defects. Indeed, it affects only the maximum at the center
of the defect, while it decreases when moving away from the
GB with a decay rate nearly independent on β.

A. Control of grain-boundary energy

After assessing the role of the additional energy term on the
features of a single dislocation, the global effect when looking
at the energetics of a GB as a whole can be considered. In
particular, we focus here on the dependence of the energy per
unit length of GBs, F/L, as a function of the tilt angle θ .
Within our framework, we can simulate all the possible angles
by considering vertical GBs for θ < 30◦ and horizontal GBs
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FIG. 6. Line scans along the x̂ direction passing through the
center of the defect in Fig. 5 (i.e., the minimum of A2) showing
(a) A2 and (b) f − f0, for different β values.

for θ > 30◦ by setting θ̄ < 30◦ and θ = 60◦ − θ̄ [19]. In
Fig. 7, we report the energy per unit length of GBs in terms
of F (θ )/L and F (θ )/Fβ=0(θmax). The latter corresponds to a
normalization of the calculated energies with respect to the
maximum value of the β = 0 curve. The red dots correspond
to the results obtained with β = 0. A solid guideline is also
superimposed to the simulation results, reproducing the typical
energy dependence on the tilt expected for these systems.
Such a result directly corresponds to what is obtained in

FIG. 7. Grain-boundary energy as a function of the tilt angle
for different β values. The energy per unit length, F (θ )/L, and the
normalized energy with respect to the maximum energy value for
the β = 0 case, F (θ )/Fβ=0(θmax), are shown. Energy values for GBs
with θ < 30◦ are obtained with the AC-GB configuration. Values with
θ > 30◦ are obtained with the ZZ-GB configuration with tilt angle θ̄

and θ = 60◦ − θ̄ . Interpolated guidelines are superimposed to the
symbols corresponding to the results of simulations: β = 0 (red dots,
solid guideline), β = 10 (green squares, dotted guideline), and β =
20 (blue triangles, dashed guideline). Empty triangles correspond to
the energy values of the β = 20 case, rescaled (r) in order to have the
same value at θ ≈ 4.45◦ as with β = 0.

Ref. [19], further assessing our computational approach. The
simulation results obtained by considering β = 10 and 20 are
also shown by green squares and blue triangles together with
dotted and dashed lines, respectively. They reveal the global
effect of the new energy term on the F (θ )/L curves. The
increase of defect energy due to β also leads to an overall
increase of the GB energy. For instance, a relative increase
of a factor ∼1.25 is obtained for the β = 20 case for the
maximum of the energy. This relative change is similar to
what was obtained in the tuning of the solid-liquid interfacial
energy (see Fig. 3). More detailed insights can be obtained
by considering the empty triangles shown in Fig. 7, which
correspond to the Fβ=20(θ )/L curve rescaled in order to have
the same value at θ = θ∗ ≈ 4.45◦ with the β = 0 case, i.e.,
multiplied by Fβ=0(θ∗)/Fβ=20(θ∗). These values highlight the
fact that a small change in the shape of the F (θ )/L curves
is induced when considering nonvanishing β values. That is,
these curves are not self-similar. The reason for this is that
the higher-angle GBs contain more dislocations and in turn
more dislocation energy. Thus the higher-angle GB energy
increases more than the lower-angle GB energy when β is
increased. It is worth mentioning, however, that the observed
change in the shape of the energy curves is in the order of
the typical experimental fluctuation (see, for instance, the
comparison between PFC calculations and experiments in
Ref. [7]). Therefore, the increase of the energy obtained for a
specific θ can be considered as representative of the effect on
the entire F (θ )/L curve.

V. TUNING THE ENERGY OF DEFECTS IN
STRAINED SYSTEMS

So far we investigated the case of defects when forming
between tilted crystals. However, dislocations are known to
form also when applying an external load to the material or
at the interface between mismatched, epitaxial structures in
order to relive the resulting stress and lower the elastic energy.
In this section, we consider 2D and 3D multilayer structures
where subsequent layers have opposite in-plane strain ±ε.
When considering a 2D system, Lx × Ly as in Sec. IV, with
PBC and the normal to the interface between layers along the
ŷ direction, the configuration can be initialized using Eq. (8)
with the following displacements:

u(r) =
{

−ux x̂,
Ly

2 < y <
3Ly

4 ,

+ux x̂, elsewhere,
(15)

with ux = axx/Lx , and ax is the distance between maxima of
the density as in Eq. (2) along the x̂ direction. With this choice,
ε = ±ax/Lx and matching amplitudes are obtained at the
boundaries. For 3D systems, Lx × Ly × Lz with x̂ = [100],
ŷ = [010], ẑ = [001], and normal to the interface between
layers along the ẑ direction, the in-plane strain can be set as

u(r) =
{

−ux x̂ − uy ŷ,
Lz

2 < z <
3Lz

4 ,

+ux x̂ + uy ŷ, elsewhere,
(16)

with ux as in Eq. (15) and uy = ayy/Ly , with ay the distance
between maxima of the density (2) along the ŷ direction. In
this case, εx = ±ax/Lx and εy = ±ay/Ly . The parameters
defined in Eq. (2) are set as in Sec. IV.
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FIG. 8. Defects in multilayer systems with alternate in-plane strain ±ε. (a) Dislocations forming in a 2D crystal with triangular symmetry
as resulting from the relaxation of the initial condition from Eq. (15). Parts (b) and (c) show dislocations as resulting from the relaxation of
the initial condition set by Eq. (16) for 3D crystals with a bcc and fcc lattice, respectively. Dislocations in three dimensions are shown as in
Fig. 1(c). The different colors in the planar regions bounded by dislocations in panels (b) and (c) illustrate the behavior of some representative
amplitude functions at the interface between different layers. All the panels show the defects when a stationary shape is obtained.

The case corresponding to a triangular or honeycomb
structure as in Eq. (15) is shown in Fig. 8(a). A square
simulation domain is considered with Lx = 80π . According
to the definition of kj vectors in (A1), ax = 4π/

√
3. Then, a

strain of ε ≈ ±0.029 is applied in the two layers, respectively.
Notice that with this initial condition, a difference of two lattice
spacings ax is achieved across the interface. As a result of
the evolution laws in Eq. (4), this initial condition evolves to
two pairs of dislocations as depicted in Fig. 8(a). Despite the
symmetric initial condition for the strain, the defects start
to move after being formed. This is due to the asymmetry
of the energy when considering opposite strain, leading to
higher values when compressing the materials as it naturally
accounts for repulsive effects when shortening the distance
between atoms [8]. Indeed, the motion of defects occurs in
order to shrink the layer with negative strain. However, with
the selected strain, the motion after the formation of the defect
is very slow, involving a time scale significantly larger than the
formation of the defects from the considered initial condition.
Figure 8(a) corresponds to the stage at which the shape of the
defect become stationary.

A similar configuration involving strained layers in three
dimensions with bcc crystal symmetry is shown in Fig. 8(b).
We consider a strained system as set by Eq. (16). The
periodicities of the atomic density, according to kj vectors
in (A5), read ax = ay = 2π

√
2. A cubic simulation domain is

set with Lx = 80π . With this choice, εx = εy ≈ ±0.035. The
resulting dislocation network forming from the evolution of
amplitudes at the interface between layers is shown in Fig. 8(b).
In particular, the dislocation network is shown by means of A2

values as in Fig. 1(c). The two interfaces between layers with
opposite strain are shown by xy planes, illustrating also the real
part of two representative amplitude functions. In materials
with this structure, dislocations are known to occur mainly with
a {110}〈111〉 slip system, and more rarely with a {112}〈111〉
slip system [42,43]. For instance, a prominent example
consists of Fe crystals [44]. As a result of the simulation

approach considered here, dislocations form along the x̂ and ŷ
directions, which is compatible with the constraint of lying on
{110} planes [e.g., the (101) plane], from the slip system, and
on the (001) interface, as it is the interface between layers with
different strain from the initial condition. The cross section of
the defects aligned along the horizontal axis shows a structure
similar to what is observed in Fig. 8(a). Also in this case, the
structure in Fig. 8(b) refers to the stage where the shape of the
dislocation network is stationary.

Figure 8(c) shows the stationary shape resulting from a
setup as in Fig. 8(b) with fcc crystal symmetry. Notice that
this corresponds to a prototypical system for fcc materials
[45], and it shows also similarities with technology-relevant
zinc-blende or diamond structures [46]. For this symmetry,
ax = ay = 2π

√
3 as from Eqs. (A9). A cubic simulation

domain is set with Lx = 80π . The resulting in-plane strain is
then εx = εy ≈ ±0.043. Starting from this initial condition,
the evolution laws lead also in this case to the formation
of a dislocation network at the interface. For dislocations
in fcc crystals, a {111}〈110〉 slip system is expected [42].
Dislocations are actually found to be aligned along the 〈110〉
directions, which correspond to the intersections between
some {111} and (001) planes, i.e., to slip planes in fcc crystals
and the interface between domains with different strains.
Notice that the amplitude values at the interface between layers
illustrated in Fig. 8(c) show different maximum and minimum
values. Indeed, they belong to the two groups of equivalent
amplitudes playing a different role in the energy functional and
having different values also when considering real, constant
amplitudes in relaxed crystals (see also Appendix A).

Tuning of the energy for the 2D and 3D configurations
reported in Fig. 8 is shown in Fig. 9. In this plot, we consider
the difference in the total energy per interface length or
area induced by the additional energy term of Sec. II A,
namely [F (β) − F (0)]/S, where S = Lx in two dimensions
and S = LxLy in three dimensions. As already observed in
the previous sections, a linear dependence on β of the energy
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FIG. 9. Excess of energy induced by the energy term of Eq. (9)
when considering defects in strained systems as in Fig. 8. Different
curves show such an effect for 2D triangular (red dots and solid
guideline), 3D bcc (green squares and dotted guideline), and 3D fcc
(blue triangles and dashed guideline) crystals.

increase is achieved for small β. Then a sublinear behavior
is observed for larger β values. By comparing the different
symmetries, we can notice that a higher effect is achieved
when considering 3D crystals. This may be ascribed to a denser
configuration of defects, as a result of a biaxial strain in three
dimensions instead of a uniaxial strain in two dimensions. This
has already been observed in Fig. 7, where the effect of β is
higher when increasing the tilt between the crystal, producing
a larger number of defects per unit length (see also Fig. 4).
Moreover, the bcc lattice shows a larger energy increase with
β than the fcc lattice, which can be ascribed to the larger region
involving changes of A2, i.e., the defects appear broader, as
can be noticed from Fig. 8. We verified that for the results
reported in this section, the changes in the defect morphology
induced by the additional energy term in Eq. (9) are analogous
to what is discussed in Sec. IV.

VI. CONCLUSIONS AND REMARKS

In this work, we extended the APFC model in order to
tune the solid-liquid interface and defect energies, increasing
the capabilities of the approach in the description of real
material properties. The effect of the additional energy term
introduced in Sec. II A on the interface morphology as well
as the increasing of the energy as a function of the control
parameter β were illustrated. Moreover, an approximate
analytical expression was derived for the influence of β on
the solid-liquid interface, showing that for small β the energy
increase was linear in β.

The ability to tune the energy of defects at the GB between
tilted crystals was then examined. The additional energy
contribution is found to affect the minimum value of the order
parameter A2 at the defects. However, the change in the energy
is localized at the dislocations, and the reconstructed atomic
density remains unaltered. The effect on the entire GBs was
also addressed and directly reflects what was observed on the
single dislocations. The values of the grain-boundary energy

per unit length F (θ )/L increase with β, but the qualitative
behavior is not significantly influenced, i.e., the same physical
effects are accounted for, with different energies tuned by the
additional term proposed here.

The tuning of the energy of defects in a strained system was
also discussed. In particular, the effect of the additional energy
term on dislocations forming at the interface between layers
with opposite in-plane strain was illustrated. In agreement
with previous cases, the energy increase was also found to be
linear in β for small β. While the investigation of interfaces
and tilted systems focused only on triangular or honeycomb
structures, in this case fcc and bcc crystal symmetries were
considered. Indeed, this investigation was exploited to show
the applicability of the general approach to 3D systems. The
study of more crystal symmetries illustrates the generality
of the APFC equations as discussed in Sec. II, with all the
complementary details provided in Appendix A.

Overall, the proposed extension of the energy, Eq. (9),
allows one to control the energy of defects locally without
changing their structure or general behavior. That is, elastic
properties and defect energies may be tuned easily and
independently. This becomes important when studying the
competition of elastic and plastic relaxation in materials using
APFC.

The simulations reported in this work were performed using
a FEM approach that deeply exploits mesh adaptivity. A semi-
implicit time discretization scheme has been adopted, and it
is reported in Appendix B 1. Dedicated work will be devoted
to further optimize the method and provide more efficient
calculations, useful for further extensions of the APFC model
and to provide extensive studies in three dimensions.

The modeling presented in this work is compatible with
APFC approaches by considering the proper order parameters
and the coupling with other effects. For instance, it would
be interesting to examine the tuning of defect energies and
interfaces in binary systems as in Refs. [20,26] or at GBs
when compositional domains are also present [24,25].
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APPENDIX A: SYMMETRY-DEPENDENT TERMS IN THE
AMPLITUDE EQUATIONS

In Sec. II the APFC model is presented. By exploiting
the long-wavelength limit for the amplitudes [13,20], a
general structure for the amplitude equation can be derived
independently of the crystal symmetry except for the definition
of f s({ηj },{η∗

j }) (hereafter just f s). For the sake of readability,
the general approach is reported in the main text, while the

023301-9



SALVALAGLIO, BACKOFEN, VOIGT, AND ELDER PHYSICAL REVIEW E 96, 023301 (2017)

details related to the specific lattice structure are reported in
this Appendix.

1. Triangular or honeycomb 2D symmetry

The reciprocal-space vectors are

k1 = k0(−
√

3/2,−1/2), k2 = k0(0,1),

k3 = k0(
√

3/2,−1/2), (A1)

with k0 = 1. The term in the energy functional (3) reads

f tri = −2t(η1η2η3 + c.c.), (A2)

while the corresponding contribution to the evolution laws for
ηj in Eq. (5) is

δf tri

δηj

= −2t

3∏
i �=j

η∗
i . (A3)

The constant value of the amplitudes for an equilibrium crystal
is

φtri
0 = t ±

√
t2 − 15v�B0

15v
, (A4)

as obtained from the minimization of Eq. (3) with respect
to ηj = φ0 with f s = f tri. The + solution is valid for t >

0, which produces a triangular array of maxima, and the
− solution is valid for t < 0, which produces a honeycomb
array of maxima.

2. bcc symmetry

The reciprocal-space vectors are

k1 = k0(1,1,0), k2 = k0(1,0,1),

k3 = k0(0,1,1), k4 = k0(0,1,−1), (A5)

k5 = k0(1,−1,0), k6 = k0(−1,0,1),

with k0 = √
2/2. The term in the energy functional (3) reads

f bcc = −2t(η∗
1η2η4 + η∗

2η3η5 + η∗
3η1η6 + η∗

4η
∗
5η

∗
6 + c.c.)

+ 6v(η1η
∗
3η

∗
4η

∗
5 + η2η

∗
1η

∗
5η

∗
6 + η3η

∗
2η

∗
6η

∗
4 + c.c.).

(A6)

The corresponding contributions in Eq. (5) can be written as

δf bcc

δη∗
i

= −2t(ηkη
∗
n + ηjηl) + 6v(ηkηlηm + ηjη

∗
mη∗

n),

δf bcc

δη∗
l

= −2t(η∗
mη∗

n + ηiη
∗
j ) + 6v(ηiη

∗
kη

∗
m + ηkη

∗
j η

∗
n),

(A7)

where all the equations for the amplitudes are obtained by
permutations on the groups (i,j,k) = (1,2,3) and (l,m,n) =
(4,5,6).

The constant value of the amplitudes in equilibrium is

φbcc
0 = 2t +

√
4t2 − 45v�B0

45v
(A8)

as obtained from the minimization of Eq. (3) with respect to
ηj = φ0 with f s = f bcc.

3. fcc symmetry

The reciprocal-space vectors are

k1 = k0(−1,1,1), k2 = k0(1,−1,1),

k3 = k0(1,1,−1), k4 = k0(−1,−1,−1), (A9)

k5 = k0(2,0,0), k6 = k0(0,2,0), k7 = k0(0,0,2),

with k0 = √
3/3. Notice that at variance from triangular or

bcc symmetry, two different sets of vectors with different
length are present in Eq. (A9). This has to be taken into account
when considering the |kj |2 factor of Eq. (4), which is equal
to 4/3 for k5,6,7 while it is 1 in all the other cases (also with
regard to other symmetries). The term in the energy functional
(3) reads

f fcc = −2t[η∗
1(η∗

2η5 + η∗
3η7 + η∗

4η
∗
6) + η∗

2(η∗
3η6 + η∗

4η
∗
7)

+ η∗
3η

∗
4η

∗
5 + c.c.] + 6v[η∗

1(η∗
2η

∗
3η

∗
4 + η2η

∗
6η7 + η3η5η

∗
6

+ η4η5η7) + η∗
2η5(η3η

∗
7 + η4η6) + η∗

3η4η6η7 + c.c.].

(A10)

The contributions to Eq. (5) are

δf fcc

δη∗
1

= 6v(η∗
2η

∗
3η

∗
4 + η2η

∗
6η7 + η3η5η

∗
6 + η4η5η7)

− 2t(η∗
2η5 + η∗

3η7 + η∗
4η

∗
6),

δf fcc

δη∗
2

= 6v(η∗
1η

∗
3η

∗
4 + η1η6η

∗
7 + η3η5η

∗
7 + η4η5η6)

− 2t(η∗
3η6 + η∗

4η
∗
7 + η∗

1η5),

δf fcc

δη∗
3

= 6v(η∗
1η

∗
2η

∗
4 + η1η

∗
5η6 + η2η

∗
5η7 + η4η6η7)

− 2t(η∗
4η

∗
5 + η∗

1η7 + η∗
2η6),

δf fcc

δη∗
4

= 6v(η∗
1η

∗
2η

∗
3 + η1η

∗
5η

∗
7 + η2η

∗
5η

∗
6 + η3η

∗
6η

∗
7) (A11)

− 2t(η∗
1η

∗
6 + η∗

2η
∗
7 + η∗

3η
∗
5),

δf fcc

δη∗
5

= 6v(η1η
∗
3η6 + η2η

∗
4η

∗
6 + η2η

∗
3η7 + η1η

∗
4η

∗
7)

− 2t(η1η2 + η∗
3η

∗
4),

δf fcc

δη∗
6

= 6v(η∗
1η2η7 + η3η

∗
4η

∗
7 + η∗

1η3η5 + η2η
∗
4η

∗
5)

− 2t(η2η3 + η∗
1η

∗
4),

δf fcc

δη∗
7

= 6v(η∗
2η3η5 + η1η

∗
4η

∗
5 + η1η

∗
2η6 + η3η

∗
4η

∗
6)

−2t(η1η3 + η∗
2η

∗
4).

Under the assumption of identical amplitudes, φ0 is

φfcc
0 = 18t +

√
324t2 − 3087v�B0

441v
, (A12)

as obtained from the minimization of Eq. (3) with respect
to ηj = φ0 with f s = f fcc. However, even when considering
a relaxed crystal with real and constant amplitudes, ηj with
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j � 4 and j � 5 are not equivalent in Eq. (A10). By assuming

ηj =
{
ξ, j � 4,

ψ, j � 5,
(A13)

we can write the stationary conditions δF/δξ = 0 and
δF/δψ = 0 and solve for ξ and ψ . For the parameter adopted
in Sec. V, we calculated ξ = 1.334 and ψ = 1.002, which are
used to set the initial conditions for strained fcc crystals by
means of φ0 = φ0,j in Eq. (8).

APPENDIX B: FEM IMPLEMENTATION

1. Discretization scheme

The calculation of the evolution in time of ηj has been
performed by considering different equations for their real and
imaginary parts. The following array of functions is consid-
ered: α = [Re(η1),Im(η1), . . . ,Re(ηN ),Im(ηN )], indexed by
p = 1, . . . ,2N , and we define k = 2j − 1. With this choice,
ηj = αk + iαk+1. Moreover, we split the fourth-order PDE in
Eq. (4) in two second-order PDEs, namely for ∂ηj/∂t and
Gj ηj = ζk + iζk+1. The resulting four equations read

∂αk

∂t
= −|kj |2

[
�B0αk + Bx

0 ∇2ζk − 2Bx
0 kj · ∇ζk+1

+ 3v(A2 − |ηj |2)αk + Re

(
δf s

δη∗
j

)]
,

∂αk+1

∂t
= −|kj |2

[
�B0αk+1 + Bx

0 ∇2ζk+1 + 2Bx
0 kj · ∇ζk

+ 3v(A2 − |ηj |2)αk+1 + Im

(
δf s

δη∗
j

)]
,

ζk = ∇2αk − 2kj · ∇αk+1,

ζk+1 = ∇2αk+1 + 2kj · ∇αk. (B1)

Let us consider the time discretization tn with n ∈ N such
as 0 = t0 < t1 < · · · and the time step τn = tn+1 − tn. The
adopted semi-implicit integration scheme in the matrix form
reads L · x = R with

L =

⎡⎢⎢⎢⎣
−∇2 A 1 0

−A −∇2 0 1

G1
({

α
(n)
i

})
0 K∇2 −KA

0 G2
({

α
(n)
i

})
KA K∇2

⎤⎥⎥⎥⎦, (B2)

x =

⎡⎢⎢⎢⎢⎣
α

(n+1)
k

α
(n+1)
k+1

ζ
(n+1)
k

ζ
(n+1)
k+1

⎤⎥⎥⎥⎥⎦, R =

⎡⎢⎢⎢⎢⎣
0

0

H1
({

α
(n)
i

})
H2

({
α

(n)
i

})

⎤⎥⎥⎥⎥⎦, (B3)

where A = 2kj · ∇ and K = |kj |2Bx
0 , while the functions

evaluated explicitly at time tn are given by

G1({αi}) = 1

τn

+ |kj |2�B + 3v|kj |2
(
A2 + α2

k − α2
k+1

)
,

G2({αi}) = 1

τn

+ |kj |2�B + 3v|kj |2
(
A2 + α2

k+1 − α2
k

)
,

H1({αi}) =
[

1

τn

+ 6|kj |2vα2
k

]
αk − |kj |2Re

(
δf s

δη∗
j

)
,

H2({αi}) =
[

1

τn

+ 6|kj |2vα2
k+1

]
αk+1 − |kj |2Im

(
δf s

δη∗
j

)
.

(B4)

The functions in (B4) account for the right- and
left-hand-side terms resulting from the linearization of
−3v(|A|2 − |ηj |2)αk and −3v(|A|2 − |ηj |2)αk+1 terms in (B1)
as a function of α

(n+1)
k and α

(n+1)
k+1 around α

(n)
k and α

(n)
k+1,

respectively [37]. The ordering of the equations in the system
is adopted in order to have the ∇2 term along the diagonal. This
allows for high efficiency in the calculation of the numerical
solution, in particular when using iterative solvers. To compute
the evolution of the amplitudes from Eq. (4), the system defined
by (B2) and (B3) has to be solved for each ηj , i.e., a number of
(coupled) systems equal to the number of different amplitude
functions (i.e., kj vectors) has to be considered.

So far, only the implementation of the standard APFC
model has been considered. The contribution introduced in
Sec. II A, providing the additional term in the evolution laws
as reported in Eq. (10), is readily included by computing the
quantity ∇2A2 and adding the term β∇2A2 to the matrix (B2)
at L31 and L42.

The integration scheme reported in this Appendix has been
implemented in the finite-element method framework available
within the AMDIS toolbox [39,40].

2. Spatial adaptivity

As mentioned in Sec. II B, an adaptive spatial discretiza-
tion has been adopted in order to optimize the numerical
simulations. In particular, we considered a refinement of the
computational grid where the real and complex parts of ηj

oscillate. Notice that according to the specific kj vectors and
the deformation of the crystal, amplitude functions may oscil-
late differently. Here, we detect the region where oscillations
occur by evaluating where the quantity

∑N
j=1 |∇[Im(ηj )]| is

nonvanishing (over an arbitrary threshold), and we set the
refinement to ensure proper resolution for all the ηj functions.
In addition to this criterion, the spatial discretization is further
refined where nonvanishing values of |∇A2| are present in
order to ensure the proper resolution also at defects and
interfaces, typically involving changes in the amplitudes on
smaller length scales than in the bulk. At variance with the
work reported in Ref. [12], a change in the equations of the
APFC model is not required here.

3. Simulation domain for periodic boundaries

To simulate infinitely extended, tilted crystal with periodic
boundary conditions, matching amplitudes have to be set at the
boundaries of the simulation domain. For the setup adopted in
Sec. IV, this occurs at the boundaries perpendicular to the GBs.

For the GBs shown in Figs. 4(a)–4(c), the size of the domain
along x̂ is set to Lx = 320π . To avoid the presence of a further
discontinuity in the crystal orientation at the top and bottom
boundaries, Ly has to be set according to the specific choice of
θ , ensuring matching amplitudes at the boundaries with normal
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along ŷ. Therefore, by considering the triangular symmetry,
kj vectors reported in (A1), and the tilt angle θ affecting the
amplitudes as from Eq. (7), Ly must be an integer number of

λ1 = 4π

−√
3 sin θ + 1 − cos θ

,

λ2 = 2π

1 − cos θ
,

λ3 = 4π√
3 sin θ + 1 − cos θ

.

(B5)

λ2 is the largest wavelength along ŷ for small θ . In the
simulations reported in the following, we select some θ values
for which λ2(θ )/λ1(θ ) and λ2(θ )/λ3(θ ) give an integer number.
Then, Ly = λ2(θ ).

To simulate a horizontal GB, as in Figs. 4(e)–4(g), the size
of the domain along ŷ is set to Ly = 320π . Then, matching

amplitudes have to be set at the boundaries with normal along
x̂. Lx must then be an integer number of

λ′
1 = 4π

sin θ̄ − √
3 cos(θ̄ − 1)

,

λ′
2 = 2π

sin θ̄
,

λ′
3 = 4π

sin θ̄ + √
3(cos θ̄ − 1)

.

(B6)

λ′
3 is the largest wavelength in the x̂ direction for small θ̄ .

However, at variance from the vertical GB, it has a value
comparable to the others for small θ̄ . Therefore, θ̄ values are
chosen in order to have integer numbers for Mλ′

3(θ̄ )/λ′
1(θ̄)

and Mλ′
3(θ̄ )/λ′

2(θ̄), with M significantly larger than 1. Then,
Lx = Mλ′

3(θ̄).
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