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We consider a phase field crystal modeling approach for mixtures of interacting active and passive particles in
two dimensions. The approach allows us to describe generic properties for such heterogeneous systems within a
continuum model. We validate the approach by reproducing experimental results, as well as results obtained with
agent-based simulations. The approach is valid for the whole spectrum from highly dilute suspensions of passive
particles and interacting active particles in a dense background of passive particles. However, we concentrate only
on the extreme cases, because for the situation with similar fractions of active and passive particles emerging
structures are hard to analyze and experimental results are missing. We analyze in detail enhanced crystallization
due to the presence of active particles, how collective migration is affected by a disordered environment, and
laning states, which are globally nematic but polar within each lane.
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I. INTRODUCTION

Active systems have been the focus of intense research for
the last decade because they provide deep insights into the
self-organization of systems that are intrinsically in a nonequi-
librium state such as living matter. Even more interesting
are mixtures of active and passive particles. Situations of
active particles in crowded environments or passive particles
in an active bath resemble the situation in living matter more
realistically and might even shed light on the active dynamic
processes within a cell [1]. Observed phenomena in mixtures
of active and passive particles are, e.g., activity-induced phase
separation [2], the formation of large defect-free crystalline
domains [3], propagating interfaces [4], laning states [5] but
also a transition from diffusive to subdiffusive dynamics [6,7],
and suppressed collective motion [8]. To understand this wide
span of phenomena is crucial to almost all applications of
active systems.

Different ways exist to describe phenomena in active
systems theoretically. Typical approaches for active systems
consider either the microscopic scale, taking the interactions
between the particles into account, or the macroscopic scale,
focusing on the emerging phenomena. For reviews of both
theoretical descriptions see, e.g., Refs. [9,10]. Examples for
extensions towards mixtures of active and passive particles
are summarized in Ref. [11] and range from active parti-
cles in confined domains [12–14], through active particles
moving between fixed or moving obstacles [6,15–18], to
binary mixtures of interacting active and passive particles
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[2–5]. All these studies are examples for models on the
microscopic scale. Most of these approaches consider the
active particles as spherical particles which travel at a con-
stant speed, whose direction changes according to interaction
rules which comprise explicit alignment and noise. However,
also without any explicit alignment rule, inelastic collisions
[19] or deformations can lead to alignment [20]. Various
more detailed microscopic models have been developed which
model the deformation and internal processes within each
particle [21,22]. These models are based on a phase field
description of the particles and are computationally much
more involved. In Refs. [23,24] another continuum modeling
approach was introduced for active systems which combines
aspects from the microscopic and the macroscopic scales. It
can be viewed as a coarse-grained description of the phase
field models [21,22]. Instead of describing the particles by a
phase field function, particles are represented by peaks in a
particle density field. Deformations and internal processes are
still accounted for (see Ref. [24]), but the approach allows us
to consider much larger numbers of particles, but still much
lower than is possible with classical particle-based models.

The goal of the paper is to extend this coarse-grained con-
tinuum modeling approach to mixtures of active and passive
particles, which will allow us to describe generic properties
of such systems. We perform a preliminary study of binary
collisions between active and passive particles, which provide
useful predictions to understand how larger systems may
evolve. We then use the model to study the effect of a few
active particles in passive systems (active doping) [3,25,26],
how passive particles perturb collective migration in an active
bath [6,27–29], and in an intermediate regime the formation
of lanes of active particles which move in opposite directions
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[5,20,30,31]. For the first case we observe enhanced crystal-
lization in the passive system, in quantitative agreement with
the results of Ref. [3]. For the active bath case we investigate
how collective migration is affected by a disordered environ-
ment. For the special case of immobile passive particles these
results are in agreement with Refs. [7,8]. However, for mobile
passive particles new phenomena and patterns emerge, which
ask for experimental validation. In the intermediate regime
of similar fractions of active and passive particles a laning
state is found, which is characterized by an alignment that
is globally nematic but polar within each lane. This is in
qualitative agreement with Ref. [5]. However, here it is also
observed for spherical-like particles.

II. THE MODEL

The starting point for the derivation of the model is the
microscopic field theoretical model for active particles in-
troduced in Ref. [24]. It has been validated against known
results obtained with minimal agent-based models and proven
to be applicable for large-scale computations for thousands of
particles. The model reads in scaled units

∂tψ = M0�
δFvpfc

δψ
− v0∇ · (ψP),

∂tP = �(α2P) − (α4P) − v0∇ψ − βP1ψA�0 (1)

for a one-particle density field ψ (r, t ), which is defined with
respect to a reference density ψ̄ .

We will interpret the peaks of ψ as particles. The polar or-
der parameter P(r, t ), which is related to a coarse-grained ve-
locity field with a typical magnitude v0 of the self-propulsion
velocity, models the internal processes within the particles.
P is a local quantity that is different from zero only within
the peaks of the density field ψ , which is ensured by β > 0
typically larger than the other terms entering the P equation
and the Heaviside function 1ψA�0. M0 > 0 is the mobility and
α2 > 0 and α4 > 0 are two parameters related to relaxation
and orientation of the polarization field. The influence of these
parameters on the shape of the peaks, their inelastic collisions,
and the resulting collective behavior is analyzed in detail in
Ref. [24]. The energy functional Fvpfc = Fpfc + Fv consists
of a Swift-Hohenberg energy [32]

Fpfc =
∫ {

1

4
ψ4 + 1

2
ψ[q + (1 + �)2]ψ

}
dr, (2)

with a parameter q related to temperature and a length scale 1
related to the lattice distance, and a penalization term

Fv =
∫

H (|ψ |3 − ψ3) dr, (3)

with H � 1500 to constrain the one-particle density field ψ

to positive values. The penalization term Fv is the essential
modification which allows one to model individual particles
[33–36]. Without this additional term the model can be related
to models for active crystals [23,37] and be derived from
dynamical density functional theory for Brownian systems
[38,39]. See also the supplement in Refs. [23] and [40]
for a detailed discussion and nondimensionalization of the
equations.

If we, in addition, neglect the coupling with the polar
order parameter P we obtain the classical phase field crystal
(PFC) model introduced in Refs. [41,42] to model elasticity
in crystalline materials. For a detailed derivation of (2) and
its relation to classical density functional theory we refer to
Refs. [43,44]. If the coupling with P is neglected but the
penalization term (3) considered, the model is known as the
vacancy PFC (VPFC) model [33].

Various ways have been introduced to extend the classical
PFC model towards a second species, thus modeling binary
mixtures [35,43]. We adopt one of these approaches for the
VPFC model by considering energies for species A and B

with

F (ψA,ψB ) = FA
vpfc(ψA) + FB

vpfc(ψB ) + FAB
int (ψA,ψB ),

(4)

where F i
vpfc, i = A,B as before and

FAB
int (ψA,ψB ) = a

2
ψ2

Aψ2
B (5)

is an interaction energy with a > 0.
In principle both species appearing in (4) could be made

active. Our aim is, however, to simulate mixtures of interact-
ing active and passive particles. With this in mind we couple
only species A to the polar order parameter P. For simplicity,
we assume FA

vpfc = FB
vpfc = Fvpfc and thus, e.g., equal lattice

distance of the active and passive particles. The resulting
dynamical equations are

∂ψA

∂t
= MA

0 �

[
δF (ψA)

δψA

+ aψAψ2
B

]
− v0∇ · (ψAP),

∂tP = α2�P − α4P − v0∇ψA − βP1ψA�0,

∂ψB

∂t
= MB

0 �

[
δF (ψB )

δψB

+ aψ2
AψB

]
, (6)

which define a microscopic field theoretical approach for
binary mixtures of interacting active and passive particles.
Extension to more than two species, species with different
lattice distance and interaction potential, and active species
with different self-propulsion velocities are obvious but will
not be considered here.

III. RESULTS

We solve Eqs. (6) in two dimensions using a parallel finite
element approach. We adopt a block-Jacobi preconditioner
[45] that allows us to use a direct solver locally. This is
implemented in AMDiS [46,47]. Details on the numerical
approach can be found in Refs. [24,48]. The computational
domain is a square of size L = 200 with periodic boundary
conditions. The initial condition for ψA and ψB is calculated
using a one-mode approximation with lattice distance d =
4π/

√
3 determined by the free energy equation (2) [36], with

the centers placed randomly according to a packing algorithm
[49]. The P field is set to zero initially.

Each maximum in the one-particle density fields ψA and
ψB is interpreted as an active or passive particle, respectively.
The diameter of the particle is defined by the lattice distance
d. We track the particle positions xi

A,B (t ) and use this
information to compute the particle velocities vi

A,B (t ) as
the discrete time derivative of two successive maxima. We
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TABLE I. Model parameters to be used in the simulations.

a v0 α2 α4 β H q

200 1.5 0.2 0.1 2 1500 −0.9

define the total particle density φ = Nσ/L2, with N the total
number of particles N = NA + NB and NA,B the number of
A and B particles, respectively. The parameter σ = π (d/2)2

is the area occupied by a single particle. The fraction of
active particles present in the system is ηA = NA/N . When
a small fraction of particles is active (ηA < 0.2) we are
in the regime of active doping and analyze how a passive
system is influenced by the presence of a few active particles.
Increasing the number of active particles (ηA > 0.7) we are
in the regime of an active bath and study how a few passive
particles affect an active system.

Unless otherwise specified in the figure captions, we fix the
parameters shown in Table I.

A. Binary collisions between active and passive particles

We begin with analyzing a binary collision of an active and
a passive particle. Figures 1(a) and 1(b) show the results for
two different values of the mobility of the passive particle,
MB

0 = 10 (left) and MB
0 = 70 (right). At time t = 0 a passive

particle [shown as a black (transparent gray) disk] is placed
at the origin. An active particle, shown as a fixed contour
line of ψA, is placed a few lattice lengths to the left with a
homogeneous polarization directed towards the right. For the
low-mobility case (MB

0 = 10, left) the active particle bounces
back after colliding with the passive particle, which does not
move. This is confirmed by a plot of the x component of the
velocity for both particles [Fig. 1(c)].

For the opposite case of high mobility (MB
0 = 70, right) the

passive particle is transported along the x axis by the active
particle [the black arrow in Fig. 1(b) represents the trajectory
of the passive particle]. The x components of the velocities

shown in Fig. 1(d)) confirm this. The collision causes a
slowing of the active particle and results in a movement of
the active and the passive particle with the same velocity.

This preliminary analysis shows that for low values of
the passive mobility MB

0 passive particles can act as fixed
obstacles. In this case a collision causes a change in the active
particle direction. However, for large values of MB

0 the passive
particle is transported by the active particle. The active particle
does not change its direction, only the velocity decreases.
These qualitative differences will also affect larger systems,
which will be analyzed next.

B. Active doping: How active particles enhance crystallization

It has been shown by particle simulations [25,26] and
experimentally [3] that the crystalline structure of passive
particles is altered by the presence of active agents. More
precisely active particles generate density variations in the
passive system and promote crystallization, leading to the
formation of passive clusters. To analyze these phenomena
with our microscopic field theoretical approach we need to
identify if a particle belongs to a cluster. We follow the
definition of Ref. [3] where two criteria have to be fulfilled.
The nearest neighbor distances are less than 3/2d, and the
coordination number is six.

Figure 2 shows snapshots with passive clusters for different
ηA and φ. The time evolution of the percentage of passive
particles which belong to a cluster Xf is shown in Fig. 3.
For dilute systems [φ = 0.5, Fig. 2(a)] Xf slowly increases
with time. Increasing the fraction of active particles ηA leads
to larger values Xf . However, it remains relatively low, rarely
exceeding 20%, for the considered time (t = 1000). Increas-
ing the density [φ = 0.6, Fig. 2(b)] the system changes from
a state where no clusters are present (t = 0) to a state where
up to 50% of the passive particles are found in clusters. A
maximum Xf is observed for ηA = 0.1, where Xf saturates at
t = 1000. Further increasing the number of active particles
leads to a reduction of Xf . Adding more and more active
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FIG. 1. (a), (b) Time series of a head-on collision between an active and a passive particle for low passive mobility MB
0 = 10 (a) and high

passive mobility MB
0 = 70 (b). The active particle is shown (at different times) as a contour line of ψA, and its orientation is represented by

an arrow. Blue (red) is used to show the particle before (after) the collision. The final position of the passive particle is shown as a black
disk, whereas in (b) the transparent black disk represents the initial condition of the passive particle, and the black line its trajectory. The
active particle bounces back after the collision (a) and transport the passive particle (b). The velocities along the x direction of active and
passive particles are shown as a function of time in panels (c) for MB

0 = 10 and (d) for MB
0 = 70; MA

0 = 70 for both cases. The yellow region
represents the approximate time of the collision.
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FIG. 2. Snapshots showing passive clusters for different total
densities and fractions of active particles φ and ηA at time t = 0
(first column) and at time t = 1000 (second column). Particles with
the same color belong to the same cluster, white disks represent
passive particles not belonging to any cluster, and black disks are
active particles. (a) φ = 0.5, ηA = 0.05, (b) φ = 0.6, ηA = 0.05 (c)
φ = 0.7, ηA = 0.05, (d) φ = 0.8, ηA = 0.15. Other parameters are
MA

0 = MB
0 = 50.

particles to systems with already existing crystalline clus-
ters introduces disorder, a phenomenon already observed in
Ref. [3]. By further increasing the density [φ = 0.7, Fig. 2(c)]
some clusters are already present for the random initial
configuration at t = 0, due to spontaneous crystallization.
Active particles can be inside these regions, thus disturbing
their symmetry. This explains why the system behaves in
the opposite way as for the dilute case, with Xf decreasing
as the fraction of active particles ηA increases. Finally for
φ = 0.8 the initial configuration is already almost completely
crystallized [Xf � 1 for t = 0, Fig. 2(d)]. Adding active
particles partially destroys the crystalline structure (Fig. 3)
and Xf decreases for increasing ηA. We thus observe both

phenomena: enhanced crystallization in dilute systems and
suppressed crystallization in dense systems.

A final observation concerns how the dynamics of the
active particles is affected by the presence of passive ones.
In Fig. 4 the maximum of the particle-averaged mean square
displacement 〈�r2(t )〉 for active particles is shown as a
function of φ and ηA. No data are shown for ηA = 0.01, as
the number of active particles is too small for meaningful av-
erages. We observe a clear correlation between this value and
the crystallization in the system: the higher Xf , the smaller
the maximum displacement of active particles until, for the
extreme case of φ = 0.8 and ηA = 0.05, active particles are
trapped inside a big passive cluster and show a very small
displacement (see also Supplemental video SV1 in Ref. [50]).

C. Active bath: How passive particles can
suppress collective migration

Inelastic collisions in systems which are composed solely
of active particles can lead to collective motion. This has been
shown by particle-based models (e.g., Ref. [19]), microscopic
field theoretical models [24], and phase field models [21,22].
In all these models the state of collective migration is charac-
terized by the order parameter ω = 1/NA| ∑NA

i=1 v̂i
A(t )| being

close to one, with v̂i
A(t ) the unit velocity vector for the active

particle i at time t . We analyze here the stability of the state
of collective motion, if passive particles are introduced in
the system. How do the total density, the fraction of active
particles, and the mobility of passive particles affect this state?

To consider a dense system, we fix φ = 0.9 and further set
ηA = 0.9. We have seen (Fig. 1) that for low mobility MB

0
passive particles act as fixed objects. The situation is therefore
comparable with experimental studies for active colloids in
disordered environments [8], which show a suppression of
collective motion. Also in our simulations the active system
does not reach a state of collective motion, as shown from the
time series of ω [Fig. 5(b)]. However, the situation changes if
we increase MB

0 , thus making the passive particles mobile.
Figure 5(a) shows the average velocity ṽB of the passive
particles as a function of their mobility. Increasing MB

0 , the
average passive particles’ velocity ṽB also increases, meaning
that passive particles are transported by the active ones, as
expected. The order parameter ω does not always increase
monotonically with MB

0 . In Fig. 5(b) we see, for instance, that
ω has a slightly higher value for MB

0 = 10 (red curve) than for
MB

0 = 30 (blue curve). This is true also for higher values of
MB

0 , but we can say that for MB
0 = 50, 70 a state of collective

migration is reached [Fig. 5(b)], even though the time required
to reach it is larger than in the homogeneous case ηA = 1 (no
passive particles present).

We now fix the mobility MB
0 = 70 and vary φ and ηA. We

reduce φ down to 0.7, a limit for which a state of collective
migration would still be reached in a homogeneous active
system (ηA = 1), as seen from the purple lines in Fig. 6. For
φ = 0.9 a state of collective migration is reached for ηA = 0.9
but with a longer transient phase than for the homogeneous
case [green line in Fig. 6(c)]. For ηA = 0.8 we already see a
small perturbation from the unit value for ω, and for ηA = 0.7
collective migration is no longer reached. We observe here the
accumulation of passive particles in certain regions; see also
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FIG. 3. Percentage of passive particles belonging to a cluster Xf as a function of time for different total densities and fractions of active
particles φ and ηA. We observe that for φ = 0.5 and φ = 0.6 (top row), increasing the number of active particles leads to an increase of Xf ,
whereas the opposite is true for φ = 0.7 and φ = 0.8 (bottom row). Other parameters are MA

0 = MB
0 = 50. Each curve has been obtained as

the average of five different simulations starting with different initial conditions.

Fig. 7(d). This hinders the active particles from following a
straight trajectory and thus the formation of collective migra-
tion. Things change by reducing the total density to φ = 0.8.
The state of collective migration is not reached, independently
of the value of ηA [Fig. 6(b)]. However, for ηA = 0.9, the
green curve in Fig. 6(b), a new state is formed, where the order
parameter ω is at least locally close to one. This new state is
discussed below and can be seen in the snapshots in Figs. 7(a)
and 7(b). For φ = 0.7 [Fig. 6(a)] a decrease in ηA leads to a
decrease of ω. In this situation there is enough empty space in
the system to allow active particles to change their trajectories
when interacting with passive ones. This causes a perturbation
that gets bigger as the number of passive particles increases,
leading to a decrease of ω.
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FIG. 4. Maximum of the particle-averaged mean square dis-
placement 〈�r2(t )〉 of active particles moving in a binary mixture for
different values of φ and ηA. Active particles travel a longer distance
when the passive particles have not crystallized, until the extreme
case of φ = 0.8, ηA = 0.05 where the maximum mean square dis-
placement is so low that active particles are basically trapped (see
also Supplemental video SV1 in Ref. [50]). Other parameters are
MA

0 = MB
0 = 50. Each point has been obtained as the average of five

different simulations started with different initial conditions.

A more detailed investigation of the intermediate regime
with φ = 0.8 and ηA = 0.9 [Figs. 7(a) and 7(b)] shows an
intermediate state with two lanes of active particles moving
in opposite direction. The lanes are separated by passive
particles (black disks) that prevent the alignment of the
collectively migrating domains. It is more stable in Fig. 7(a),
persisting for the whole simulation time, and less stable in
Fig. 7(b), where the alignment of passive particles will be
destroyed after a while and a transition to collective migration
follows (see Supplemental video SV2 in Ref. [50]). This
state is known as a laning state, and it is characterized by an
alignment that is globally nematic but polar within each lane.
It has already been observed for self-propelled rods with an
effective nematic alignment [30,31], soft deformable self-
propelled particles with high aspect ratio [20], and a mixture
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FIG. 5. (a) Average velocity ṽB of passive particles as a function
of their mobility in an active bath with φ = 0.9, ηA = 0.9. ṽB

increases almost linearly for small MB
0 until it starts to saturate at

around MB
0 = 70. (b) Order parameter ω as a function of time for

different mobility MB
0 . For small values of MB

0 there is no collective
migration, for intermediate values this state is reached quite fast,
whereas for high mobility the transient phase to reach collective
migration increases. We choose to fix MB

0 = 70 for the analysis in
Fig. 6. MA

0 = 100 for both cases. The data have been obtained as
the average of 10 different simulations started with different initial
conditions.
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FIG. 6. Order parameter ω as a function of time for different values of φ and ηA. The purple curve corresponds to the case ηA = 1, i.e., no
passive particles present. We see that in all other cases the state of collective migration is reached later (longer transient phase) or not reached
at all, especially for lower ηA (red curves). Other parameters are MA

0 = 100 and MB
0 = 70. The data have been obtained as the average of 10

different simulations begun with different initial conditions.

of self-propelled and passive rods interacting solely through
excluded volume interactions [5]. It is to our knowledge the
first time that this laning state is observed in a mixture of
interacting spherical-like particles whose velocity alignment
would be globally polar in the absence of passive particles
[24].

Even if a state of pure collective migration is reached,
the passive particles are not randomly distributed but are
transported by the active particles, filling the holes between
them. For φ � 0.8 the packing of the collectively migrating
active particles allows the passive particles to arrange in the
free space. They form chainlike structures [Fig. 7(c) and

FIG. 7. The color code corresponds to the orientation of the
single-particle velocity, and black disks represent passive particles.
(a) Snapshot of a laning state, with two macroregions of active
particles having exactly opposite orientation. This state can last
for a long time because of the presence of passive particles at the
boundary between the two regions (see also Supplemental video SV2
in Ref. [50]). (b) Another laning state. Here less passive particles
are accumulated at the boundary between the moving active regions.
This situation is less stable, and, at a later time (c), active particles
all move in the same direction, whereas passive ones form chains,
which persist over longer periods (see also Supplemental video SV3
in Ref. [50]). (d) Passive particles forming clusters in an active bath.
(a)–(c) Regime φ = 0.8, ηA = 0.9, (d) regime φ = 0.9, ηA = 0.7.

Supplemental video SV3 in Ref. [50]], which persist over
longer periods and are transported by the active particles.
If the number of passive particles is increased ηA = 0.7 a
clustering of passive particles within the active bath can be
observed; see Fig. 7(d). These new states and patterns are
characteristic for binary mixtures and should be explored
further, both numerically and experimentally.

IV. CONCLUSIONS

In summary, our microscopic field theoretical approach for
mixtures of interacting active and passive particles has been
used to investigate a wide spectrum from systems with φ <

0.7 to dense systems φ > 0.7 with a relatively low fraction
of active particles ηA < 0.2 (active doping) and a relatively
high fraction ηA > 0.7 (active bath), respectively. We have
demonstrated with one and the same model a variety of
known phenomena, such as enhanced crystallization via active
doping [3,25] and suppressed crystallization in dense systems
[3]. We also analyzed the limits of collective migration, which
for the special case of immobile passive particles qualitatively
reproduce the results in Ref. [8]. Within the experiments in
Ref. [3] and in our simulations the suppression of collective
migration sensitively depends on the fraction of immobile pas-
sive particles. Within the experimentally less explored state
of mobile passive particles we found distinct phenomena. For
fractions of passive particles, for which collective migration
is suppressed if the passive particles are immobile, collective
motion is still possible if the mobility of these particles is
large enough. But there are also intermediate regimes, known
as laning states, where lanes of active particles moving in
opposite direction are separated by boundary layers of passive
ones. We further found chains of passive particles and clusters
which persist for a relatively long time. A rigorous classifica-
tion of these states remains open and should be addressed with
experimental investigations.

While the approach is unable to reach system sizes possible
with classical particle-based methods, it provides a mini-
mal approach for a more detailed microscopic description,
which does not need any explicit alignment rule, accounts
for processes within the particle, and allows for particle
deformations. It can be seen as a coarse-grained description
of the phase field models [21,22]. As already pointed out, the
approach can easily be modified to consider more than two
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species, species with different size and interaction potential,
and active species with different self-propulsion velocities,
which makes the approach a generic tool to study active
systems in complex environments. Also hydrodynamic inter-
actions have already been considered together with a (passive)
phase field crystal model [36,51] and could also be included
in the considered model.
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