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Abstract
A singularly perturbed problemwith two small parameters in two dimensions is inves-
tigated. Using its discretization by a streamline-diffusion finite element method with
piecewise bilinear elements on a Shishkin mesh, we analyze the superconvergence
property of the method and suggest the choice of stabilization parameters to attain
optimal error estimate in the corresponding streamline-diffusion norm. Numerical
tests confirm our theoretical results.
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1 Introduction

Mathematical models of certain physical processes often involve parameter-dependent
differential equations. In some cases when parameters have very small values, those
problems are singularly perturbed. Two-parameter singularly perturbed problems arise
in chemical flow reactor theory [10] and in the case of boundary layers controlled by
suction, or blowingof somefluid [13]. It iswell known that standardnumericalmethods
are unsuitable for singularly perturbed problems and fail to give accurate solutions
unless the mesh size is at least as small as the perturbation parameter(s), which is
unrealistic in practice. There is a vast literature dealing with numerical methods for
various singularly perturbed problems (see for example the book by Roos et al. [11]
for an overview).

One of the commonly used methods for solving singularly perturbed problems is
the finite element method (FEM) combined with a layer-adapted mesh. The standard
Galerkin finite element method has good approximation properties, but for the singu-
larly perturbed problems it is less stable then for non-singularly perturbed problems.
This produces oscillations in the computed solution which do not exist in the true solu-
tion. For that reason the Galerkin FEM should be appropriately stabilized. The most
frequently studied and most popular stabilized FEM is the streamline-diffusion finite
element method (SDFEM)which adds weighted residuals to the Galerkin FEM. It was
proposed by Hughes and Brooks [4] and applied to several classes of problems. Math-
ematical analysis of this method has been derived by Johnson and Navert [5], Johnson
et al. [6], Niijima [9] and Zhou [19]. Compared with the standard Galerkin FEM, the
SDFEM provides additional control over the convective derivative in the streamline
direction because of the definition of the induced streamline-diffusion norm. This
additional bound prevents the discrete solution from oscillating over a large part of the
domain. When studying the SDFEM, the main question is the choice of stabilization
parameters on problem subdomains (more on different choices of the SD parameter
can be found in [2,3,7,11,14,15]).

Two-parameter problems are numerically treated with the SDFEM on an appropri-
ately designed Shishkin mesh only in the one-dimensional case in Roos and Uzelac
[12]. The choice of stabilization parameters in [12] is based on the analysis of the
structure of the coefficient matrix. The aim was to obtain an M-matrix. For a two-
dimensional problem, this approach can not be applied. We also emphasize that the
stabilization in two-parameter problems is rather different from the stabilization in
the case when ε2 = 1. That is because in the two-parameter case, stabilization is very
sensitive to the relation between perturbation parameters ε1 and ε2, and the number of
mesh intervals N used for the discretization. This fine tuning of stabilization parameter
is achieved with very careful error analysis. To the best of our knowledge, the SDFEM
has not been applied on any two-parameter problem in two dimensions so far.

In this paper we consider the following singularly perturbed elliptic two-parameter
problem

Lu := −ε1Δu + ε2b(x, y)ux + c(x, y)u = f (x, y) in Ω = (0, 1) × (0, 1),

u = 0 on ∂Ω, (1.1)
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with

b(x, y) ≥ b0 > 0, c(x, y) ≥ c0 > 0, (x, y) ∈ Ω̄, (1.2)

where b, c and f are sufficiently smooth functions, b0, c0 are constants, ε1, ε2 are
small perturbation parameters and f satisfies the compatibility conditions

f (0, 0) = f (0, 1) = f (1, 0) = f (1, 1) = 0. (1.3)

Under these assumptions there exists a classical solution u of the problem (1.1) such
that u ∈ C3,α(Ω̄) for α ∈ (0, 1), [8]. We also assume that ε2 is small enough to have

c(x, y) − ε2

2
bx (x, y) ≥ γ > 0, (x, y) ∈ Ω, (1.4)

for some constant γ . The problem (1.1) is characterized by exponential layers at x = 0
and x = 1, characteristic layers at y = 0 and y = 1 and corner layers at four corners
of Ω . The width of the exponential layers depends on the relation between ε1 and ε2.
For ε2 = 0 the problem (1.1) is a reaction–diffusion problem as opposed to ε2 = 1
when it becomes a convection–diffusion problem. In the literature so far, convection–
diffusion problems and reaction-diffusion problems are mostly handled separately.
Here, we consider problems where 0 < ε1, ε2 � 1 for arbitrary relation between ε1
and ε2.

The outline of the paper is as follows. In Sect. 2 we present information about
a solution decomposition together with necessary assumptions. A description of the
Shishkin mesh is given in Sect. 3. Section 4 contains a short review of the FEM and
related error estimates, as well as definition of the SDFEM. In Sect. 5 we present our
main theoretical result on superconvergence and suggest the choice of the stabilization
parameter. The theoretical findings are experimentally verified in Sect. 6.

Notation 1 For a set D, a standard notation for Banach spaces L p(D), Sobolev spaces
Wk,p(D), Hk(D) = Wk,2(D), norms ‖ · ‖L p(D) and seminorms | · |Hk (D) is used.
Specially, if p = 2 we use notation ‖ · ‖0,D. We write (·, ·)D for the standard L2(D)

inner product. If D = Ω we drop the Ω from the notation. Throughout the paper, C
will denote a generic positive constant independent of the perturbation parameters
ε1, ε2 and of the mesh.

2 Solution properties

For the characterization of exponential layers in the solution of (1.1), we use an exten-
sion of the results from [16] where the problem (1.1) with b = b(x) and c = c(x) is
studied. The widths of the layers depend on the values of

μ0 =
− ε2B +

√
ε22B

2 + 4ε1c0

2ε1
and μ1 =

ε2b0 +
√

ε22b
2
0 + 4ε1c0

2ε1
,
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where B = max(x,y)∈Ω̄ b(x, y). In the paper we will frequently use the following
properties of μ0 and μ1 taken from [16]:

max{μ−1
0 , ε1μ1} ≤ C

(
ε2 + ε

1/2
1

)
,

ε2μ0 ≤ b−1
0 ‖c‖L∞ ,

√
ε1μ0 ≤ 1/

√
c0, (2.1)

ε2(ε1μ1)
−1/2 ≤ Cε

1/2
2 ,

c0
(
‖b‖L∞ + √‖c‖L∞

)−1 ≤ μ0 ≤ μ1. (2.2)

In the error analysis we assume that the solution decomposition and appropriate esti-
mates of the solution components and their derivatives given in the following theorem
from [16] are valid also for the problem (1.1).

Theorem 1 [16] Let the elliptic problem (1.1) on the unit square Ω̄ be given where the
functions b, c and f are sufficiently smooth on Ω̄ satisfying conditions (1.2)–(1.4), and
let p ∈ (0, 1) and k ∈ (0, 1/2) be arbitrary. Assume that 2ε2‖b′‖L∞ ≤ k(1 − p)c0.
Furthermore, let δ be a positive constant satisfying δ2 ≤ (1−p)c0/2.Then the solution
u of the boundary value problem (1.1) can be decomposed as

u = S + E10 + E11 + E20 + E21 + E31 + E32 + E33 + E34,

where for all (x, y) ∈ Ω̄ and 0 ≤ i + j ≤ 2, the regular part S satisfies

∣∣∣∣
∂ i+ j S

∂xi∂ y j

∣∣∣∣ ≤ C, (2.3)

the exponential and parabolic layer components satisfy

∣∣∣∣
∂ i+ j E10

∂xi∂ y j

∣∣∣∣ ≤ Cμi
0e

−pμ0x ,

∣∣∣∣
∂ i+ j E11

∂xi∂ y j

∣∣∣∣ ≤ Cμi
1e

−pμ1(1−x), (2.4)

∣∣∣∣
∂ i+ j E20

∂xi∂ y j

∣∣∣∣ ≤ Cε
− j

2
1 e

− δy√
ε1 ,

∣∣∣∣
∂ i+ j E21

∂xi∂ y j

∣∣∣∣ ≤ Cε
− j

2
1 e

− δ(1−y)√
ε1 , (2.5)

while the corner layer components satisfy the following estimates

∣∣∣∣
∂ i+ j E31

∂xi∂ y j

∣∣∣∣ ≤ Cε
− j

2
1 μi

0e
−pμ0x e

− δy√
ε1 ,

∣∣∣∣
∂ i+ j E34

∂xi∂ y j

∣∣∣∣ ≤ Cε
− j

2
1 μi

0e
−pμ0xe

− δ(1−y)√
ε1 , (2.6)

∣∣∣∣
∂ i+ j E32

∂xi∂ y j

∣∣∣∣ ≤ Cε
− j

2
1 μi

1e
−pμ1(1−x)e

− δy√
ε1 ,

∣∣∣∣
∂ i+ j E33

∂xi∂ y j

∣∣∣∣ ≤ Cε
− j

2
1 μi

1e
−pμ1(1−x)e

− δ(1−y)√
ε1 .

(2.7)

For the superconvergence analysis, in the sequel we also assume the following
L2-estimates for the components of the exact solution.
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Assumption 2.1 For the solution decomposition in Theorem 1, let

∥∥∥∥
∂ i+ j S

∂xi∂ y j

∥∥∥∥
0

≤ C,

∥∥∥∥
∂ i+ j E1s

∂xi∂ y j

∥∥∥∥
0

≤ Cμ
i−1/2
s , s = 0, 1, (2.8)

∥∥∥∥
∂ i+ j E2

∂xi∂ y j

∥∥∥∥
0

≤ Cε
− j/2+1/4
1 ,

∥∥∥∥∥
∂ i+ j Es

3

∂xi∂ y j

∥∥∥∥∥
0

≤ Cε
− j/2+1/4
1 μ

i−1/2
s , s = 0, 1, (2.9)

for 0 ≤ i + j ≤ 3, where E2 = E20 + E21, E0
3 = E31 + E34 and E1

3 = E32 + E33.

The estimates given in Assumption 2.1 for 0 ≤ i + j ≤ 2 follow directly from
Theorem 1. For our error analysis it is sufficient to have L2-estimates for the above
third-order derivatives. This assumption isweaker then requiring all third-order deriva-
tives of u to be pointwise bounded. The similar assumption is also set in [2,15,18] and
references therein.

3 Layer-adaptedmesh

Let the number of subintervals for the discretization in both x and y direction be N ,

and let N be a positive integer divisible by 4. Based on the decomposition we take
p = 1/2 and introduce a corresponding tensor product Shishkin mesh.

Along the x-coordinate axis a piecewise uniform mesh ΩN
λ0,λ1

is constructed with
three distinct uniform meshes separated by transition points located at λ0 and 1− λ1.
Along the y-coordinate axis we construct in the same way a piecewise uniform mesh
ΩN

λy
with transition points located at λy and 1 − λy . Each of the intervals [0, λ0],

[1 − λ1, 1], [0, λy], [1 − λy, 1] is uniformly divided into N/4 subintervals, and each
of the intervals [λ0, 1− λ1], [λy, 1− λy] is uniformly divided into N/2 subintervals.
Then the mesh on Ω̄ is given by tensor product

ΩN = ΩN
λ0,λ1

× ΩN
λy

,

where λ0, λ1, λy are defined by

λs = min

{
1

4
,
2σ

μs
ln N

}
, s = 0, 1, λy = min

{
1

4
,
σ

δ

√
ε1 ln N

}
.

The parameter σ is typically chosen equal to the formal order of the method but
for our superconvergence analysis, we use σ ≥ 5/2 like in [2,15,18]. We assume that
λ0, λ1 and λy are less then 1/4, since otherwise the method can be analyzed using
standard classical techniques.

According to the transition points, the domain Ω̄ is divided into subdomains ΩC ,
Ω00, Ω0y , Ω11, Ω1y , Ωy :

ΩC = [λ0, 1 − λ1] × [λy, 1 − λy],
Ω00 = [0, λ0] × [λy, 1 − λy],
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Fig. 1 Partitioning of the
domain Ω

Ω0y

Ω0y

Ω00

Ω1y

Ω1y

Ω11ΩC

Ωy

Ωy

Ω0 Ω1

Ω0y = [0, λ0] × [0, λy] ∪ [0, λ0] × [1 − λy, 1],
Ω11 = [1 − λ1, 1] × [λy, 1 − λy],
Ω1y = [1 − λ1, 1] × [0, λy] ∪ [1 − λ1, 1] × [1 − λy, 1],
Ωy = [λ0, 1 − λ1] × [0, λy] ∪ [λ0, 1 − λ1] × [1 − λy, 1],

see Fig. 1.
For an element τi, j = (xi−1, xi ) × (y j−1, y j ) ∈ ΩN and element sizes in x and y

directions, we also use notation hx,τ = xi − xi−1, hy,τ = y j − y j−1. The small and
the large step sizes of the mesh are given by

hx,Ω0 = 8σμ−1
0 N−1 ln N , Hx = 2N−1(1 − λ0 − λ1), hx,Ω1 = 8σμ−1

1 N−1 ln N ,

hy = 4
√

ε1N
−1 ln N , Hy = 2N−1(1 − 2λy).

From now on, let τ ∈ ΩN represent any element of the Shishkin mesh.

4 The finite element method

For the problem (1.1), the standard weak formulation is:

Find u ∈ H1
0 (Ω) such that aG(u, v) = ( f , v), ∀v ∈ H1

0 (Ω),

with the bilinear form

aG(w, v) := ε1(∇w,∇v) + (ε2bwx + cw, v), w, v ∈ H1
0 (Ω).
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Let V N ⊂ H1
0 (Ω) be the finite element space of piecewise bilinear functions defined

on the Shishkin mesh. The Galerkin method is characterized by:

Find uN ∈ V N such that aG(uN , vN ) = ( f , vN ), ∀vN ∈ V N . (4.1)

The bilinear form satisfies the Galerkin orthogonality property. Due to assumption
(1.4), the bilinear form aG(·, ·) is coercive with respect to the energy norm |||v|||2E :=
ε1‖∇v‖20 + γ ‖v‖20. Hence, the standard weak formulation and the Galerkin method
have unique solutions.

If σ ≥ 2, from [17] we know that for problem (1.1) the following estimates are
valid

‖u − uI‖0,ΩC ≤CN−2, (4.2)

‖u − uI‖0,Ω0 ≤Cμ
−1/2
0 N−2 ln2 N , (4.3)

‖u − uI‖0,Ω1 ≤Cμ
−1/2
1 N−2 ln2 N ,

‖u − uI‖0,Ωy ≤Cε
1/4
1 N−2 ln2 N , (4.4)

where uI denotes the piecewise bilinear function that interpolates u at the mesh nodes
of the Shishkin mesh. Also, a superconvergence result

|||uI − uN |||E ≤ C

(
N−2 +

(
ε2 + ε

1/2
1

)1/2
N−2 ln2 N

)

is proved in [18, Theorem 4.1] for σ ≥ 5/2.
Nowwe introduce the streamline-diffusion FEM in order to stabilize the discretiza-

tion given by the standard Galerkin FEM

aG(w, v) +
∑

τ∈ΩN

δτ (Lw − f , ε2b(x, y)vx )τ = ( f , v), (4.5)

where δτ ≥ 0 is a user chosen parameter. This modification is consistent with (1.1),
i.e., the solution u of (1.1) is also a solution of (4.5). Its discretization reads:

Find uN ∈ V N such that

aSD(uN , vN ) := aG(uN , vN ) + astab(u
N , vN ) = fSD(vN ) for all vN ∈ V N ,

where

astab(w, v) :=
∑

τ∈ΩN

δτ (−ε1Δw + ε2bwx + cw, ε2bvx )τ ,

fSD(v) := ( f , v) +
∑

τ∈ΩN

δτ ( f , ε2bvx )τ .
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This bilinear form also satisfies the orthogonality condition. Now we define a stream-
line diffusion norm

|||v|||2SD := |||v|||2E + ε22

∑

τ∈ΩN

δτ‖bvx‖20,τ .

Lemma 4.1 Assume that

0 ≤ δτ ≤ γ /‖c‖2L∞(τ ) for all τ ∈ ΩN . (4.6)

Then the discrete bilinear form of the SDFEM is coercive with

aSD
(
vN , vN

)
≥ 1

2
|||vN |||2SD, ∀vN ∈ V N .

Proof From the definitions of the norms, for any vN ∈ V N we have

aSD(vN , vN ) = ε1

(
∇vN ,∇vN

)
+

(
ε2bv

N
x , vN

)
+

(
cvN , vN

)

+
∑

τ∈ΩN

δτ

(
−ε1ΔvN + ε2bv

N
x + cvN , ε2bv

N
x

)
τ

≥ ε1

∣∣∣vN
∣∣∣
2

1
+ γ

∥∥∥vN
∥∥∥
2

0
+ ε22

∑

τ∈ΩN

δτ

∥∥∥bvN
x

∥∥∥
2

0,τ

+ ε2
∑

τ∈ΩN

δτ

(
cvN , bvN

x

)
τ
.

The Cauchy–Schwarz inequality implies

∣∣∣∣∣∣
∑

τ∈ΩN

δτ

(
cvN , ε2bv

N
x

)
τ

∣∣∣∣∣∣
≤

∑

τ∈ΩN

δτ‖cvN‖0,τ‖ε2bvN
x ‖0,τ

=
∑

τ∈ΩN

δτ

√√√√
∫

τ

(
cvN

)2 ∫

τ

(
ε2bvN

x

)2≤ 1

2

∑

τ∈ΩN

δτ

∫

τ

(
cvN

)2

+ ε22

2

∑

τ∈ΩN

δτ

∫

τ

(
bvN

x

)2

≤ 1

2

∑

τ∈ΩN

δτ‖c‖2L∞(τ )‖vN‖20,τ + ε22

2

∑

τ∈ΩN

δτ‖bvN
x ‖20,τ

≤ γ

2
‖vN‖20 + ε22

2

∑

τ∈ΩN

δτ‖bvN
x ‖20,τ
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for δτ ≤ γ /‖c‖2L∞(τ ). Since

∑

τ∈ΩN

δτ

(
cvN , ε2bv

N
x

)
τ

≥ −γ

2
‖vN‖20 − ε22

2

∑

τ∈ΩN

δτ‖bvN
x ‖20,τ ,

we conclude

aSD(vN , vN )

≥ ε1|vN |21 + γ ‖vN‖20 + ε22

∑

τ∈ΩN

δτ‖bvN
x ‖20,τ − γ

2
‖vN‖20 − ε22

2

∑

τ∈ΩN

δτ‖bvN
x ‖20,τ

= ε1

2
|vN |21 + ε1

2
|vN |21 + γ

2
‖vN‖20 + ε22

2

∑

τ∈ΩN

δτ‖bvN
x ‖20,τ ≥ 1

2
|||vN |||2SD.

��

5 Superconvergence and choice of the stabilization parameter

In this section we consider the discretization error. The streamline-diffusion parameter
δτ is chosen to be constant on eachmesh subdomain ofΩ , i.e.,we set δτ = δk if τ ⊂ Ωk

for k ∈ {y,C, 00, 0y, 11, 1y}. Throughout the following analysis we will often use
the following inverse estimates. Let v be a polynomial on the mesh rectangle τ . Then

‖vx‖L p(τ ) ≤ Ch−1
x,τ‖v‖L p(τ ), ‖vy‖L p(τ ) ≤ Ch−1

y,τ‖v‖L p(τ ) (5.1)

and

‖v‖Lq (τ ) ≤ C(meas(τ ))1/q−1/p‖v‖L p(τ ) for p, q ∈ [1,∞]. (5.2)

Furthermore, for b ∈ W 1∞(Ω), k ∈ {y,C, 00, 0y, 11, 1y}, τ ∈ Ωk and any bilinear
function χ we shall use estimate from [2, Proposition 8]:

∣∣∣(b(v − v I )x , bχx )Ωk

∣∣∣
≤ C

[
(hx,τ +hy,τ )(hx,τ‖vxx‖0,Ωk + hy,τ‖vxy‖0,Ωk ) + h2y,τ‖vxyy‖0,Ωk

]
]‖χx‖0,Ωk .

(5.3)

The main result of the paper is given in the following theorem.

Theorem 2 Let the estimates of Theorem 1 and Assumption 2.1 hold true for the
solution u to problem (1.1). Let uN be the streamline-diffusion approximation to u
and uI be the piecewise bilinear function that interpolates u at the mesh nodes of the
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Shishkin mesh with σ ≥ 5/2. Suppose that stabilization parameter δτ satisfies (4.6)
and

δ00 ≤C∗N−1 min
{
ε
−1/4
1 N−1, 1

}
,

δ0y ≤C∗N−1 min
{
N−1 min

{
ε
−1/4
1 , ε−1

2 N−1/2
}

, 1
}

,

δy ≤C∗N−1 min
{
ε−1
2 N−3/2, ε

−1/2
1

}
,

δ11 ≤C∗N−1 min
{
ε1ε

−1
2 N−1, ε1

}
,

δ1y ≤C∗N−1 min
{
ε−1
2 N−1 min

{
ε
3/2
1 , N−1/2

}
, ε1

}
,

δC ≤C∗N−1 min
{
ε
−1/2
1 ε−1

2 N−1 min
{
ε
−1/2
1 , (ε2 + ε

1/2
1 )−1/2

}
, 1

}
, (5.4)

with some positive constant C∗ independent of ε1, ε2 and N . Then we have a super-
convergence result

|||uI − uN |||SD ≤ C

(
N−2 +

(
ε2 + ε

1/2
1

)1/2
N−2 ln2 N

)
. (5.5)

Proof Our error analysis starts from the coercivity and Galerkin orthogonality:

1

2
|||uI − uN |||2SD ≤ aG(uI − uN , uI − uN ) + astab(u

I − uN , uI − uN )

= aG(uI − u, uI − uN ) + astab(u
I − u, uI − uN ). (5.6)

Let uI − uN = χ and uI − u = η. For the first term on the right-hand side from [18,
p.751] we have

|aG(η, χ)| ≤ C

(
N−2 +

(
ε2 + ε

1/2
1

)1/2
N−2 ln2 N

)
|||χ |||E for all χ ∈ V N .

(5.7)

Then by (5.6) and (5.7), we have

1

2
|||χ |||2SD ≤ astab(η, χ) + C

(
N−2 +

(
ε2 + ε

1/2
1

)1/2
N−2 ln2 N

)
|||χ |||SD.

Therefore, we have to estimate astab:

astab(η, χ) =
∑

τ∈ΩN

δτ

[
− ε1ε2(Δη, bχx )τ + ε22(bηx , bχx )τ + ε2(cη, bχx )τ

]

≤
∑

τ∈ΩN

δτ

[
ε1ε2|(Δu, bχx )τ | + ε22|(b(u − uI )x , bχx )τ |
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+ ε2|(c(u − uI ), bχx )τ |
]
. (5.8)

Let us first considerΩy which is a part of the domain where parabolic boundary layers
dominate. For the third term of (5.8) we use (4.4) and the Cauchy–Schwarz inequality
to obtain

ε2δy

∣∣∣(c(u − uI ), bχx )Ωy

∣∣∣ ≤ Cε2δyε
1/4
1 N−2 ln2 N‖bχx‖0,Ωy

≤ Cε
1/4
1 δ

1/2
y N−2 ln2 N |||χ |||SD.

For the second term of (5.8) we proceed as follows. Let w = S + E2 and w̃ =
E10 + E11 + E0

3 + E1
3 . Using (5.3), (2.3), (2.5), (2.8) and (2.9) we get

ε22δy

∣∣∣(b(w − w I )x , bχx )Ωy

∣∣∣
≤ Cε22δy

[
(N−1 + N−1√ε1 ln N )(N−1‖wxx‖0,Ωy + N−1√ε1 ln N‖wxy‖0,Ωy )

+ N−2ε1 ln
2 N‖wxyy‖0,Ωy

]
‖bχx‖0,Ωy

≤ Cε
1/4
1 ε2δ

1/2
y N−2 ln2 N |||χ |||SD.

Using (5.1), (5.2) and (2.4), (2.6), (2.7) we obtain

ε22δy

∣∣∣(b(w̃ − w̃ I )x , bχx )Ωy

∣∣∣
≤ Cε22δy

[
‖w̃x‖L1(Ωy)

‖χx‖L∞(Ωy) + ‖(w̃ I )x‖0,Ωy‖bχx‖0,Ωy

]

≤ Cε
1/4
1 ε2δ

1/2
y N 1−σ ln1/2 N |||χ |||SD.

For the first term of (5.8)we also use the splitting u = w+w̃.Using (5.2) and estimates
from Theorem 1, we have

ε1ε2δy

∣∣∣(Δw̃, bχx )Ωy

∣∣∣ ≤ ε1ε2δy‖Δw̃‖L1(Ωy)
‖bχx‖L∞(Ωy)

≤ Cε
1/4
1 (ε2 + ε

1/2
1 )δ

1/2
y N 1−σ ln1/2 N |||χ |||SD.

Further, if we use the Cauchy–Schwarz inequality and estimate (2.3) and (2.5), we get

ε1ε2δy |(Δw, bχx )Ωy | ≤ ε1ε2δy‖Δw‖0,Ωy‖χx‖0,Ωy ≤ Cε
1/4
1 ε2δy‖χx‖0,Ωy

≤ Cε
−1/4
1 ε2δy |||χ |||E . (5.9)

Alternatively, if we use an inverse inequality we get

ε1ε2δy |(Δw, bχx )Ωy | ≤ ε1ε2δy‖Δw‖0,Ωy‖χx‖0,Ωy ≤ Cε
1/4
1 ε2δy‖χx‖0,Ωy

≤ Cε
1/4
1 ε2δy N‖χ‖0,Ωy ≤ Cε

1/4
1 ε2δy N |||χ |||E . (5.10)
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Combining (5.9) and (5.10) we have

ε1ε2δy |(Δw, bχx )Ωy | ≤ C
(
ε
−1/4
1 ε2δy |||χ |||E

)1/2 (
ε
1/4
1 ε2δy N |||χ |||E

)1/2

≤ Cε2δy N
1/2|||χ |||E . (5.11)

Collecting the above results, we get

|astab(η, χ)Ωy | ≤ C
(
ε2δy N

1/2 + ε
1/4
1 δ

1/2
y

(
N−2 + N 1−σ

)
ln2 N

)
|||χ |||SD.

(5.12)

On Ω00 for third term of (5.8) we use (4.3) and the Cauchy–Schwarz inequality to
obtain

ε2δ00

∣∣∣
(
c(u − uI ), bχx

)
Ω00

∣∣∣ ≤ Cε2δ00μ
−1/2
0 N−2 ln2 N‖bχx‖0,Ω00

≤ Cδ
1/2
00

(
ε2 + ε

1/2
1

)1/2
N−2 ln2 N |||χ |||SD.

For the second term of (5.8) let w = S + E10 and w̃ = E2 + E11 + E0
3 + E1

3 . Using
(5.3) and estimates from Theorem 1 we get

ε22δ00

∣∣∣
(
b(w − w I )x , bχx

)
Ω00

∣∣∣

≤Cε22δ00

[ (
μ−1
0 N−1 ln N + N−1

) (
μ−1
0 N−1 ln N‖wxx‖0,Ω00 + N−1‖wxy‖0,Ω00

)

+ N−2‖wxyy‖0,Ω00

]
‖bχx‖0,Ω00

≤ Cε
1/2
2 δ

1/2
00 N−2 ln N |||χ |||SD.

Using (5.1), (5.2) and estimates from Theorem 1 we obtain

ε22δ00

∣∣∣
(
b(w̃ − w̃ I )x , bχx

)
Ω00

∣∣∣

≤ Cε22δ00

[
‖w̃x‖L1(Ω00)

‖bχx‖L∞(Ω00) + ‖(w̃ I )x‖0,Ω00‖bχx‖0,Ω00

]

≤ Cε
1/2
2 δ

1/2
00 N 1−σ ln1/2 N |||χ |||SD.

If we use the Cauchy–Schwarz inequality, estimates from Theorem 1 and (2.1) for the
first term of (5.8) we have

ε1ε2δ00

∣∣∣(Δw, bχx )Ω00

∣∣∣ ≤ Cε1ε2δ00‖Δw‖0,Ω00‖bχx‖0,Ω00 ≤ Cε
1/4
1 δ00|||χ |||E .

Further,

ε1ε2δ00

∣∣∣(Δw̃, bχx )Ω00

∣∣∣ ≤ ε1ε2‖Δw̃‖L1(Ω00)
‖bχx‖L∞(Ω00)
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≤ C
(
ε2 + ε

1/2
1

)1/2
δ
1/2
00 N 1−σ ln1/2 N |||χ |||SD.

Combining these estimates, we have on Ω00

|astab(η, χ)Ω00 |≤C

(
ε
1/4
1 δ00+

(
ε2+ε

1/2
1

)1/2
δ
1/2
00

(
N−2 + N 1−σ

)
ln2 N

)
|||χ |||SD.

(5.13)

OnΩ0y for the third term of (5.8) we use (4.3) and the Cauchy–Schwarz inequality
to obtain

ε2δ0y

∣∣∣(c(u − uI ), bχx )Ω0y

∣∣∣ ≤ Cε2δ0yμ
−1/2
0 N−2 ln2 N‖bχx‖0,Ω0y

≤ Cδ
1/2
0y

(
ε2 + ε

1/2
1

)1/2
N−2 ln2 N |||χ |||SD.

For the second term of (5.8) let w = S + E2 + E10 + E0
3 and w̃ = E11 + E1

3 . Using
(5.3) and estimates from Theorem 1 we get

ε22δ0y

∣∣∣
(
b(w − w I )x , bχx

)
Ω0y

∣∣∣

≤ Cε22δ0y

[ (
μ−1
0 N−1 ln N + √

ε1N
−1 ln N

) (
μ−1
0 N−1 ln N‖wxx‖0,Ω0y

+√
ε1N

−1 ln N‖wxy‖0,Ω0y

)
+ ε1N

−2 ln2 N‖wxyy‖0,Ω0y

]
‖bχx‖0,Ω0y

≤ Cε2δ
1/2
0y N−2 ln2 N |||χ |||SD.

Using (5.1), (5.2) and estimates from Theorem 1 we obtain

ε22δ0y

∣∣∣
(
b(w̃ − w̃ I )x , bχx

)
Ω0y

∣∣∣

≤ Cε22δ0y

[
‖w̃x‖L1(Ω0y)

‖bχx‖L∞(Ω0y) + ‖(w̃ I )x‖0,Ω0y‖bχx‖0,Ω0y

]

≤ Cε2δ
1/2
0y N 1−σ |||χ |||SD.

For the first part of (5.8) we have

ε1ε2δ0y

∣∣∣(Δw̃, bχx )Ω0y

∣∣∣ ≤ ε1ε2‖Δw̃‖L1(Ω0y)
‖bχx‖L∞(Ω0y)

≤ C
(
ε2 + ε

1/2
1

)
δ
1/2
0y N 1−σ |||χ |||SD.

Further, if we use (2.1) and estimates from Theorem 1, we obtain

ε1ε2δ0y

∣∣∣(Δ(S + E10), bχx )Ω0y

∣∣∣ ≤ ε1ε2δ0y‖Δ(S + E10)‖0,Ω0y‖χx‖0,Ω0y

≤ Cε
1/2
1 δ0y ln N |||χ |||E .
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If we do apply the Cauchy–Schwarz inequality for ε1ε2δ0y

∣∣∣ (Δ(E2 + E0
3), bχx

)
Ω0y

∣∣∣,
the estimate is not sharp enough. Thus we have to use an alternative way. We know
that it holds

(ΔE2, bχx )Ω0y = − ((bΔE2)x , χ)Ω0y∪Ωy∪Ω1y − (ΔE2, bχx )Ωy − (ΔE2, bχx )Ω1y

Estimating each term on the right side separately, we have

ε1ε2δ0y

∣∣∣(ΔE2, bχx )Ω1y

∣∣∣ ≤ Cε1ε2δ0y‖ΔE2‖0,Ω1y‖bχx‖0,Ω1y

≤ Cε
1/4
1 ε

1/2
2 δ0y ln

1/2 N |||χ |||E , (5.14)

where we use (2.2), and

ε1ε2δ0y

∣∣∣((bΔE2)x , χ)Ω0y∪Ωy∪Ω1y

∣∣∣
≤Cε1ε2δ0y‖(ΔE2)x‖0,Ω0y∪Ωy∪Ω1y‖χ‖0,Ω0y∪Ωy∪Ω1y ≤ Cε

1/4
1 ε2δ0y |||χ |||E .

(5.15)

In (5.11), we determined that

ε1ε2δ0y

∣∣∣(ΔE2, bχx )Ωy

∣∣∣ ≤ Cε2δ0y N
1/2|||χ |||E . (5.16)

From (5.14), (5.15) and (5.16) we obtain

ε1ε2δ0y

∣∣∣(ΔE2, bχx )Ω0y

∣∣∣ ≤ Cδ0y

(
ε2N

1/2 + ε
1/4
1 ε

1/2
2 ln1/2 N + ε

1/4
1 ε2

)
|||χ |||E .

Similarly, we get

ε1ε2δ0y

∣∣∣
(
ΔE0

3 , bχx

)
Ω1y

∣∣∣ ≤ Cε1ε2δ0y‖ΔE0
3‖0,Ω1y‖bχx‖0,Ω1y

≤ C

(
ε
1/2
1 δ0y N

−σ |||χ |||E + ε
1/4
1

(
ε2 + ε

1/2
1

)1/2
δ
1/2
0y N−σ |||χ |||SD

)
,

ε1ε2δ0y

∣∣∣
(
(bΔE0

3)x , χ
)

Ω0y∪Ωy∪Ω1y

∣∣∣

≤ Cε1ε2δ0y‖(ΔE0
3)x‖0,Ω0y∪Ωy∪Ω1y‖χ‖0,Ω0y∪Ωy∪Ω1y ≤ Cε

1/4
1 δ0y |||χ |||E ,

ε1ε2δ0y

∣∣∣
(
ΔE0

3 , bχx

)
Ωy

∣∣∣

≤ Cε1ε2δ0y‖ΔE0
3‖0,Ωy‖bχx‖0,Ωy ≤ Cε

1/4
1 δ0y N

1−σ |||χ |||E ,

which gives

ε1ε2δ0y

∣∣∣
(
ΔE0

3 , bχx

)
Ω0y

∣∣∣
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≤ C

(
ε
1/4
1 δ0y |||χ |||E + ε

1/4
1

(
ε2 + ε

1/2
1

)1/2
δ
1/2
0y N−σ |||χ |||SD

)
.

Combining the above estimates, on Ω0y we have

|astab(η, χ)Ω0y |
≤C

(
(ε

1/4
1 + ε2N

1/2)δ0y+
(
ε2 + ε

1/2
1

)1/2
δ
1/2
0y

(
N−2 + N 1−σ

)
ln2 N

)
|||χ |||SD.

(5.17)

On Ω11 we apply the same technique as on Ω00 and obtain

|astab(η, χ)Ω11 |
≤ C

(
ε−1
1 ε2δ11 + ε

−1/2
1

(
ε2 + ε

1/2
1

)1/2
δ
1/2
11

(
N−2 + N 1−σ

)
ln2 N

)
|||χ |||SD.

(5.18)

Moreover, estimates on Ω1y are obtained in the same way as on Ω0y

|astab(η, χ)Ω1y |
≤ C

((
ε
−3/2
1 ε2 + ε2N

1/2
)

δ1y + ε
−1/2
1 δ

1/2
1y

(
N−2 + N 1−σ

)
ln2 N

)
|||χ |||SD.

(5.19)

On ΩC we set w = E10 + E11 + E2 + E0
3 + E1

3 . For the first term of (5.8), the
Hölder inequality and an inverse estimate yield

ε1ε2δC |(Δw, bχx )ΩC | ≤ Cε1ε2δC‖Δw‖L1(ΩC )‖bχx‖L∞(ΩC )

≤ Cε2δC

(
ε2 + ε

1/2
1

)
N 1−σ ‖bχx‖0,ΩC

≤ Cδ
1/2
C

(
ε2 + ε

1/2
1

)
N 1−σ |||χ |||SD.

The second term is estimated using the inverse inequality

ε22δC |
(
b(w − w I )x , bχx

)
ΩC

|

≤ Cε22δC

[
‖wx‖L1(ΩC )‖bχx‖L∞(ΩC ) + ‖(w I )x‖0,ΩC ‖bχx‖0,ΩC

]

≤ Cε22δC N
1−σ ‖bχx‖0,ΩC ≤ Cε2δ

1/2
C N 1−σ |||χ |||SD.

With the Cauchy–Schwarz inequality and estimate (4.2) for the third term we get

ε2δC |
(
c(w − w I ), bχx

)
ΩC

| ≤ Cε2δC‖w − wx‖0,ΩC ‖bχx‖0,ΩC

≤ Cε2δC N
−2‖bχx‖0,ΩC ≤ Cδ

1/2
C N−2|||χ |||SD.
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The terms containing Smust be treatedwith care, because they are not exponentially
small away from the layers. Therefore, we use

(ΔS, bχx )ΩC + (ΔS, bχx )Ω00 + (ΔS, bχx )Ω11 = − ((bΔS)x , χ)Ω00∪ΩC∪Ω11

to get for the first term

ε1ε2δC |(ΔS, bχx )ΩC | ≤ Cε1ε2δC (‖χ‖0,Ω00∪ΩC∪Ω11 + ‖χx‖L1(Ω00)
+ ‖χx‖L1(Ω11)

)

≤ Cε1ε2δC

(
|||χ |||E + √

meas(Ω00)‖χx‖0,Ω00

+√
meas(Ω11)‖χx‖0,Ω11

)

≤ C

(
ε1ε2 + ε

1/2
1 ε2

(
ε2 + ε

1/2
1

)1/2
ln1/2 N

)
δC |||χ |||E .

The Lin-identity

∣∣∣
(
(v − v I )x , χx

)
τ

∣∣∣ ≤ Ch2y,τ‖vxyy‖0,τ‖χx‖0,τ , ∀v ∈ C3(τ̄ )

applied to the second term of (5.8) gives

ε22δC |(b(S − SI )x , bχx )ΩC | ≤ Cε22δC N
−2‖bχx‖0,ΩC ≤ Cε2δ

1/2
C N−2|||χ |||SD.

Using the Cauchy–Schwarz inequality, we get for the third term

ε2δC |
(
c(S − SI ), bχx

)
ΩC

| ≤ Cδ
1/2
C N−2|||χ |||SD.

From the above estimates on ΩC we have

|astab(η, χ)ΩC |
≤C

((
ε1ε2 + ε

1/2
1 ε2

(
ε2 + ε

1/2
1

)1/2
ln1/2 N

)
δC+δ

1/2
C

(
N−2 + N 1−σ

))
|||χ |||SD.

(5.20)

Estimates (5.12), (5.13), (5.17)–(5.20) together with the proposed choice of stabiliza-
tion parameter give the final result (5.5). ��

Remark 5.1 Thorough inspection of the choice of parameters from Theorem 2 reveals
its accordance with the case ε2 = 1 (from [2]) in the sense that more stabilization is
needed away from the stronger exponential layer.
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Table 1 ε1 = 10−10, ε2 = 10−4

N |||u − uN |||E Rate |||uI − uN |||SD Rate ‖u − uN ‖L∞ Rate

16 2.176e−03 1.62 7.168e−03 2.87 1.213e−01 1.07

32 1.018e−03 1.04 1.859e−03 2.66 7.349e−02 1.26

64 5.973e−04 1.00 4.778e−04 2.50 3.855e−02 1.50

128 3.485e−04 1.00 1.239e−04 2.39 1.721e−02 1.68

256 1.993e−04 1.00 3.254e−05 2.30 6.710e−03 1.81

512 1.122e−04 1.00 8.667e−06 2.23 2.369e−04 1.89

1024 6.233e−05 1.00 2.339e−06 2.17 7.803e−04 1.94

2048 3.429e−05 – 6.381e−07 – 2.450e−04 –

Table 2 ε1 = 10−4, ε2 = 10−10

N |||u − uN |||E Rate |||uI − uN |||SD Rate ‖u − uN ‖L∞ Rate

16 2.493e−02 0.88 1.126e−02 1.65 1.203e−01 1.05

32 1.646e−02 0.90 5.191e−03 1.80 7.336e−02 1.27

64 1.042e−02 0.95 2.074e−03 1.91 3.844e−02 1.49

128 6.252e−03 1.16 7.392e−04 2.34 1.719e−02 2.01

256 3.262e−03 1.20 2.000e−04 2.40 5.587e−03 2.21

512 1.637e−03 1.18 5.027e−05 2.36 1.566e−03 2.26

1024 8.192e−04 1.16 1.259e−05 2.32 4.154e−04 2.27

2048 4.097e−04 – 3.147e−06 – 1.070e−04 –

6 Numerical experiments

Our test problem is

−ε1Δu + ε2(3 − x)ux + u = f (x, y) x ∈ Ω,

u = 0, on ∂Ω,

where the function f (x, y) is chosen in such a way that

u(x, y) = 1

4

(
1 + sin 8x

2

) (
1 − e−ε2k1x/(2ε1)

)

(
1 − e−ε2k2(1−x)/(2ε1)

) (
1 − e−y/

√
ε1

) (
1 − e−(1−y)/

√
ε1

)

is the exact solution and k1,2 = ∓1+
√
1 + 16ε1/ε22 . We chose σ = 5/2 and C∗ = 1.

The rate of convergence is estimated in the standard way. All calculations were carried
out using MATLAB.

Tables 1 and 2 display the errors of the SDFEM for the test problem in various
norms for two choices of perturbation parameters. They are illustrations of the first
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Table 3 ε2 = 10−4, N = 256
ε1 |||u − uN |||E |||uI − uN |||SD ‖u − uN ‖L∞

10−1 3.439e−04 1.249e−06 3.252e−06

10−2 8.640e−04 1.386e−05 4.698e−05

10−3 1.686e−03 3.732e−05 6.301e−04

10−4 3.265e−03 2.004e−04 5.587e−03

10−5 2.095e−03 1.403e−04 6.709e−03

10−6 1.190e−03 8.278e−05 6.710e−03

10−7 6.762e−04 5.273e−05 6.710e−03

10−8 3.965e−04 3.908e−05 6.710e−03

10−9 2.588e−04 3.413e−05 6.710e−03

10−10 1.993e−04 3.254e−05 6.710e−03

Table 4 ε1 = 10−10, N = 256
ε2 |||u − uN |||E |||uI − uN |||SD ‖u − uN ‖L∞

10−1 4.235e−03 3.056e−04 5.388e−03

10−2 1.654e−03 1.202e−04 6.708e−03

10−3 5.349e−04 5.035e−05 6.710e−03

10−4 1.993e−04 3.254e−05 6.710e−03

10−5 1.254e−04 3.018e−05 6.710e−03

10−6 1.195e−04 3.005e−05 6.710e−03

10−7 1.193e−04 3.004e−05 6.710e−03

10−8 1.193e−04 3.004e−05 6.710e−03

10−9 1.193e−04 3.004e−05 6.710e−03

10−10 1.193e−04 3.004e−05 6.710e−03

order convergence results (first column) and the second order superconvergence result
(second column). The last column gives the errors in the L∞ norm for which almost
second order convergence is also observed, although we do not have theoretical jus-
tification for this behavior. In Table 3 for fixed ε2 = 10−4, N = 256 and in Table 4
for fixed ε1 = 10−10, N = 256, we investigate the dependence of the errors on the
perturbation parameters. We observe ε1−, ε2−independence of the errors in all given
norms.

The numerical experiments here above indicate that the estimates for the SDFEM
parameters given in Theorem 2 are sharp. This observation for the δC is illustrated in
Fig. 2 where the solid line represent |||uI − uN‖||SD with all δ chosen to be equal
to the upper bound from Theorem 2 (with C∗ = 1) and the dashed line represent
|||uI − uN‖||SD when δC is chosen to be greater then the upper bound (5.4) and
C∗ = 1 [with minimum replaced by maximum in (5.4)]. That the other conditions
on the SDFEM parameters are sharp as well can be justified by the use of similar
investigation.
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Fig. 2 Convergence behavior in the SD norm for ε1 = 10−10, ε2 = 10−3 (left), and ε1 = 10−16,
ε2 = 10−10 (right)

7 Conclusion

A singularly perturbed elliptic problem with two small independent parameters has
been considered. To obtain numerical approximation of the problem, we apply the
streamline–diffusion finite element method with bilinear elements on a layer-adapted
mesh of Shishkin type. We have proved that such discretization exhibits supercon-
vergence property with the appropriate choice of streamline-diffusion parameters.
Numerical tests presented in Fig. 2 indicate that our estimates of the parameters are
sharp. Compared with the standard Galerkin method for the problem (1.1) considered
in [17,18], the SDFEM is of the equal accuracy but it generates more stable numeri-
cal solution with lower computational cost for the solution of the associated discrete
system.
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