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Abstract We consider the numerical investigation of surface bound orientational
order using unit tangential vector fields by means of a gradient flow equation of a
weak surface Frank–Oseen energy. The energy is composed of intrinsic and extrinsic
contributions, as well as a penalization term to enforce the unity of the vector field.
Four different numerical discretizations, namely a discrete exterior calculus approach,
a method based on vector spherical harmonics, a surface finite element method, and
an approach utilizing an implicit surface description, the diffuse interface method, are
described and compared with each other for surfaces with Euler characteristic 2. We
demonstrate the influence of geometric properties on realizations of the Poincaré–Hopf
theorem and show examples where the energy is decreased by introducing additional
orientational defects.
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List of symbols

Derivatives

div Surface divergence
grad Surface gradient
rot Surface curl
�S Surface Laplace–Beltrami operator
�dR Surface Laplace–deRham operator

Discrete Exterior Calculus

e Edge, e ∈ E
�e Dual edge of e (Voronoi edge)
E Set of edges, with number |E |
e Edge vector along edge e
e� Dual edge vector along dual chain �e
T Face, T ∈ T
T Set of faces, with number |T |
∗ Hodge star operator
� Lowering indices
� Rising indices
α 1-Form, α ∈ Λ1(S)

αh Discrete 1-form, αh ∈ Λ1
h(K)

α Primal-dual 1-form, α = (αh, ∗αh)

K Simplicial complex
v Vertex, v ∈ V

�v Dual vertex (voronoi cell)
V Set of vertices, with number |V|
d Exterior derivative

Geometry

Γ k
i j Christoffel symbols of second kind
θ Colatitude coordinate, θ ∈ [0, π ]
ϕ Azimuthal coordinate, ϕ ∈ [0, 2π)

ξ Coordinate in normal direction of the surface
κ Gaussian curvature
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H Mean curvature H = div ν

� Domain, � ⊂ R
3

EI J K Levi–Civita symbols
g Riemannian metric tensor

|g| Determinant of g
π Coordinate projection π : �δ → S

πTS Surface projection πTS : TR
3 → TS

B Shape operator B = − grad ν

S Surface, i.e., compact closed oriented Riemannian 2-dim. manifold
χ(S) Characteristic of the surface S
SE Ellipsoidal surface

ν Outer surface normal
S
2 Unit 2-sphere

TS Tangent bundle of surface S
T∗S Cotangent bundle of surface S

Modeling

K Uniform Frank constant
ωn Penalty constant for normality
ωt Penalty constant for tangentiality
FS

ωn
Weak surface Frank–Oseen energy

εf Error in the defect fusion time
εe (Normalized) Mean energy error
tk Discrete time step
τk Time step width in the kth time step

Phase Field

φ Phase-field variable
δS Surface delta function
W Double well, W (φ) � δS
ζ Double-well regularization
ε Interface thickness of phase field

dS(x) Signed-distance function

1 Introduction

We consider surface bound systems of densely packed rodlike particles that tend
to align tangentially. The systems are modeled by a mesoscopic field theoretical
description using an average direction and an order parameter, measuring the local
variance of alignment toward this average direction. In flat space, an uniformly ordered
ground state can be established. This is no longer true for curved space, which induces
distortions of this ground state, eventually inhibiting the propagation of preferred ori-
entational order throughout the whole system. This leads to the emergence of defects,

123



150 J Nonlinear Sci (2018) 28:147–191

which for surfaces S with Euler characteristic χ(S) �= 0 is a consequence of the
Poincaré–Hopf theorem. However, the type of the defects, their number, as well as
their position are mostly unknown. The realization of the Poincaré–Hopf theorem
depends on geometric properties of the surface and dynamics of the evolution. It
is the goal of this paper to provide numerical methods to explore these interesting
and non-trivial connections between topology, geometry, and dynamics. Besides the
mathematical issues, the problem is of interest in the physics and materials science
community due to its envisioned technological applications (Nelson 2002).

We focus on orientational ordering in polar order dynamics. The model follows as
limit of a thin-film formulation of a modified Frank–Oseen energy (Frank 1958) and is
formulated as an L2-gradient flow, which leads to a vector-valued partial differential
equation on the surface. Previous work has postulated a purely intrinsic formulation,
extending theflat spacemodel to curved space (Nelson1983;Lubensky andProst 1992;
Lopez-Leon et al. 2011). More recent research (Napoli and Vergori 2012a, b; Segatti
et al. 2014) derives a surface Frank–Oseen energy as limit of a thin-film formulation.
This approach adds to the intrinsic model an explicit influence of the embedding
space by extrinsic quantities. However, the limit is only established for surfaces with
χ(S) = 0 and only allows defect free configurations. All approaches focus only on
the steady state and utilize continuous optimization methods (Kralj et al. 2011) or
Monte Carlo-based methods (Blumberg Selinger et al. 2011; Li et al. 2014; Nguyen
et al. 2013) to evaluate the minimizers. To complement these models and methods,
we derive a more general thin-film limit, valid also for surfaces with χ(S) �= 0, and
focus on the dynamics of orientational order on such surfaces.

Starting from the general surfacemodeling provided in Sect. 2, we establish suitable
reformulations to apply different numerical methods and solve the resulting dynamic
equations.We proposemethods based on a coordinate-free framework aswell asmeth-
ods adapted for the Cartesian coordinates of the embeddingR

3 by using a penalty term
approach. Section 3 gives the general notations, andSect. 4 presents themethods of dis-
crete exterior calculus (DEC), vector spherical harmonics (SPH), surface finite elements
(sFEM), and diffuse interface modeling (DI). We compare results of these methods in
Sect. 5 to provide estimations on numerical quality and computational cost. Further,
we use these methods to perform experiments investigating the influence of geome-
try on emergence and energetical stability of non-minimal defect configurations and
demonstrate the possibility to decrease the energy by introducing additional defects.
The model formulations and proposed methods will provide a modeling and numeri-
cal toolkit ready to be applied to polar orientational order in curved space and related
physical systems out of equilibrium. This and the implication for solving vector-valued
partial differential equations on surfaces will be discussed in Sect. 6.

2 Model Derivation

Two major continuous theories to describe orientational order in liquid crystals exist.
On the one hand, the Frank–Oseen theory uses a vector field to describe averagemolec-
ular ordering, while, on the other hand, the Landau–de Gennes theory is based on a
matrix expression (called Q-tensor). Both models are widely used and indeed coincide
in flat 2D space for a specific set of elastic terms, see Ball and Zarnescu (2011), Iyer
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et al. (2015). Besides this agreement, the Frank–Oseen modeling cannot account for
a physical head-to-tail symmetry of the material, which is naturally considered in the
Landau–de Gennes theory. For a mathematical review on both modeling approaches,
we refer to Ball (2016). Due to its relative simplicity, we here consider only the Frank–
Ossen theory as amodeling framework. Being aware of the fact that additional physical
effects will occur within a corresponding Landau–de Gennes theory.

In our framework, the average alignment of anisometricmolecules can be expressed
by a unit vector p, in the following called director, that represents the direction of
the average alignment axis. In order to describe the spatial variation of a director
field, a free energy F can be formulated that incorporates energy costs due to spatial
distortions. The energy reads in simplified form (Oswald and Pieranski 2005)

FF
[
p,�

] = 1

2

∫

�

K1 (∇ · p)2 + K2 (p · (∇ × p))2 + K3 ‖p× (∇ × p)‖2 dV, (1)

with K1, K2, and K3 the Frank phenomenological constants and � ⊂ R
3 a

three-dimensional domain. The functional FF contains three contributions related to
deformations of p, namely (from left to right) for splay, twist, and bend. We here con-
sider the one-constant approximation K := K1 = K2 = K3. The distortion energy
thus reads

FOC
[
p,�

] = K

2

∫

�

(∇ · p)2 + ‖∇ × p‖2 dV . (2)

To arrive at a surface formulation, we consider a thin shell � = �δ around a compact
smooth Riemannian surface S, with thickness δ sufficiently small, and p parallel to
the surface and parallel transported in normal direction to the surface. The limiting
case of FOC

[
p,�δ

]
, δ ↘ 0, where �δ collapses to the surface, has been considered

in Napoli and Vergori (2012b) for surfaces with χ(S) = 0 and thus only for defect
free configurations. This result cannot simply be extended to more general surfaces,
as a smooth vector field with unit norm exists if and only if χ(S) = 0. This topo-
logical result can also be extended to the corresponding Sobolev space (Segatti et al.
2016) and thus turns out to be useless for any investigation of defects in unit vector
fields on surfaces. While in mathematical terms these defects can be considered as
discontinuities, in physical terms the liquid crystal undergoes a phase transition to an
isotropic phase at the defect. To enable a continuous director field p and to incorporate
this phase transition, we drop the constraint ‖p‖ = 1 and consider ‖p‖ as an order
parameter. This parameter ranges from 0, describing the isotropic phase, to 1, for the
ordered phase of the liquid crystal. To enforce a prevalent ordered phase, we add a
well-known quartic state potential to the free energy with penalty parameter ωn. It is
evident that the radius of the defect core, the domain where the local alignment breaks
down, is closely connected toωn. Since we are interested in orientational ordering of a
prevalent ordered state, we choose ωn � K , effectively enforcing defects with small
core radius. The corresponding energy reads

Fωn

[
p,�

] = K

2

∫

�

(∇ · p)2 + ‖∇ × p‖2 dV + ωn

4

∫

�

(
‖p‖2 − 1

)2
dV . (3)
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Now, the limit δ ↘ 0 can be considered also for χ(S) �= 0, see “Appendix A.” We
obtain limδ↘0

1
δ
Fωn

[
p,�δ

] = FS
ωn
[p], which we call the weak surface Frank–Oseen

energy

FS
ωn
[p] = FS

I [p] + FS
E [p] +

ωn

4

∫

S

(
‖p‖2 − 1

)2
dS. (4)

It consists of an intrinsic contribution FS
I [p] and an extrinsic contribution FS

E [p] to
the distortion energy, as in Napoli and Vergori (2012a, b), and the additional penalty
term, which contain the 2-norm ‖ · ‖. In the following, we assume p ∈ TS the tangent
bundle of S. Then, the intrinsic distortion energy FS

I can be expressed in terms of the
surface divergence “div” and the surface curl “rot” of p:

FS
I [p] =

K

2

∫

S
(div p)2 + (rot p)2 dS . (5)

Introducing further the shape operator B = − grad ν of S with outer surface normal
ν, the extrinsic contributions can be written as

FS
E [p] =

K

2

∫

S
‖B · p‖2 dS. (6)

Putting all parts together, we finally obtain

FS
ωn
[p] = K

2

∫

S
(div p)2 + (rot p)2 + ‖B · p‖2 dS + ωn

4

∫

S
( ‖p‖2 − 1

)2 dS. (7)

For the description of the minimization of FS
ωn
[p], we define the function spaces

H(div,S,TS) := {
p ∈ L2(S; TS) : div p ∈ L2(S)

}
,

H(rot,S,TS) := {
p ∈ L2(S; TS) : rot p ∈ L2(S)

}
,

and furthermore the space HDR(S; TS) := H(div,S,TS) ∩ H(rot,S,TS). The
minimization of the weak surface Frank–Oseen energy reads

p∗ = argmin
{
FS

ωn
[p] : p ∈ HDR(S; TS)

}
.

In Chen (1989), Segatti et al. (2014), the convergence of minimizers of FS
ωn

to

the sharp energy FS
I [p] + FS

E [p], as ωn → ∞, is analyzed and proven for the case
χ(S) = 0.

Dynamical equations to minimize the functional FS
ωn

can be formulated by means
of an L2-gradient flow approach,

∂tp = −δFS
ωn

δp
[p],
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where the gradient of FS
ωn

has to be interpreted w.r.t. the L2(S; TS) inner product.
For q ∈ HDR(S; TS), this reads

∫

S

〈
δFS

ωn

δp
[p],q

〉

dS

=
∫

S
−K (div p div q+ rot p rot q) + K

〈
Bp,Bq

〉+ ωn
( ‖p‖2 − 1

)〈
p,q

〉
dS

=
∫

S
K
〈
�dRp,q

〉+ K
〈
B2p,q

〉+ ωn
( ‖p‖2 − 1

)〈
p,q

〉
dS,

with �dR the Laplace–deRham operator. This leads to the evolution equation

∂tp+ K
(
�dRp+ B2p

)
+ ωn

(
‖p‖2 − 1

)
p = 0, in S × (0,∞) (8)

with the initial conditionp (t = 0) = p0 ∈ TS. The gradient flow approach guarantees
dissipative dynamics and stationary solutions of (8) as local minima of FS

ωn
. Note that

the sign of the vectorial Laplacian is different from the sign of the scalar Laplacian
found in classical diffusion-like equations, sincewe follow the convention of Abraham
et al. (1988).

Introducing the covariant director α := p� ∈ T∗S, an equivalent formulation of
Eq. (8) in terms of its dual vectors can be stated:

∂tα + K
(
�dRα + B2α

)
+ ωn

(
‖α‖2 − 1

)
α = 0, (9)

with α0 = (p0)� ∈ T∗S, where we have used the notation of a musical isomorphism
� to denote the flattening operation. Both formulations of the gradient flow problem,
(8) and (9), are implemented in the present paper by means of several numerical
approaches.

3 Notation

We consider a compact closed oriented Riemannian two-dimensional manifold S ⊂
R
3 parametrized by the local coordinates θ, ϕ:

x : R
2 ⊃ U → R

3; (θ, ϕ) �→ x (θ, ϕ) . (10)

Thus, the embedded R
3 representation of the surface is given by S = x(U ). The unit

outer normal of S at point x is denoted by ν(x). An implicit description of the surface
is given by the signed-distance function

dS (̃x) :=
{− infy∈S ‖̃x − y‖ for x̃ ∈ G
infy∈S ‖̃x − y‖ for x̃ ∈ R

3 \ Ḡ , (11)
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with a bounded open set G ⊂ R
3 and ∂G = S. The corresponding extended surface

normal ν̃ : R
3 → R

3 can be calculated by

ν̃ := ∇dS
‖∇dS‖ , with ν̃

∣
∣S = ν and ‖∇dS‖ = 1, (12)

see, e.g., Dziuk and Elliott (2013).
The key ingredient in differential geometry and tensor analysis on Riemannian

manifolds is the positive definite metric tensor

g =
[
gθθ gθϕ

gθϕ gϕϕ

]
= gθθ dθ2 + 2gθϕ dθ dϕ + gϕϕ dϕ2. (13)

The covariant components of the metric tensor are given by R
3 inner products of

partial derivatives of x, i.e., gi j = ∂ix · ∂ jx. The components of the inverse tensor
g−1 are denoted by gi j and the determinant of g by |g|. We denote by

{
∂θx, ∂ϕx

}

the canonical basis to describe contravariant (tangential) vectors p(x) ∈ TxS, i.e.,
p = pθ ∂θx + pϕ∂ϕx at a point x ∈ S. Furthermore, with the arising dual basis
{dθ, dϕ} we are able to write an arbitrary 1-form (covariant vector) α ∈ T∗xS as
α = pθdθ + pϕdϕ. This identifier choice of the covariant vector coordinates pi in
conjunction with representation of p as above implies that α and p are related by
α = p� and p = α�, respectively. Explicitly lowering and rising the indices can be
done using the metric tensor g by pi = gi j p j and pi = gi j p j , respectively.

In a (tubular) neighborhood �δ of S, defined by �δ := {̃x ∈ R
3 : dS (̃x) < 1

2δ}, a
coordinate projection x ∈ S of x̃ ∈ R

3 is introduced, such that

x̃ = x + dS (̃x)ν(x). (14)

For δ sufficiently small (depending on the local curvature of the surface), this projection
is injective, see Dziuk and Elliott (2013). For a given x̃ ∈ �δ , the coordinate projection
of x̃ will also be called gluing map, denoted by π : �δ → S, x̃ �→ x.

Scalar functions f : S → R and vector fields p : S → TS can be smoothly
extended in the neighborhood �δ of S by utilizing the coordinate projection, i.e.,
extended fields f̃ : �δ → R and p̃ : �δ → R

3 are defined by

f̃ (̃x) := f (x) and p̃(̃x) := p(x), (15)

respectively, for x̃ ∈ �δ and x the corresponding coordinate projection. This extension
can be realized by implementing a Hopf–Lax formula on discrete grids representing
the surface and its neighborhood, similar to a redistancing method, see Bornemann
and Rasch (2006), Burger et al. (2008).
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Table 1 Various representations of the inner product and first-order differential operators on surfaces for
scalar fields f : S → R and tangential vector fields p, q : S → TS orR

3 vector fields p̂ : S → TR
3 ∼= R

3

are listed

Symbolic Local coord. R
3 coord. EC

〈p, q〉 pi q
i p̂ · q ∗ (α ∧ ∗β)

grad f gi j ∂ j f ∂ix πTS∇ f d f

rot f 1√|g|
(
∂θ f ∂ϕx − ∂ϕ f ∂θx

)
ν × ∇ f ∗d f

div p ∂i p
i + 1√|g| p

i ∂i
√|g| ∇ · p̂− ν · (∇p̂ · ν) ∗d ∗ α

rot p 1√|g|
(
∂θ pϕ − ∂ϕ pθ

)
(∇ × p̂) · ν ∗dα

Vector-valued images are represented in a contravariant form. In the formulation in R
3 coordinates, the

scalar field f and vector field p̂ with respect to the Euclidean basis { ex , ey , ez} are assumed to be defined
in a neighborhood of S. In the column “Exterior Calculus” (EC), all is in the space of 1-forms that are
related to the vector fields p by α = p�, β = q� and the images can be compared with other columns by
rising the indices

3.1 Function Spaces

For scalar fields f, g : S → K ∈ {R, C} and vector fields p,q : S → TS, an L2

inner product is given by

( f, g)L2(S) :=
∫

S
f ḡ dS, (16)

(p, q)L2(S;TS) :=
∫

S
〈p, q̄〉 dS, (17)

respectively, with ḡ, q̄ the complex conjugates1 and 〈·, ·〉 the local inner product, see
Table 1. These L2 inner products define the corresponding L2(S) and L2(S; TS)

Hilbert spaces, respectively.

3.2 Differential Calculus

There are many ways to describe classical differential operators on surfaces. The
choice of representation arises from the context that we want to use. In Table 1 first-
order differential operations on scalars and vector fields and an inner product are
summarized and listed for the specific context.

With introduced local coordinate chart above, we can use the inner metric g and
partial derivatives ∂ (column “Local coord.” in Table 1). In the Euclidean space R

3,
where the surface is embedded, it is possible to describe the differential operators
using R

3 operators like ·, × or ∇ and the surface normal ν. The extension from the
surface S to R

3 rises some choices of embedding the R
3 vector space structure to

1 In the spherical harmonics method, the functions are complex-valued, and thus, we need a complex L2

inner product. For all real-valued functions, the complex conjugation can be ignored.
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the tangential bundle of the surface. We use in this paper a pointwise defined normal
projection

πTS(x) : TxR
3 ∼= R

3 → TxS;
p̂(x) �→ p̂(x) − ν(x)(ν(x) · p̂(x)) = p(x) (18)

for all x ∈ S, which maps an R
3 vector p̂ = px ex + py ey + pz ez ∈ R

3, not
necessarily tangential to the surface, to a tangential vector p ∈ TxS. We drop the
argument x when applied to vector fields living on S. Some flexibility arises in the
choice of the first-order differential operators for non-tangential vector fields defined
on S, see the operators listed in column “R3 coord.” in Table 1. With this notation,
we can express the shape operator as a linear map B = {Bi

j } : TS → TS in local and

R
3 coordinates by

Bi
j = −gik

(
∂ jν · ∂kx

)
i, j, k = 1, 2 and Bi j = − [grad ν j

]
i i, j = 1, 2, 3,

(19)

respectively. This operator is symmetric, i.e., 〈q,Bp〉 = 〈p,Bq〉 for all p,q ∈ TS.
For the shape operator on the dual space in local coordinates

�B� =
{
gikBk

l g
l j
}
=
{
B j
i

}
: T∗S → T∗S, (20)

we will omit the superscripts � and � and write B shortly, if it is clear on which object
the shape operator is acting. Throughout these definitions, we require the operators to
coincide with surface operators for tangential fields.

From a physical point of view, neither p ∈ TS nor the differential operator listed
in column “Symbolic” in Table 1 need explicitly defined coordinate charts. Such a
coordinate-free formulation ensures conformance in every smooth coordinate system.
In the context of exterior calculus (EC), a graded associative algebra referring to the
wedge product∧ and differential forms is introduced to implement such a coordinate-
free formulation. All fundamental first-order differential operators listed in column
“EC” in Table 1 can be described by the Hodge star ∗ and the exterior derivative d,
which arise algebraically, see Abraham et al. (1988) for details.

The Laplace operators in this paper can be obtained by composing first-order oper-
ators. The Rot-Rot-Laplace and Grad-Div-Laplace for vector-valued functions (and
1-forms) are defined by

�RRp := rot rot p and �GDp := grad div p. (21)

In Abraham et al. (1988), the Laplace–deRham operator is defined for k-forms on an
n-dimensional Riemannian manifold by �dR := (−1)nk+1 (∗d ∗ d+ d ∗ d∗).

For vector fields, we define the Laplace–deRham operator canonically as compo-
sition (� ◦�dR ◦ �). Finally, we obtain

�dRp = −
(
�RR + �GD

)
p. (22)
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for vector-valued functions (and 1-forms) p (and α).

4 Numerical Methods

The growing interest in partial differential equations on surfaces is driven by var-
ious applications, but also by challenging numerical problems, which result from
the nonlinearity due to the underlying curved space. Various numerical methods
have been developed to deal with these problems for scalar-valued surface par-
tial differential equations. Finite element spaces are constructed on triangulated
surface (Dziuk 1988; Dziuk and Elliott 2007a, b). These surface finite elements
essentially allow to use the same concepts and tools as in flat space (Vey and
Voigt 2007; Dziuk and Elliott 2013), and also the computational cost is compara-
ble. The same holds for finite volume methods on quadrilateral grids on surfaces
(Calhoum et al. 2008). Other approaches consider an implicit representation of
the surface, either through a level set description (Bertalmio et al. 2001; Greer
et al. 2006; Stöcker and Voigt 2008; Dziuk and Elliott 2008), within a diffuse
interface approximation (Rätz and Voigt 2006, 2007) or a closest point method
(Ruuth and Merriman 2008; Macdonald and Ruuth 2008). All these methods only
require minimal information on the surface. All geometric information is con-
structed solely through knowledge of the vertices of the discretization, or through
the implicit description of a level set, phase-field function, or point cloud. This has
been proven to be sufficient and leads to efficient numerical methods also for com-
plex physical problems (Eilks and Elliott 2008; Lowengrub et al. 2009; Aland et al.
2011; Rätz and Röger 2012; Aland et al. 2012; Nitschke et al. 2012; Stoop et al.
2015).

For vector-valued surface partial differential equations, the coupling between the
equation and the geometry is much stronger and numerical methods which reduce
the geometric information to a minimum might no longer be the most efficient. The
literature on numerical methods for such problems is rare and mainly restricted to
special surfaces, like the sphere. Here, spectral methods based on spherical har-
monics expansions are a popular tool (Backus 1966; Barrera et al. 1985; Freeden
et al. 1994; Kostelec et al. 2000; Fengler and Freeden 2005; Freeden and Schreiner
2009). Another method which makes use of detailed geometric properties is an exte-
rior calculus approach (Hirani 2003; Desbrun et al. 2005; Arnold et al. 2006, 2010),
which has recently also been applied to vector-valued surface partial differential equa-
tions, e.g., surface Navier–Stokes equations (Mohamed et al. 2016; Nitschke et al.
2016).

We will consider four different methods to solve the weak surface Frank–Oseen
problem (8) and (9). The first method is a discrete exterior calculus (DEC) formula-
tion of Eq. (9), to be discussed in Sect. 4.2. To handle the penalty term requires an
implementation of a pair of discrete equations for the dual vector and its hodge-dual
variant and leads to a coupled system of primal-dual equations, which to the best of
our knowledge has not been considered before in this context. In Sect. 4.3, the second
method based on spherical harmonics (SPH) is introduced. This approach expands
p in a spherical function basis, given as eigenfunctions of the Laplace–deRham
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operator. This results in a discrete set of equation for the expansion coefficients.
The third approach is the surface finite element method (sFEM), to be explained in
Sect. 4.4. It relaxes the requirement of p to be a tangential field, by introducing an
additional penalty term that weakly enforces tangentiality. The vector field is rep-
resented in an Euclidean basis, leading to a system of scalar-valued surface PDEs.
The representation of the Laplace–deRham operator in an Euclidean basis incoop-
erating the penalty terms is a new ansatz to discretize vector-valued surface PDEs.
The fourth method is the diffuse interface method (DI), see Sect. 4.5. It extends the
domain to the embedding space R

3, enforces tangentiality weakly, and additionally
restricts the differential operators to the surface using an approximation of a surface
delta function. This leads to a system of coupled scalar-valued PDEs in a three-
dimensional domain and extends the established concept to vector-valued surface
PDEs.

In the following section, the time discretization for the evolution problem is intro-
duced. It is shared by all considered methods.

4.1 Discretization in Time

Let 0 < t0 < t1 < · · · be a sequence of time steps with time step width τk :=
tk+1 − tk in the kth iteration. The fields pk(x) ≡ p(x, tk) and αk(x) ≡ α(x, tk),
respectively, correspond to the time-discrete functions at tk . Applying a semi-implicit
Euler discretization to (8) and (9) results in time-discrete systems of equations as
follows: let p0 ∈ C(S; TS) be a given initial director field. For k = 0, 1, 2, . . . find
pk+1 ∈ C2(S; TS) s.t.

1

τk
pk+1 + K

(
�dRpk+1 + B2pk+1

)
+ ωn f

(
pk,pk+1

)
= 1

τk
pk in S, (23)

with f (pk,pk+1) ≈ (‖pk+1‖2 − 1)pk+1 a linearization of the nonlinear term. In the
methods DEC, sFEM, and DI we consider a linear Taylor expansion around pk , see (24),
and in the method SPHwe implement an explicit evaluation at the old time step tk , see
(25):

f Taylor
(
pk,pk+1

)
:=
(
‖pk‖2 − 1

)
pk+1 + 2

〈
pk+1,pk

〉
pk − 2‖pk‖2pk (24)

f expl
(
pk,pk+1

)
:= ‖pk‖2pk − pk+1. (25)

The corresponding time discretization of the dual vector formulation (9) is similar
to (23) utilizing the correspondence between vectors and dual vectors by the musical
isomorphism � for the initial condition: Let α0 := p�

0 be given. For k = 0, 1, 2, . . .
find αk+1 ∈ Λ1(S) s.t.

1

τk
αk+1 + K

(
�dRαk+1 + B2αk+1

)
+ ωn f

(
αk,αk+1

)
= 1

τk
αk in S. (26)
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4.2 DEC

For a discrete exterior calculus, the surface discretization is a simplicial complex
K = V � E � T containing sets of vertices V , edges E , and (triangular) faces T . The
quantities of interest in our DEC discretization are 1-forms α ∈ Λ1(S) = T∗S. We
do not approximate the coordinate function of α on a discrete set of points or vertices,
but rather introduce a finite set of degrees of freedom (DOFs) as integral values on the
edges e ∈ E ,

αh(e) :=
∫

π(e)
α, (27)

with the gluing map π : E → S, which projects geometrically the edge e to the
surface S. The mapping αh ∈ Λ1

h(K) is called the discrete 1-form of α, since αh(e)
approximates α(e) ≡ α(e) = 〈

p, e
〉
on an intermediate point ξ ∈ π(e) ⊂ S, where the

edge vector e exists inTξS|π(e) by themean value theorem. Therefore, we approximate
1-forms on the restricted dual tangential space TξS|π(e), which is a one-dimensional
vector space in ξ ∈ S likewise the space of discrete 1-forms Λ1

h (K) |e = Λ1
h ({e})

restricted to the edge e. Hence, a discrete 1-form problem on surfaces leads to a
one-dimensional problem, like a scalar-valued problem.

The simplicial complex K is manifold-like, orientable and well centered. For a
detailed discussion of these requirements and general introduction to DEC, see Hirani
(2003), Desbrun et al. (2005).

Discrete linear differential operators composed of the exterior derivative d and
the Hodge operator ∗, like the Laplace–deRham operator �dR, see Sect. 3, can be
implemented by successively utilizing a discrete version of the Hodge operator and
the Stokes theorem for the exterior derivative, see Hirani (2003). This procedure leads
to a DEC discretized Rot-Rot-Laplace �RR

h and Grad-Div-Laplace �GD
h . For discrete

1-forms αh ∈ Λ1
h(K), sign mappings s◦,◦ ∈ {−1,+1}, volumes |·|, Voronoi cells �v,

Voronoi edges �e, and the “belongs-to” relations � and ≺, we obtain
�RR

h αh(e) = − |e|
|�e|

∑

T�e

sT,e

|T |
∑

ẽ≺T

sT,ẽ αh(ẽ), (28)

�GD
h αh(e) = −

∑

v≺e

sv,e

|�v|
∑

ẽ�v

sv,ẽ
|�ẽ|
|ẽ| αh(ẽ). (29)

Hence, in analogy to Sect. 3, we get the DEC discretized Laplace–deRham operator
�dR

h αh(e) = −(�RR
h αh(e)+�GD

h αh(e)). See “AppendixD” for details in notation and
derivation of the DEC operators. The value for �dR

h αh(e) on an edge e is determined
as a linear combination of few edge values αh(ẽ) in a proximate neighborhood of e,
i.e., it exists a vertex v that connects the edges e � v and ẽ � v.

Restricting the time-discrete evolution Eq. (26) to the edges, using (27), leads to a
system of equations for all edges e ∈ E :

1

τk
αk+1
h (e)+ K

(
�dR
h αk+1

h (e)+
(
B2αk+1

)

h
(e)
)
+ ωn

(
f (αk , αk+1)

)

h
(e) = 1

τk
αk
h(e),

(30)
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with (B2αk+1)h(e) = ∫
π(e) B2αk+1. Using Taylor expansion (24) in its covariant

form, we obtain in the (k + 1)th time step for the nonlinear term

(
f
(
αk,αk+1

))

h
(e) =

∫

π(e)

(
‖αk‖2 − 1

)
αk+1 + 2

〈
αk+1,αk

〉
αk − 2‖αk‖2αk

=
∫

π(e)

((
‖αk‖2 − 1

)
IdT∗S + 2αk ⊗

(
αk
)�
)

αk+1

−
∫

π(e)
2‖αk‖2IdT∗Sαk

=:
(
Lkαk+1

)

h
(e) −

(
Rkαk

)

h
(e),

(31)

with the identity map IdT∗S : T∗S → T∗S.
In the remaining section, we discuss how to implement the norm ‖αh(e)‖, the

upcoming inner product 〈αh(e), α′h(e)〉 in the evaluation of the nonlinear term, and
the endomorphisms B2, Lk , and Rk .

For the edge e0 := e, we choose another edge e1 in the proximate neighborhood of
e0. These two edges define a vector space VT := Span{e0, e1} for the face T � e0, e1
at the contact vertex v ≺ e0, e1. A barycentric parametrization of VT , regarding the
basis vectors, results in a flat discrete metric

g = (ei · e j )deide j , (32)

with the ordinaryR
3 dot product and the canonical dual basis

{
de0, de1

}
, which spans

the flat vector space for covariant vectors. So, we can construct a 1-form α(e) ∈ T∗VT ,

which is constant on T, by α(e) = αh(ei )dei . Hence, if gi j are the components of the
inverse of the metric (32), the square of the norm is given by

‖αh(e)‖2 ≡
∥
∥α(e)

∥
∥2 = αh(ei )g

i jαh(e j ). (33)

This norm strongly depends on the choice of the additional edge e1. Considering the
Voronoi edge �e (see “Appendix D”), which is not an edge in a pure simplicial sense,
but a chain containing two edges orthogonal to e, one on the left face T2 � e and one
on the right face T1 � e, i.e., �e = �e|T1 + �e|T2 , leads to a stable pair of edges. With
a piecewise linear barycentric parametrization γ : [0, 1] → �e of the polygonal chain
�e, with piecewise constant derivative ‖γ ′‖ = |�e| we can define the Voronoi edge
vector

e� := γ ′ ∈ TT1 � TT2.

This leads to the discrete metric in terms of the orthogonal basis {e, e�} and the dual
basis {de, de�},

g = |e|2 (de)2 + |�e|2 (de�
)2 (34)
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and, with αh(�e) ≈ −|�e|
|e| (∗αh)(e) (see Hirani 2003), the discrete (covariant) vector-

valued 1-form

α(e) = αh(e)de + αh(�e)de
� ≈ αh(e)de − |�e|

|e| (∗αh)(e)de
�. (35)

The resulting vector spaces on all edges e ∈ E can be summarized as disjoint unions
to TE := ⊔

e∈E
⊔

T�e Span{e, e�|T }. We call
(
αh, ∗αh

) := α : E → T∗E a dis-
crete primal-dual-1-form (PD-1-form) with components αh and ∗αh in Λ1

h(K). Let
Λ1

h(K;T∗E)be the spaceof discretePD-1-forms.All discretePD-1-forms are uniquely
defined and depend only on the edge e and geometrical information about it and its
Voronoi edge. Henceforward, we omit the argument e for a better readability. The
norm of α = α(e) is computed on all edges e with the discrete metric (34) by

∥∥α
∥∥2 = 1

|e|2
(
α2
h + (∗αh)

2
)

(36)

and the discrete inner product with another discrete PD-1-form β = (
βh, ∗βh

)
is

computed by

〈
α,β

〉
= 1

|e|2 (αhβh + (∗αh)(∗βh)) . (37)

The Hodge star operator applied to (26) results in the Hodge-dual equation

1

τk
(∗α)k+1 + K

(
�dR(∗α)k+1 + ∗B2αk+1

)
+ ωn ∗ f

(
αk,αk+1

)
= 1

τk
(∗α)k,

(38)

where the identity∗�dR = �dR∗ for theLaplace–deRhamoperator is used.Restricting
(38) to the edges e ∈ E , utilizing (27), and combining the result with (30) leads to

1

τk
αk+1 + K

(
�dRαk+1 +

[ (
B2αk+1

)
h(∗B2αk+1
)
h

])
+ ωn

[ (
Lkαk+1

)
h(∗Lkαk+1
)
h

]

= 1

τk
αk + ωn

[ (
Rkαk

)
h(∗Rkαk
)
h

]
in E . (39)

In “Appendix D,” it is shown, how to approximate endomorphisms M : T∗S →
T∗S in a DEC-PD context, so that

[
(Mα)h
(∗Mα)h

]
≈ M · α in E (40)

with the mixed co- and contravariant discrete PD-(1,1)-Tensor M. Evaluating the R
3

representation of the shape operator at the midpoint of the edge e ∈ E projected to the
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surface, i.e., B2(e) := B2|π(c(e)) ∈ R
3×3, utilizing (110), results in a matrix form of

the shape operator, applicable in (40),

B2(e) =
⎡

⎣
e·B2(e)·e

|e|2 − e·B2(e)·e�|e||�e|
− e�·B2(e)·e

|e||�e|
e�·B2(e)·e�

|�e|2

⎤

⎦ . (41)

Similarly, with (36) and Id�

T∗S = g, considering the discrete metric, we get

Rk(e) = 2
∥∥∥αk(e)

∥∥∥
2
[
1 0
0 1

]
, (42)

Lk(e) =
(∥∥∥αk(e)

∥∥∥
2 − 1

)[
1 0
0 1

]
+ 2

⎡

⎣
αk
h(e)α

k
h(e)

|e|2 −αk
h(e)α

k
h(�e)|e||�e|

−αk
h(e)∗αk

h(�e)|e||�e|
αk
h(�e)α

k
h(�e)

|�e|2

⎤

⎦

≈
(∥∥∥αk(e)

∥∥∥
2 − 1

)[
1 0
0 1

]
+ 2

|e|2
[

αk
h(e)α

k
h(e) αk

h(e) (∗α)kh (e)
αk
h(e) (∗α)kh (e) (∗α)kh (e) (∗α)kh (e)

]

=: L̃k
(e). (43)

Finally, with the discrete inner product (37), Rk · αk = 2
∥∥αk

∥∥2 αk , and

L̃k · αk+1 =
(∥∥∥αk

∥∥∥
2 − 1

)
αk+1 + 2

〈
αk+1,αk

〉
αk in E, (44)

the introduced Taylor linearization of f , i.e., f Taylor(αk,αk+1), is found.
This results in a series of time-discrete linear DEC-PD problems: For k =

0, 1, 2, . . ., and a given initial value α0, find αk+1 ∈ Λ1
h(K;T∗E) s.t.

1

τk
αk+1 + K

(
�dRαk+1 + B2 · αk+1

)
+ ωn f

Taylor
(
αk,αk+1

)
= 1

τk
αk in E .

(45)

These stationary problems can be implemented by assembling a matrix and vector
for the components αh(e) and (∗αh)(e) on edges e ∈ E . The resulting linear system
is solved with the TFQMR method, see Freund (1993).

There are many conceivable ways to interpolate the initial condition α0 =
[α0, ∗α0] ∈ Λ1

h(K;T∗E) from a given vector field p0 ∈ TS. We assume that the
simplicial complex and its polytope |K| are immersed in a sufficiently small neigh-
borhood �δ of the surface, so that the initial condition p0 can be smoothly extended.

Given such an extension p̃0 of an initial vector field p0, we can choose the inter-
section point c(e) of an edge e ∈ E and �e for approximating the integral expressions,
i.e., let the edge e be given so that it points from the vertex v1 to the vertex v2 and the
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dual edge �e from the circumcenter c(T1) to c(T2), then we obtain

α0(e) =
∫

π(e)

(
p0
)� ≈

∫ 1

0
p̃0 (c(e)) · e dλ = p̃0 (c(e)) · (v2 − v1) (46)

(∗α)0(e) ≈ − |e|
|�e|

∫

�π(e)

(
p0
)� ≈ − |e|

|�e|
∫ 1

0
p̃0 (c(e)) · e� dλ

= − |e|
|�e| p̃

0(c(e)) · (c (T2) − c (T1)) . (47)

On the other hand, if p0 arise from the gradient of a scalar function f : S → R,
i.e., p0 = grad f = (d f )�, we obtain for a smooth extension f̃ of f :

α0(e) =
∫

π(e)
d f = f (v2) − f (v1) (48)

(∗α)0(e) ≈ − |e|
|�e|

∫

�π(e)
d f

≈ − |e|
|�e|

(
f̃ (c(T2)) − f̃ (c(T1))

)
, (49)

utilizing Stoke’s theorem.

4.3 Spectral Method

In this section, we restrict our consideration to spherical surfacesS = S
2 parametrized

by θ ∈ [0, π ] and ϕ ∈ [0, 2π), i.e., the colatitude and azimuthal coordinates, respec-
tively. So each point xS2 ∈ S

2 can be written as xS2(θ, ϕ) = sin(θ) cos(ϕ) ex +
sin(θ) sin(ϕ) ey + cos(θ) ez . Based on the observation that the tangential part of a
spherical vector field can be split into a curl-free and a divergence-free field by using
derivatives of scalar fields, an efficient numerical methods can be constructed. The
Helmholtz decomposition theorem (Freeden and Schreiner 2009) states that every
continuously differentiable spherical tangent vector field f : S → TS can be repre-
sented by uniquely determined scalar functions f1, f2 ∈ C1(S) as

f(x) = grad f1(x) + rot f2(x).

Anefficient solutionmethod for linear surface PDEson the sphere is based on a spectral
expansion of the objective scalar functions f ∈ L2(S) in the spherical harmonics
Ym
l : S → C, (l,m) ∈ I∞ with IN := {(l,m) : 0 ≤ l ≤ N ,−l ≤ m ≤ l},

which build an L2(S)-orthonormal system of eigenfunctions of the Laplace–Beltrami
operator �S , i.e.,

�SYm
l = �lmY

m
l with �lm := −l(l + 1), for (l,m) ∈ I∞ (50)
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and
(
Ym
l , Ym′

l ′
)
L2(S)

= δll ′δmm′ , cf. Hesthaven et al. (2007), Backofen et al. (2011).
Due to the symmetries of the sphere, analytic representations of Ym

l can be found in
terms of associated Legendre polynomials. This allows for an efficient evaluation of
the basis functions.

A scalar function f ∈ L2(S) can be represented in the series expansion

f (θ, ϕ) =
∞∑

l=0

l∑

m=−l
flmY

m
l (θ, ϕ) (51)

with expansion coefficient flm = (
f, Ym

l

)
L2(S)

.
Taking the gradient and curl of the spherical harmonics, an expansion for tangen-

tial vector fields can be constructed. Therefore, we introduce two vector spherical
harmonics y(1)

lm , y(2)
lm as

y(1)
lm (θ, ϕ) := Nlm grad Ym

l (θ, ϕ),

y(2)
lm (θ, ϕ) := Nlm rot Ym

l (θ, ϕ)
(52)

with normalization constants Nlm = (−�−1
lm )1/2. These functions are normalized in

such a way that they build again an L2(S; TS)-orthonormal system of eigenfunctions
of a Laplace operator, namely the spherical Laplace–deRham operator (Freeden et al.
1994; Freeden and Schreiner 2009), i.e.,

�dR y(i)
lm = −�lm y(i)

lm, for i = 1, 2, (l,m) ∈ I∞ (53)

and
(
y(i)
lm, y( j)

l ′m′
)

L2(S;TS)
= δi jδll ′δmm′ .

A series expansion of a tangent vector field f ∈ L2(S; TS), based on the expansion
of scalar fields (51) and the gradient and curl basis representation (52), can thus be
written as

f(θ, ϕ) =
2∑

i=1

∞∑

l=0

l∑

m=−l
f (i)
lm y(i)

lm(θ, ϕ) (54)

with expansion coefficients f (i)
lm =

(
f, y(i)

lm

)

L2(S;TS)
. In the following, we use the

notation f lm := (
f (1)
lm , f (2)

lm

)
to denote the pair of coefficients.

The spherical harmonics method is based on the idea to approximate any scalar
function (51) and vector-valued function (54) by truncated expansions with bandwidth
lmax =: N . Therefore, we introduce the space of spherical vector polynomials

��N (S) :=
{

f =
2∑

i=1

N∑

l=0

l∑

m=−l
f (i)
lm y(i)

lm

}

.

The evaluation of expansion coefficients, in otherwords, the calculation of the L2 inner
product, is implemented by approximating the integral by an appropriate quadrature
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rule. Let V = {xk = (θk, ϕk)} be a set of quadrature points on the sphere and {wk} the
corresponding quadrature weights. We introduce the discrete L2 inner product:

(
f, y(i)

lm

)

h,L2(S;TS)
:=
∑

k

wk

〈
f(θk, ϕk), ȳ(i)

lm(θk, ϕk)
〉
.

In order to derive an equation for the expansion coefficients p
lm

of p ∈ ��N (S) in
terms of a Galerkin approach, see, e.g., Hesthaven et al. (2007), we require the residual
r of the differential Eq. (8),

r := 1

τk

(
pk+1 − pk

)
+ K

(
�dRpk+1 + B2pk+1

)
+ ωn f

(
pk,pk+1

)
,

to be orthogonal to the basis of ��N (S) w.r.t. the L2 inner product, i.e.,

(
r, y(i)

lm

)

L2(S;TS)
= 0, for i = 1, 2, (l,m) ∈ IN . (55)

The shape operator on the unit sphere simplifies to the surface identity, i.e.,B = −πTS .
With f := f expl, this term can be evaluated in discrete grid points on the sphere rather
than by forming convolution sums of the coefficients, see Boyd (2001). Therefore, let
the nonlinear term fk := ‖pk‖2pk at time step tk be expanded in the space ��N (S)

with expansion coefficients fklm .
By requiring the new time step solution pk+1 to be an element of ��N (S), we can

insert the truncated expansion of the solution into the residual Eq. (55). Utilizing the
property that the Laplace–deRham operator is the eigenoperator of the basis functions
results in an equation for the expansion coefficients directly. Finally, the time step
procedure for the spherical harmonics approach reads: Let

p0,(i)
lm

=
(
p0, y(i)

lm

)

h,L2(S;TS)
for i = 1, 2, (l,m) ∈ IN

be the expansion coefficients for the initial solution. For k = 0, 1, 2, . . .

1. Evaluate fk(x) := ‖pk(x)‖2pk(x) for all x ∈ V .
2. Calculate f k,(i)lm =

(
fk, y(i)

lm

)

h,L2(S;TS)
for i = 1, 2, (l,m) ∈ IN .

3. Solve

1

τk
pk+1
lm

− K�lmpk+1
lm

+ (K − ωn)pk+1
lm

= 1

τk
pk
lm

− ωnfklm, ∀(l,m) ∈ IN

to be understood componentwise.
4. Evaluate (54) with coefficients pk+1

lm
to get pk+1.

The discrete spherical harmonics transform, that is, the evaluation of (51) for a
bandwidth N , can be split up into a discrete Fourier transform, realizable by a fast
Fourier transform, and discrete Legendre transforms, realizable by discrete cosine
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transforms (Kunis and Potts 2003) or a fast multipole method (Suda and Takami
2002). The inverse transform, i.e., the calculation of the expansion coefficients, may
be realized by the Gauss–Legendre algorithm. There, the integral is replaced by a
Gauss–Legendre quadrature rule with Gauss nodes and weights in latitudinal direction
(Schaeffer 2013). Therefore, the spherical coordinate space is discretized by the set
of vertices

V := {
x(θi , ϕ j ) : 0 ≤ i < Nθ , 0 ≤ j < Nϕ

}
,

with θi Gauss nodes in [0, π ] and ϕ j equally distributed in [0, 2π). To respect the
sampling theorem,we have chosen Nθ > N and Nϕ > 2N . Therewith, the coefficients
of the nonlinear term are only approximated, since fk is not in ��N (S) for pk ∈ ��N (S).

Finally, the discrete vector harmonics transform can be implemented by two scalar
transforms, see, e.g., Kostelec et al. (2000). Thus, the complexity of the transform
is dominated by the scalar transform that can be realized in O(N 2 log N ) (Suda and
Takami 2002).

4.4 Surface Finite Elements

We consider a reformulation of FS
ωn

and dynamic Eq. (8) suitable for a componentwise
surface finite element approximation. To do so, we extend FS

ωn
to a domain of vector-

valued functions p̂ : S → TR
3 and penalize any energy contributions by normal

components p̂ · ν �= 0 with a penalty factor ωt � 1. The previously introduced
Laplace–deRham operator has been defined as a differential operator on sections of
tangent bundles. This needs to be extended to R

3 vector fields. In a first step, we use
the surface projection πTS introduced in (18) and a result from (Duduchava et al.
2006) to express div p by div p̂, i.e.,

div p = div (πTS p̂) = ∇ · p̂− ν · (∇p̂ · ν)
︸ ︷︷ ︸

=div p̂

−H (̂p · ν) , (56)

where H = div ν denotes the mean curvature of S. Note that the curl of a vector
field reduces to the curl of its tangential part, i.e., rot p = rot p̂. Further, we apply a
decomposition of p̂ = p + ν (̂p · ν) and q̂ = q + ν (̂q · ν) to express the L2 inner
product of �dRp and q in terms of p̂ and q̂ (for details, see “Appendix B”),

∫

S
〈�dRp,q〉 dS =

∫

S
(div p̂) (div q̂) + (rot p̂) (rot q̂) dS +

∫

S
H2 (̂p · ν) (̂q · ν) dS

−
∫

S
H ((̂q · ν) (div p̂) + (̂p · ν) (div q̂)) dS.

In order to neglect the terms involving normal components (̂p · ν) and (̂q · ν), the
penalty term ωt

2 (̂p · ν)2 is added to the energy FS
ωn
. The functional derivative of this

contribution results in a symmetric term
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∫

S
ωt

2

〈
δ(̂p · ν)2

δp̂
[̂p], q̂

〉

dS =
∫

S
ωt (̂p · ν) (̂q · ν) dS (57)

leading in the context of a minimization process to (̂p · ν) → 0 and (̂q · ν) → 0 as
ωt → ∞. As a result, we obtain an approximation of the Laplace–deRham operator
for finite ωt by

∫

S
〈�dRp, q̂〉 dS ≈

∫

S
(div p̂) (div q̂) + (rot p̂) (rot q̂) dS

=
∫

S
− [grad (div p̂) + rot (rot p̂)

]

︸ ︷︷ ︸
=�̂

dR
p̂

· q̂ dS.
(58)

A brief numerical study justifying this approach is found in “Appendix C.” With
this established, we formulate the extended weak surface Frank–Oseen energy for
p̂ ∈ HDR(S; R

3) as:

FS
ωn,ωt

[̂p] =
∫

S
K

2

[
(div p̂)2 + (rot p̂)2 + ‖B · p̂‖2

]
dS

+
∫

S
ωn

4

(
‖̂p‖2 − 1

)2 + ωt

2
(̂p · ν)2 dS.

(59)

A straightforward first variation of the energy leads to the associated equation

∂t p̂+ K
(
�̂
dRp̂+ B2p̂

)
+ ωt (ν · p̂) ν + ωn

(
‖̂p‖2 − 1

)
p̂ = 0 in S × (0,∞) (60)

with the initial condition p̂(t = 0) = p0 ∈ TS. Using the vector space property of
the extended variational space HDR(S; R

3), we split the vector-valued variational
problem into a set of componentwise scalar variational problems2. Therefore, let q̂ be
decomposed as

HDR(S; R
3) ⊇

[
H1(S)

]3 " q̂ =
3∑

i=1

q̂iei , q̂i ∈ H1(S), (61)

with {ei }i the Euclidean basis of R
3. We obtain a set of coupled variational problems

for p̂i ∈ L2(0,∞; H1(S))
∫

S
∂t p̂i q̂ dS +

∫

S
K
[
(div p̂) (grad q̂ )i + (rot p̂) (rot(̂q ei )) +

(
B2 · p̂

)

i
q̂
]
dS

+
∫

S
ωt (ν · p̂) νi q̂+ ωn

(
‖̂p‖2 − 1

)
p̂i q̂ dS = 0, ∀ q̂ ∈ H1(S) ∀ t ∈ (0,∞)

(62)

2 Here, we use lower indices to denote the components of a vector, not to mix up with the covariant indices
used in the context of differential geometry.
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for i = 1, . . . , 3. To solve this set of variational problems, we have implemented
the time discretization as in Sect. 4.1. The tangential penalty term is evaluated at the
new time step tk+1, and the nonlinear term is linearized using the expression f Taylor.
For the discretization in space, we apply the surface finite element method for scalar-
valued PDEs (Dziuk 1988; Dziuk and Elliott 2007a, b) for each component. Therefore,
the surface S is discretized by a conforming triangulation Sh , given as the union of
simplices in a simplicial complex, i.e.,

Sh :=
⋃

σ∈K
σ.

We use globally continuous, piecewise linear Lagrange elements

Vh(Sh) =
{
vh ∈ C0(Sh) : vh |T ∈ P

1, ∀ T ∈ T
}

as trial and test space for all components p̂i of p̂, with T the set of triangular faces.
The resulting discrete problem reads: For k = 0, 1, 2, . . . find p̂k+1

i ∈ Vh(Sh) s.t.

1

τk

∫

Sh

p̂k+1
i q̂ dS + K

∫

Sh

div p̂k+1 (grad q̂ )i + rot p̂k+1 rot(̂qei ) +
(
B2 · p̂

)

i
q̂ dS

+ωt

∫

Sh

ν · p̂k+1νi q̂ dS + ωn

∫

Sh

(
‖̂pk‖2 − 1

)
p̂k+1
i q̂+ 2̂pki p̂

k · p̂k+1̂q dS

= 1

τk

∫

Sh

p̂ki q̂ dS + 2ωn

∫

Sh

‖̂pk‖2̂pki q̂ dS, ∀ q̂ ∈ Vh(Sh) (63)

for i = 1, . . . , 3. To assemble and solve the resulting system, we use the FEM toolbox
AMDiS (Vey and Voigt 2007; Witkowski et al. 2015) with domain decomposition on
eight processors. As linear solver, we have used a restarted GMRES method with a
restart cycle of 30, modified Gram–Schmidt orthogonalization, and a block Jacobi
preconditioner with ILU(0) local solver on each partition.

4.5 Diffuse Interface Approximation

Based on the penalty formulation, described in Sect. 4.4, we formulate a diffuse inter-
face approximation following the general treatment introduced in Rätz and Voigt
(2006). We use a simple (e.g., box like) embedding domain S ⊂ � ⊂ R

3 and describe
the surface as the 1/2 level set of a phase-field variable φ defined on �:

φ(x) = 1

2

(
1− tanh

(
3

ε
dS(x)

))
, (64)

with interface thickness ε and dS(x) a signed-distance function. This gives an approx-
imation of the surface delta function

δS � 36

ε
φ2(φ − 1)2 = W (φ). (65)
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In this diffuse interface framework, we consider vector fields p̃ : � → TR
3 extended

from the surface to the embeddingdomain�. The outwardpointing surface normals are
extended smoothly to� by using ν̃ = ∇φ/‖∇φ‖, and the shape operator in the embed-
ding domain is defined in terms of this extended normal, i.e., B̃i j = − [πTS∇ν̃ j

]
i .

Considering the diffuse interface approximation of the extended weak surface
Frank–Oseen energy

F�
ωn,ωt

[̃p] =
∫

�

K

2
W (φ)

[
(div p̃)2 + (rot p̃)2 + ‖B̃ · p̃‖2

]
dS

+
∫

�

ωn

4
W (φ)

(
‖̃p‖2 − 1

)2 + ωt

2
W (φ) (̃p · ν̃)2 dS (66)

with p̃ ∈ HDR(�; R
3), we obtain, by straightforward first variation, the L2-gradient

flow formulation

W (φ)∂t p̃+ K �̃
dR
p̃+W (φ)

[
K
(
B̃2 · p̃

)
+ ωt (̃ν · p̃) ν̃ + ωn

(
‖̃p‖2 − 1

)
p̃
]
= 0

(67)
in �× (0,∞). Here, we have introduced the diffuse interface Laplace–deRham oper-

ator �̃
dR

by

�̃
dR
p̃ := − [∇ (W (φ)∇ · p̃)+ ν̃ ×∇ (W (φ)∇ · (̃p× ν̃))

]
. (68)

As initial condition, we set p̃(t = 0) = p̃0 in � such that p̃0|S = p0. As boundary
condition, we specify

∇p̃i · n = 0, on ∂�× (0,∞),

for i = 1, . . . , 3, where n denotes the outward pointing normal of ∂�. For �

big enough, the condition on the outer boundary does not influence the solution
on the surface. Finally, we obtain a set of coupled variational problems for p̃i ∈
L2(0,∞ ; H1(�))

∫

�

W (φ)∂t p̃i q̃ dV

+
∫

�

K W (φ)
[
(∇ · p̃) ∂i q̃+∇ · (̃p× ν̃)∇ · (̃qei × ν̃) +

(
B̃2 · p̃

)

i
q̃
]
dV

+
∫

�

ωtW (φ) (̃ν · p̃) ν̃i q̃+ ωnW (φ)
(
‖̃p‖2 − 1

)
p̃i q̃ dV

= 0 ∀ q̃ ∈ H1(�) ∀ t ∈ (0,∞) , (69)

for i = 1, . . . , 3.
The definition of �̃

dR
in (68) is motivated by the componentwise formulation of

�̂
dR

in combination with the diffuse approximations of surface differential operators
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for scalar functions f : S → Rwith smooth extension f̃ : � → R. In this framework,
we have the following convergence results:

lim
ε→0

∫

�

W (φ) f̃ q̃ dV =
∫

S
f q̃ dS,

lim
ε→0

∫

�

W (φ)∂i f̃ q̃ dV =
∫

S
(grad f (x) )i q̃ dS,

lim
ε→0

∫

�

∇ · (W (φ)∇ f̃
)
q̃ dV =

∫

S
div (grad f ) q̃ dS,

for q̃ ∈ H1(�), see Rätz and Voigt (2007). A regularization is added to the function
W (φ) in some of the terms, to allow for a more stable solution of the linear system:
Wζ (φ) := max(W (φ), ζ ) with ζ # 1. This regularization is justified in Rätz and
Voigt (2006), Li et al. (2009).

Applying a standard finite element method with globally continuous, piecewise
linear elements Vh(�h) = {vh ∈ C0(�h) : vh |T ∈ P

1, ∀ T ∈ �h} on a triangu-
lation �h of �, the time discretization as above and inserting the regularized delta
function approximation Wζ , results in a sequence of diffuse interface problems: For
k = 0, 1, . . ., find p̃k+1

i ∈ Vh(�) s.t.

1

τk

∫

�h

Wζ (φ)̃pk+1
i q̃ dV

+ K
∫

�h

Wζ (φ)∇ · p̃k+1∂i q̃

+W (φ)
[
∇ ·

(
p̃k+1 × ν̃

)
∇ · (ei q̃× ν̃) +

(
B̃2 · p̃

)

i
q̃
]
dV

+ωt

∫

�h

W (φ)̃ν · p̃k+1ν̃i q̃ dV

+ωn

∫

�h

W (φ)
[(
‖̃pk‖2 − 1

)
p̃k+1
i + 2̃pki p̃

k · p̃k+1
]
q̃ dV

= 1

τk

∫

�h

Wζ (φ)̃pki q̃ dV + 2ωn

∫

�h

W (φ)‖̃pk‖2̃pki q̃ dV, ∀ q̃ ∈ Vh(�), (70)

for i = 1, . . . , 3, with p̃0 a smooth extension3 of p0 to the domain �. To assemble
and solve the resulting system, we use the FEM toolbox AMDiS (Vey and Voigt 2007;
Witkowski et al. 2015) with domain decomposition on 64 processors. As linear solver,
we have used a restarted GMRES method with a restart cycle of 30, modified Gram–
Schmidt orthogonalization, and a block Jacobi preconditioner with ILU(0) local solver
on each partition, as above for the sFEM method.

3 A smooth extension to the domain� is implemented by successively extending fields to its surroundings,
utilizing (15), until the whole domain is covered, see also Stöcker (2008).
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4.6 Surface Approximation and Grids

Surfaces similar to a sphere S
2 can be triangulated by projecting a triangulation of the

sphere to S, utilizing the coordinate projection π . For the DECmethod, this triangula-
tion must be well centered; in other words, the circumcenter of each surface triangle
must be located within the triangle. This property can be realized by triangles with
internal angle less than 90◦. An iterative procedure is applied to the projected sphere
triangulation to fulfill this requirement, by shifting points tangentially to the surface
so that all triangles have nearly equal internal angles and edge lengths. The algorithm
is described in Nitschke (2014).

Other surfaces may be triangulated by cutting tetrahedra at the zero-level set of an
implicit surface description. This triangulation must be optimized by retriangulation,
e.g., by using (Valette et al. 2008, 2014), and utilizing additionally the iterative pro-
cedure to get a well-centered complex, as above. Recently, an algorithm for mesh
optimization, based on an edge collapsing strategy, was implemented in Stenger
(2016). Even if sFEM would need less requirements on the surface mesh, we use
the same meshes as for DEC. We have chosen a grid width h, i.e., the maximal radius
of all triangles, to be approximately one-sixth of the defect core radius that is estimated
experimentally.

For DI we use a 3D conformal tetrahedral mesh adaptively refined near the surface.
Therefore, the interfacial region, i.e., {x ∈ � : φ(x) ∈ [0.1, 0.9]}, contains approx-
imately 7 grid points in normal direction to the surface. This refinement guarantees
good agreement with the sharp surface limit, see, e.g., Aland et al. (2010), Aland
et al. (2013) for a justification and quantitative study. The signed-distance function,
the phase field is based on, is calculated from the triangulated surface by an algorithm
utilizing a ray tracing principle. For every grid point in the 3D mesh, the distance to
the surface is calculated, and afterward, the correct sign is assigned. This algorithm
is explained and implemented in Stenger (2016) and has an asymptotic complexity of
∼ O(|�h | · log |T |).

5 Computational Results

We validate the proposed approaches on the unit sphere. Due to lack of analytical
description of minimizers p ∈ HDR(S; TS), we compare the numerical results with
each other. The DEC approach thereby serves as reference. We also explore the sta-
bility of minimal energy defect configurations on more complicated surfaces with
non-constant curvature and demonstrate the tight interplay of defect localization and
geometric properties. Within these studies, we show the possibility of equilibrium
states other than the trivial realization of the Poincaré–Hopf theorem and thus the pos-
sibility to reduce the weak surface Frank–Oseen energy by incorporating additional
defects. To validate these results, we again compare the numerical results with each
other. The penalty parameter ωn is chosen, such that the defect core radius is resolved,
see Table 2. The section is concluded by providing information on the numerical effort
for each method.
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Table 2 Simulation parameters
for the two setups: relaxation on
the sphere and nonic surface

Sphere Nonic surface

Time tend 5 Variable a

τk ≡ τ 10−3 5 · 10−4

Model K 1 1

ωn 103 200

ωt [103−105] 105

SPH N 190 –

Nθ 250 –

Nϕ 400 –

τ 2× 10−4 –

sFEM h 0.013 0.035

DI ε 0.15 0.2

ζ 10−6 10−6

h 0.023 0.078

� [−1.5, 1.5]3 [−2, 3] × [−2, 2]2

aThe end time of the simulation
is chosen so that the system is
close to equilibrium, i.e., if the
criterion |F(tk+1)− F(tk )| <

10−14 · |F(tk+1)| is fulfilled

5.1 Method Comparison on Sphere

We consider an initial condition p0 with two sinks ( +1), a source ( +1) and a
saddle ( −1) on the unit sphere S = S

2. The numbers are the topological charges
or the winding numbers indV (di ) of the defects di . They are defined as the algebraic
sum of the number of revolution of p along a small counterclockwise oriented curve
around the defect. The Poincaré–Hopf theorem requires

∑

i

indV (di ) = χ(S), (71)

which in the present case is satisfied as 1+1+1−1 = 2. The four defects are positioned
equidistant on the x–y-equatorial plane. To avoid metastable configurations, we shift
one sink defect slightly closer to the saddle point defect.

p0 = πTS p̂0

‖πTS p̂0‖ , where

p̂0 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[−x, 0,−z]T |y| ≥ cos π
4

[0, y, z]T x ≥ cos π
4

[0, sin (π (y − λ)) ,− sin (π z)]T x ≤ − cos π
4[∣∣∣ y

cos π
4

∣∣∣− 1, y
cos π

4
, 0
]T

otherwise

(72)

with λ = 0.01 used in our simulations.
Since opposing topological charges attract each other, we observe the motion of the

two sink defects to the saddle point defect and eventually the fusion of the saddle point
defect with the closer sink defect (see Fig. 1). The time needed for the annihilation
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t1 =0.5 t2 =1.7 t3 =4.5

Fig. 1 Top sequence of director field configurations (glyphs) and defect positions (color gradient on surface
and large arrows) in the evolution of the four-defect test case, at time t0, the four-defect configuration, time
t1, the defect annihilation, and time t2, the two-defect configuration. Bottom energy evolution (left), defect
positions in x–y-equatorial plane at t2 (middle) and defect trajectories of the four-defect test case (right).
The angle ϕ ∈ [0, 2π) describes the defect positions in the x–y-equatorial plane. Colors of the defects:
source (dark blue), sinks (cyan and green), saddle point (red) (Color figure online)

of the two defects is denoted by tf and called fusion time. Finally, the remaining two
defects relax to a position with maximal distance. Due to the symmetry of the setup,
the defect positions will remain in the equatorial plane.

These dynamics are consistently observed within all methods. To measure devi-
ations in the proposed numerical methods, we compare against the DEC solution.
Therefore, we introduce as quantitative measure a density like mean energy error εe
(normalized by the area A of the surface, AS2 = 4π ) and as qualitative measure the
error in the defect fusion time εf,

εe := 1

A tend

∫ tend

0

∣
∣∣∣∣∣

FS(�)
ωn,(ωt)

(M) − FS
ωn

(DEC)

FS
ωn

(DEC)

∣
∣∣∣∣∣
dt, (73)

εf :=
∣∣
∣∣
tf(M) − tf(DEC)

tf(DEC)

∣∣
∣∣ , (74)

for a numerical method M. Within this framework, we evaluate the proposed vector-
valued methods DEC and SPH, and the componentwise methods sFEM and DI, with
parameters from Table 2.

Figure 2 shows the obtained errormeasures. Themethods essentially showmatching
solutions. The relative energy difference and difference in defect fusion time is reduced
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Fig. 2 The errors in mean energy εe (left) and fusion time of defects εf (right) for various tangential-
ity penalty parameters ωt . Three different methods are compared to DEC: spherical harmonics (blue),
parametric FEM (red), and diffuse interface (green) (Color figure online)

for increasing penalty factor ωt , but is limited by the differences in the compared
methods, e.g., difference in the location of DOFs and the discretization of the surface.
The SPH method does not depend on a tangentiality penalization as the DEC method.
Thus, the error values result from a difference in the surface representation and the
truncation in the spherical harmonics expansion. Apart from this, two qualitatively
different behaviors for sFEM and DI can be observed. Where the method sFEM shows
nearly constant errors (at least for ωt > 2500), the method DI shows a dependence on
the penalty parameter. This effect arises form the interaction of the penalty forcing
and the geometric approximation of S by a smeared-out delta function, i.e., a non-
constant penalty factor throughout the interface. Close to the surface, the director field
p̃ is not guaranteed to be tangential to S for ωt too small. Increasing the penalty factor
finally leads to tangential fields in the surrounding of the interface. This results in error
values close to those of sFEM. A difference in these two methods is expected, due to
the additional approximation of the surface and the surface differential operators by
the diffuse interface representation.

Within a reasonable tolerance, all four methods show the same dynamic behavior
along quantitative and qualitative error measures and converge to the same stationary
solution with two defects, a source (+1) and a sink (+1), which are at maximal distance
from each other.

5.2 Higher-Order Surfaces

To further validate the consistency of themethodsDEC, sFEM and DI, we extend the test
setup to a sequence of surfaces with non-constant curvature, see Fig. 3 for examples.
All surfaces have χ(S) = 2, thus allowing defect configurations as in the previous
example.

The construction of the surfaces is based on a deformation of the unit sphere, such
that regions with positive and negative Gaussian curvature emerge. Our goal is to
study the influence of these regions on the defect location. Are defects attracted by
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Fig. 3 Nonic surfaces corresponding to three different stretching parameters C . Left surface with defect
fusion time> 0.Center four-defect configuration gets stable.Right four-defect configuration is energetically
equivalent to two-defect configuration

these regions? Is there a relation between the topological charge of the defect and the
Gaussian curvature?

The postulated parametrization of the unit sphere S
2, xS2(θ, ϕ), given in Sect. 4.3,

is stretched in z-direction by the displacement function fC,r with factors r ∈ (0, 1)
and C > 0,

fC,r (z) := 1

4
Cz2

[
(z + 1)2(4− 3z) + r(z − 1)2(4+ 3z)

]

and compress along y-directionby a factor B ∈ [0, 1). This leads to the parametrization

x(θ, ϕ) := xS2(θ, ϕ) + fC,r (cos θ) ex − B sin θ sin ϕ ey . (75)

The surface can also be expressed implicitly by the zero-level set of the function

�(x, y, z) := (
x − fC,r (z)

)2 + 1

(1− B)2
y2 + z2 − 1. (76)

This gives a polynomial � of degree 10, which motivates the name nonic surfaces.
The asymmetry of the surfaces w.r.t. the x-z-plane prevents metastable defects con-
figurations. The necessary surface quantities can be derived directly from the level set
formulation by ν̃ = ∇�/‖∇�‖ and Bi j = − [πTS∇ν̃ j

]
i .

To investigate the energy value FS
ωn
[p∗] of a stationary solution p∗ and the stability

of defect configurations, we analyze the evolution of two different initial solutions p0(4)
and p0(2). The first one, p

0
(4), has four separated defects, while the second one, p

0
(2), has

two.
At first, we consider the projected unit vector ex , which can be represented by the

surface gradient of the x-coordinate, i.e.,

p0(4) := πTS ex = grad x = (dx)�. (77)

On an edge e = [v1, v2] ∈ E , where the face T1 � e is right of e and T2 � e is left of
e, so that �e = [c(T1), c(e)] + [c(e), c(T2)] is the dual edge, we can approximate the
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1-form dx , utilizing integration by parts on e, by

α0
(4)(e) =

(
vx2 − vx1 ,− |e|

|�e|
(
[c(T2)]

x − [c(T1)]
x)
)

. (78)

To enforce a two-defect solution in equilibrium for the second case, we project a
slightly rotated unit vector ey to the surface. The rotation by an angle γ in the normal
plane of the R

3-vector [−1, 0, 1]T is thereby represented by the rotation matrix Rγ .
This defines

p0(2) := πTS Rγ ey . (79)

Our choice of γ is 0.05. In the context of DEC, the evaluation of a vector field q ∈ TS
with the dual edge vector e� on edge e at the intersection e∩ �e = c(e) is ambiguous.
To overcome this, we define in a canonical way a dual 1-chain, utilizing the definition
of a dual edge �e = �e|T1 + �e|T2 . This leads to

q(c(e)) · e� := q(c(e)) ·
(
e�

∣∣T1 + e�

∣∣
T2

)
= q(c(e)) · (c(T2) − c(T1)) ,

where the face T1 � e is right of the edge e and T2 � e is located left. Thus, we get
the initial discrete PD-1-form

α0
(2)(e) =

(
p0(2)(c(e)) · e,−

|e|
|�e|p

0
(2)(c(e)) · e�

)
. (80)

The normalized versions of p0(i) and α0
(i) can easily be constructed by pointwise or

edgewise normalization, respectively, using the definition of the norm in (36) for the
discrete PD-1-forms.

Within this setup, we evaluate the energy for stationary solutions p∗ and the number
of defects for both initial solutions p0(4/2) for a sequence of values C ∈ [0, 1.5]. The
parameter r = 0.95 remains fixed while B is related to C by B = 7/20C .

An example of the two different initial fields relaxed to equilibrium is shown in
Fig. 4 for a specific nonic surface. We find +1 defects at extrema of the Gaussian
curvature, while a −1 defect may appear at the saddle point. This dependency is in
agreement with results for the similar problem of flow on curved surfaces (Reuther
and Voigt 2015; Nitschke et al. 2016).

For shapes with C ∈ [0.5, 0.635], we observe that both initial solutions converge
to a two-defect configuration. In Fig. 5 (right), we plot the fusion time for defect
annihilation for initial condition p0(4). Notice the steep increase in this time for C ↗
0.635. For C � 0.635, a four-defect configuration becomes stable. It poses a local
energetic minimum. Further increasing the parameter C , continuously amplifies the
Gaussian curvature on the bulges and saddle. As shown in Fig. 5 (left), this leads to a
decreasing energy cost for the four-defect stationary solution, while costs for the two-
defect solution increase monotonically until the energies are equal at C ≈ 1.175. For
C � 1.175, the four-defect solution becomes energetically favorable. This behavior
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Fig. 4 Equilibrium states for surface with C = 1.175, norm defects (color gradient) and director (glyphs).
Second row back and front detail of configuration (Color figure online)

Fig. 5 Energy FS
ωn for stationary solutions with four and two defects for nonic shapes with C ∈ [0, 1.5]

(left) and defect fusion time for the four-defect initial solution (right)

is stable against variations in the penalty parameter ωn, which is chosen, such that the
defect core radius is resolved, see Table 2.

These experiments emphasize the impact of curvature on the energetic cost of a
defect configuration and prove the key role of domain geometry in enabling non-trivial
realizations of the Poincaré–Hopf theorem. Figure 6 shows snapshots of the evolution
on the most deformed surface withC = 1.5 and noise used as initial condition. Which
stationary shape is selected strongly depends on the initial condition. We here only
show the one converging to the four-defect configuration.
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t1 = 0.1 t2 = 1.0 t3 = 5.7 t4 = 7.2

Fig. 6 Snapshots of the time evolution and the final stationary solutions with four defects on the nonic
shapes with C = 1.5. First row top view. Second row back view with a single defect, evolution from a sink
shape (at t = 1) over vortex shape (at t = 5.7) to the final source shape (at t = 7.2) (Color figure online)
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Fig. 7 Development of the energy parts in the relaxation starting from random initial state. The four parts
plotted with lines and symbols sum up to the full energy FS

ωn . Highlighted are five time steps that mark
changing events. From t = 0.1 to t = 3.6, the defects move to their final position. In the time period t = 1.0
to t = 5.7, the back defect rotates by 90◦, from a sink to a vortex defect. From time t = 5.7 to t = 7.2, the
back defect rotates further by 90◦, from a vortex defect to a source defect (Color figure online)

The relaxation shows four periods with distinct behavior. Starting from a random
initial configuration the noise smoothes out to a state with emerging localized defects
at time around t = 0.1. Until time t = 1, these defects reach their final normalization
shape; in other words, the penalization term in the energy reduces up to this time
and stays constant from this time on, as shown in Fig. 7. The defects move at first
slowly and then very fast to their final position around the high curvature areas and the
saddle point. This happens until time t = 3.6. When the back defect reaches its final
position, it starts to rotate the vector field up to 90◦. Thus, a sink defect evolves to a
vortex defect at around time t = 5.7. This process continues and rotates the vector
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Fig. 8 Relative errors w.r.t. DEC solution of mean energy (left) and fusion time (right) for nonic shapes
C ∈ [0, 2] and the numerically methods parametric FEM (red dashed) and diffuse interface (green solid)
(Color figure online)

field around this back defect further by 90◦ until a source defect shape is reached at
around time t = 7.2.

Besides these exploratory results, shown in Fig. 5 we also use this parameter study
to verify the quality of the numerical methods sFEM and DI. In Fig. 8, we plot the
relative errors introduced in (73) for the mean energy and fusion time. As numerical
parameters, we have chosen values listed in Table 2 in the column nonic surface.

As shown in Fig. 8 (left), we observe the same behavior with both methods, across
the full range of shapes C ∈ [0, 1.5], within reasonable error bounds. The more
approximative DI yields significant stronger deviations from the DEC results, up to
two orders of magnitude in the mean energy error. Furthermore, we notice increasing
errors with amplified curvature. The critical point Ccrit = 0.635 of emergence of a
new stable defect configuration is qualitatively reproduced by both methods. DEC and
sFEM yield identical results forCcrit, up to the probing grid spacing of δC = 2.5 ·10−3.
DI produces a critical value of 0.7125, which corresponds to a relative error of 0.122
w.r.t. the DEC result. As a result, the dynamics evaluated by DI close to this critical
event exhibit distinct deviations leading to substantial relative errors for the fusion
time as shown in Fig. 8 (right).

We do not compare the dynamic evolution if started from noise, as identical initial
conditions cannot be specified. However, also sFEM and DI produce evolutions which
are qualitatively the same as in Fig. 6. Again, whether a two-defect or four-defect
configuration is reached strongly depends on the initial condition.

5.3 Performance Comparison

We summarize pros and cons of the considered numerical methods, with respect to
complexity, accuracy, generality, and numerical performance.

As a first quality measure, we consider the applicability of the methods to various
geometric surfaces. Here SPH is the most restrictive as it can only be applied to spher-
ical surfaces, since eigenfunctions and eigenvalues of the Laplace–deRham operator
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Table 3 Number of degrees of
freedom �DOFs and number of
nonzeros per row of the matrix
for the three methods that
assemble a linear system

DEC sFEM DI

�DOFs 2 · |E | ≈ 6 · |V| 3 · |V| � 3 · |V|
NNZ/row 12 20 37

are utilized. DEC and sFEM can be applied to all surfaces, where a suitable surface
mesh is available. DEC requires well-centered simplicial surface elements, whereas
the requirements for sFEM are less restrictive. However, a non-regular shape of the
triangles may increase the condition number of the resulting linear system (Olshan-
skii et al. 2013; Dziuk and Elliott 2013). Thus, the quality of the surface triangulation
matters for both approaches. DI uses an implicit description of the surface and thus
does not rely on an approximate surface mesh. The 3D domain � can be adaptively
triangulated using regular shaped tetrahedra and thus allows to conserve good mesh
quality easily. Efficient methods to calculate a signed-distance function dS from an
implicit description of S or from a triangulated surface are necessary and available
for tetrahedral meshes, see Bornemann and Rasch (2006), Stöcker (2008).

The computational costs for all the methods vary a lot. Denoting by |V| the number
of vertices of a surface triangulation and by |E | the number of edges. For SPH the main
computational expenses are related to the forward and backward transform, which can
be classified as O(N 2 log N + |V|) with bandwidth N , typically N ∼ √|V|. The
other methods have to assemble and invert a linear system in each time step iteration.
The number of degrees of freedom (DOFs) and the corresponding average number of
nonzero entries (NNZ) per row in the linear system are summarized in Table 3. The
total number of nonzeros in the system is approximately the same for DEC and sFEM,
whereas DI produces a much larger and denser system.

The structure of the linear systems is also different. Where the sFEM and DImethod
produce symmetric matrices for symmetric differential operators, the DEC approach
results in a non-symmetric matrix, since not all triangles in the discretization are
equilateral. This restricts the choice of linear solvers and often results in an additional
performance overhead.

DI allows to use classical finite element software. The additional cost, resulting
from the treatment in 3D, can be reduced by adaptive refinement in a narrowband
around the surface. This establishes this approach as an easy to use tool also in the
context of surface vector field calculations. A further extension of the analyzedmodels
toward evolving surfaces can also most easily be adopted to DI methods by evolving
the implicit function or the phase-field variable.

6 Conclusion and Outlook

We presented a brief derivation of the weak surface Frank–Oseen energy as a thin-film
limit of the well-known 3D Frank–Oseen distortion energy. By penalizing the unity of
the vector field, the limit can be established for surfaces with χ(S) �= 0. We highlight
the importance of intrinsic and extrinsic energy contributions. Dynamic equations for
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surface bound polar order are obtained by an L2-gradient flow approach, leading to a
vector-valued surface PDE.

The energy and the dynamic equations have been adapted to suit several numeri-
cal methods. The least approximating methods base on a direct discretization of the
vector-valued state space of the energy functional. For spherical surfaces, this is SPH

and for arbitrary surfaces DEC. Extending the variational space to arbitrary vector
fields allowed us to split the vector-valued problem into a set of coupled scalar-valued
problems for each component. Established solution procedures for such problems, as
sFEM and DI, are adapted to this situation. Numerical experiments on the canonical
unit sphere and surfaces with non-constant curvature established the consistency of
all introduced methods.

The experiments further showed the tight interplay of topology, geometry, and
dynamics. In all experiments, the defect localization is related to theGaussian curvature
of the surface, +1 defects are found at extrema of the Gaussian curvature, while
−1 defects are located at saddle points. We have further demonstrated the general
possibility to reduce the overall energy by introducing additional defects and thus
establishing non-trivial realizations of the Poincaré–Hopf theorem as energy minima.
The proposed methods allow to further investigate this interplay. Here the effect of ωn
as well as the impact of intrinsic and extrinsic contributions should be analyzed.

The introducedmodels andmethods should also be complemented bymore rigorous
theoretical works on the convergence of the thin-film limit. In analogy to scalar-valued
problems, an extension to evolving surfaces seems feasible. Beyond the mentioned
fundamental issues, the model and methods are ready to be applied in the field of
passive and active soft matter and surface bound, non-equilibrium physics comprising
orientational order. Examples are passive (Vitelli and Nelson 2006; Lopez-Leon et al.
2011; Koning et al. 2013) and active (Menzel and Löwen 2013) liquid crystals and
polar fluids (Ahmadi et al. 2006; Bois et al. 2011; Kruse et al. 2004) in thin shells,
which are proposed models for a cell cortex (Ramaswamy and Jülicher 2016).

Although the polar model, described by the Frank–Oseen energy and the introduced
dynamic equations, already shows a variety of interesting effects, a nematic model will
have additional features. Therefore, the Q-tensor Landau–de Gennes models should
be focused on. With similar ideas of incorporating a tangentiality penalization, a weak
Q-tensor model on a surface could be derived and analyzed.

Acknowledgements This work is partially supported by the German Research Foundation through Grant
Vo889/18. We further acknowledge computing resources provided at JSC under Grant HR06.

Appendix A: Thin-Film Limit of Penalized Frank–Oseen Energy

Considering a thin shell�δ = S×[−δ/2, δ/2] around the surface S with thickness δ,
the local coordinates θ andϕ of the surface immersion x and an additional coordinate ξ ,
which acts along the surface normal ν, lead to a thin shell parametrization x̃ : Uδ → R

3

for the parameter domain Uδ := U × [−δ/2, δ/2], with x̃ defined by

x̃(θ, ϕ, ξ) = x(θ, ϕ) + ξν(θ, ϕ). (81)
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The thickness δ is sufficiently small to guarantee the injectivity of the pushforward,
see Napoli and Vergori (2012b).

For a better readability,wedenote indiceswhichmark all three components {θ, ϕ, ξ}
by capital letters. The indices for the surface components {θ, ϕ} are denoted by small
letters. Themetric tensor g̃ of the thin shell is given by its components g̃I J = ∂I x̃ ·∂J x̃,
i.e.,

g̃i j = gi j − 2ξBi j +O(ξ2)i j = gi j +O(ξ)i j , g̃ξξ = 1 and g̃iξ = g̃ξ i = 0. (82)

The pure formal indices on O extend the asymptotic polynomial behavior to ten-
sor context and preserve summation conventions. Hence, for the Christoffel symbols
Γ̃ K
I J = 1

2 g̃
K L (∂I g̃J L + ∂J g̃I L − ∂L g̃I J ), we obtain

Γ̃ k
i j = Γ k

i j +O(ξ)ki j , Γ̃
ξ
i j = Bi j +O(ξ)i j , Γ̃ k

iξ = Γ̃ k
ξ i = −Bi

k +O(ξ)ki ,

Γ̃ K
ξξ = Γ̃

ξ
I ξ = Γ̃

ξ
ξ I = 0.

(83)

We can approximate the square root of the determinant |̃g| on S by
√|̃g| = √

g̃ξξ |g|+
O(ξ) = (1+O(ξ))

√|g|. Therefore, the volume element becomes

dV = √|̃g|dξ ∧ dθ ∧ dϕ = (1+O(ξ)) dξ ∧ dS. (84)

The 3-tensor, with the same qualities as the volume element, is the Levi–Civita tensor

Ẽ I J K = dV (∂I x̃, ∂J x̃, ∂K x̃) =
√|̃g|εI J K = √|g|εI J K +O(ξ)I J K , (85)

with the commonLevi–Civita symbols εI J K ∈ {−1, 0, 1}.With the Levi–Civita tensor
E on the surface, defined by Ei j = dS

(
∂ix, ∂ jx

) = √|g|εi j , and the fact that all non-
vanishing components of the Levi–Civita tensor Ẽ in the thin shell have exactly one
ξ -index, we obtain

Ẽξ i j = −Ẽiξ j = Ẽi jξ = Ei j +O(ξ)i j . (86)

For a better distinction, we use a semicolon in the thin shell and a straight line
on the surface to mark the components of the covariant derivative, i.e., for the vector
fields p̃ ∈ C1 (�δ,T�δ) and p ∈ C1 (S,TS), we write

p̃I;J = ∂J p̃
I + Γ̃ I

J K p̃
K and (87)

pi | j = ∂ j p
i + Γ i

jk p
k . (88)

The contravariant derivatives are given by p̃I ;J = g̃ J K p̃I;K and pi | j = g jk pi |k .
Henceforward, we assume that p̃ ∈ T�δ is an extension of p, i.e., p̃

∣∣S = p ∈ TS, and
p̃ is parallel and length preserving in direction of ν, i.e., p̃I;ξ = 0 as a consequence.
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Therefore, the Taylor approximation on the surface of the contravariant tangential
components becomes

p̃i = pi + ξ∂ξ p̃
i
∣∣S +O(ξ2)i = pi + ξ

(
p̃i;ξ − Γ̃ i

ξK p̃
K
∣∣S
)
+O(ξ2)i

= pi + ξBk
i pk +O(ξ2)i .

(89)

It holds p̃ξ = 0, because p̃ξ
∣∣S = 0 and ∂ξ p̃ξ = p̃ξ

;ξ − Γ̃
ξ
ξK p̃

K = 0, but nonetheless,
we get non-vanishing covariant tangential derivatives

p̃ξ

; j = Γ̃
ξ
j K p̃

K = B jk p
k +O(ξ) j . (90)

All remaining covariant derivatives can be approximated by

p̃i; j = ∂ j p̃
i + Γ̃ i

j K p̃
K = ∂ jp

i + Γ i
jkp

k +O(ξ)ij = pi | j +O(ξ)ij . (91)

The divergence of a vector field is the trace of its covariant derivative reads

∇ · p̃ = p̃I;I = p̃i;i = pi |i +O(ξ) = div p+O(ξ). (92)

The covariant curl of a vector field can be obtained by a double contraction of the
Levi–Civita tensor and the contravariant derivative, i.e.,

[∇ × p̃
]
I = −Ẽ I J K p̃

J ;K . (93)

With (86), the ξ -component of the curl can be approximated by

[∇ × p̃
]
ξ
= −E jk g̃

kL p̃ j
;L +O(ξ) = −E jkg

kl p j |l +O(ξ) = rot p+O(ξ) (94)

and the covariant tangential components by

[∇ × p̃
]
i = −

(
Ẽi jξ p̃

j;ξ + Ẽiξ j p̃
ξ ; j) = Ei j g̃

j K p̃ξ

;K +O(ξ)i

= Ei jB j
l p

l +O(ξ)i = −[∗(Bp)�]i +O(ξ)i ,

(95)

where we use, that for a every q ∈ TS

∗q� = iq( dS) = √|g| (−qθdϕ + qϕdθ
) = −Eq (96)

is valid on S, see Abraham et al. (1988). The Hodge star operator is length preserving
and the metric g̃ induces the common norm in the thin shell; therefore, it holds

‖∇ × p̃‖2�δ
= ∥∥− ∗ (Bp)�

∥∥2S + g̃ξξ (rot p)2 +O(ξ) = ‖Bp‖2S + (rot p)2 +O(ξ).
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Finally, with ‖̃p‖2�δ
= ‖p‖2S+O(ξ), (84), (92), (94), and (95), we can approximate

the penalized Frank–Oseen energy (3) in the thin shell �δ by

Fωn

[
p̃,�δ

] =
∫

S

∫ δ/2

−δ/2

K

2

(
(div p)2 + (rot p)2

+ ‖Bp‖2S
)
+ ωn

4

(
‖p‖2S − 1

)2 +O(ξ) dξ ∧ dS

= δ
(
FS

ωn
[p] +O(δ)

)

for p̃ ∈ HDR(�δ; T�δ) and p ∈ HDR(S; TS).

Appendix B: Integral Theorems

The exterior derivative d is the L2-adjoint of (− ∗ d∗). This allows to obtain some
frequently used integral identities for the tangential vector field p = α� : S → TS on
a closed surface S and also for its R

3 extension p̂ : S → R
3, with p = πTS p̂. We get

−
∫

S
〈grad f, p̂〉 dS = −

∫

S
〈grad f,p〉 dS = −

∫

S
〈d f,α〉 dS

=
∫

S
f ∗ d ∗ α dS =

∫

S
f div p dS

=
∫

S
f div(πTS p̂) dS =

∫

S
f div p̂−H (̂p · ν) dS

and

−
∫

S
〈rot f, p̂〉 dS = −

∫

S
〈rot f,p〉 dS = −

∫

S
〈∗d f,α〉 dS

=
∫

S
〈d f, ∗α〉 dS = −

∫

S
f ∗ d ∗ ∗α dS =

∫

S
f rot p dS

=
∫

S
f rot(πTS p̂) dS =

∫

S
f rot p̂ dS.

Note that ∗ ∗ α = −α and the inner product is invariant with respect to ∗, �, and �,
applied to both arguments of the product simultaneously, see Abraham et al. (1988).
Hence, we obtain for the Laplace–deRham operator
∫

S

〈
�dRp, q̂

〉
dS =

∫

S

〈
�dRp,q

〉
dS = −

∫

S
〈grad div p,q〉 + 〈rot rot p,q〉 dS

=
∫

S
(div p)(div q) + (rot p)(rot q) dS

=
∫

S
div(πTS p̂) div(πTS q̂) + rot(πTS p̂) rot(πTS q̂)

=
∫

S
(div p̂−H (̂p · ν))(div q̂−H (̂q · ν)) + (rot p̂)(rot q̂).
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Appendix C: Convergence Study of the Laplace–deRhamApproximation

To justify the approximation �dRp ≈ �̂
dR
p̂ + ωtν (ν · p̂), we set up a test case

consisting of a vector-valued Helmholtz equation on an ellipsoidal surface SE (major
axis: 1.0, 0.5, and 1.5)

−�dRp+ p = −�dRps + ps =: f on SE (97)

with given analytical solution ps = [−2y, 0.5x, 0]T ∈ C(SE ,TSE ). We solve

−�̂
dR
p̂+ p̂+ ωtν (ν · p̂) = f on SE (98)

using sFEM on a conforming triangulation SE
h of SE with piecewise linear Lagrange

elements Vh(SE
h ) = {vh ∈ C0(SE

h ) : vh |T ∈ P
1, ∀ T ∈ T } as trial and test space

for all components p̂i . This leads to a sequence of linear discrete equations

∫
SE
h
∇S · p̂Diψ +∇S · (̂p× ν)∇S · (eiψ × ν) dS

+ ∫SE
h
p̂iψ dS + ωt

∫
SE
h

νi (ν · p̂) ψ dS = ∫
SE
h

fiψ dS. (99)

To assemble and solve the resulting system, we use the FEM toolbox AMDiS (Vey
and Voigt 2007; Witkowski et al. 2015).

Figure 9 shows the L2-error εL2(p) = (∫
SE

∑
i=1(̂pi − ps,i )

2 dS
)1/2

vs ωt and
linear convergence, which is only limited by the mesh quality.

As a complementary result and to emphasize the delicate nature of the coupling
between curvature and spatial derivatives, we also show in Fig. 9 the L2-error of a
componentwise approximation of �dR

�dRp ≈
3∑

i=i

∇S · ∇S p̂iei + ωtν (ν · p̂) . (100)

As clearly visible in Fig. 9, this approximation fails for any values of ωt to reproduce
the �dR behavior on SE .

Fig. 9 L2-error for �̂
dR

approximation (solid lines) for
two well-centered triangulations
of SE with 25k and 100k
vertices. The black dashed line
indicates linear rate of
convergence. The dash doted
line shows the result for a
componentwise approximation
of �dR in (100) (Color figure
online)
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Appendix D: DEC—Notations and Details

D.1: Notations

We often use the strict order relation � and ≺ on simplices, where � is proverbial the
“contains” relation, i.e., e � v means: the edge e contains the vertex v. Correspond-
ingly is ≺ the “part of” relation, i.e., v ≺ T means: the vertex v is part of the face T .
Hence, we can use this notation also for sums, like

∑
T�e, i.e., the sum over all faces

T containing edge e, or
∑

v≺e, i.e., the sum over all vertices v being part of edge e.
Sometimes we need to determine this relation for edges more precisely with respect
to the orientation. Therefore, a sign function is introduced,

sT,e :=

⎧
⎪⎨

⎪⎩

+1 if e ≺ T and T is on left side of e

−1 if e ≺ T and T is on right side of e

0 e ⊀ f,

(101)

sv,e :=

⎧
⎪⎨

⎪⎩

+1 if v ≺ e and e points to v

−1 if v ≺ e and e points away from v

0 v ⊀ e,

(102)

to describe such relations between faces and edges, or vertices and edges, respectively.
Figure 10 gives a schematic picture.

The property of primal mesh to be well centered ensures the existence of a Voronoi
mesh (dual mesh), which is also an orientable manifold-like simplicial complex, but
not well centered.

The basis of the Voronoi mesh is not simplices, but chains of them. To identify
these basic chains, we apply the (geometrical) star operator � on the primal simplices,

T1

T2

e
v1 v2

Fig. 10 Left this simple example mesh leads to sT1,e = +1, sT2,e = −1, sv1,e = −1 and sv2,e = +1.
Right the vertex v (green) and its Voronoi cell �v (semitransparent green); the edge e (blue) and its Voronoi
edge �e (blue); the face T (semitransparent red) and its Voronoi vertex (red) (Color figure online)
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i.e., �v is the Voronoi cell corresponding to the vertex v and inherits its orientation
from the orientation of the polytope |K|. �v is, from a geometric point of view, the
convex hull of circumcenters c(T ) of all triangles T � v. The Voronoi edge �e of
an edge e is a connection of the right face T2 � e with the left face T1 � e over the
midpoint c(e). The Voronoi vertex �T of a face T is simply its circumcenter c(T )

(see Fig. 10). For greater details and a more mathematical discussion, see, e.g., Hirani
(2003), VanderZee et al. (2010).

Theboundaryoperator ∂ maps simplices (or chains of them) to the chainof simplices
that describes its boundary, with respect to its orientation (see Hirani 2003), e.g.,
∂(�v) = −∑e�v sv,e(�e) (formal sum for chains) and ∂e =∑

v≺e sv,ev.
The expression |·| measures the volume of a simplex, i.e., |T | the area of the face

T , |e| the length of the edge e, and the zero-dimensional volume |v| are set to be 1.
Therefore, the volume is also defined for chains and the dual mesh, since the integral
is a linear functional.

D.2: Laplace Operators

With the Stokes theorem and the discrete Hodge operator defined in Hirani (2003), we
can develop a DEC discretized Rot-Rot-Laplace for a discrete 1-form α ∈ Λ1

h(K) by

�RR
h α(e) := (∗d ∗ dα) (e) = − |e|

|�e| (d ∗ dα) (�e)

= − |e|
|�e| (∗dα) (∂ � e) = − |e|

|�e|
∑

T�e
sT,e (∗dα) (�T ) (103)

= − |e|
|�e|

∑

T�e

sT,e

|T | (dα) (T ) = − |e|
|�e|

∑

T�e

sT,e

|T | α(∂T )

= − |e|
|�e|

∑

T�e

sT,e

|T |
∑

ẽ≺T

sT,ẽα(ẽ)

and a DEC discretized Grad-Div-Laplace by

�GD
h α(e) := (d ∗ d ∗ α) (e) = (∗d ∗ α) (∂e)

=
∑

v≺e
sv,e (∗d ∗ α) (v) =

∑

v≺e

sv,e

|�v| (d ∗ α) (�v)

=
∑

v≺e

sv,e

|�v| (∗α) (∂ � v) = −
∑

v≺e

sv,e

|�v|
∑

ẽ�v

sv,ẽ (∗α) (�ẽ)

= −
∑

v≺e

sv,e

|�v|
∑

ẽ�v

sv,ẽ
|�ẽ|
|ẽ| α(ẽ).

(104)

Hence, we obtain the DEC discretized Laplace–deRham operator by

�dR
h α(e) = −�RR

h α(e) − �GD
h α(e).
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D.3: Conflate Linear Operators and Its Hodge Dual to a PD-(1, 1)-Tensor

For a linear operator M : T∗S → T∗S pointwise defined as a mixed co- and con-
travariant (1,1)-tensor with components Mi

j , we discretize the 1-formMα on an edge
e ∈ E by definition (27) and approximate the operator on the projected midpoint of
the edge, i.e.,

(Mα)h (e) =
∫

π(e)
Mi

jα j dx
i ≈ [M(e)]ik g

k j
∫

π(e)
α jdx

i , (105)

with M(e) := M|π(c(e)). With respect to an orthogonal basis {∂ix, ∂ jx} with metric
tensor g = gi (dxi )2, we obtain for the 1-form α = αi dxi the Hodge dual

∗α = [∗α]1dx1 + [∗α]2dx2 = −
√
g1
g2

α2dx
1 +

√
g2
g1

α1dx
2. (106)

Hence, we can replace the 1-forms beneath the integrals by

[
α1dx1 α2dx1

α1dx2 α2dx2

]
=
⎡

⎣
α1dx1 −

√
g2
g1
[∗α]1dx1

√
g1
g2
[∗α]2dx2 α2dx2

⎤

⎦ . (107)

Now, we use the basis {e, e�} defined in Sect. 4.2 on the polytope |K| and the resulting
metric (34), i.e., g1 = |e|2 and g2 = | � e|2. This leads to an approximation of
(Mα)h ∈ Λ1

h(K) as a linear combination of αh, (∗α)h ∈ Λ1
h(K), or rather, evaluated

on an edge e ∈ E

(Mα)h (e) ≈ 1

|e|2 Me,e(e)αh(e) − 1

|e|| � e|Me,e� (∗α)h(e) (108)

and, in general, for v,w ∈ Span{e, e�} is Mv,w(e) = v ·M(e) · w = vi [M(e)]i j w
j

the evaluation of the complete covariant tensor M(e) in direction v and w. Note, if
M ∈ TS×TS is formulated in Euclidean R

3 coordinates, so thatM(e) ∈ R
3×3, there

is no distinction between co- and contravariant components ofM(e). Furthermore, if
we use the approximation (∗Mα)h (e) ≈ − |e|

|�e| (Mα)h (�e), we get with respect to
(105) and (107)

(∗Mα)h (e) ≈ − 1

|e|| � e|Me�,eαh(e) + 1

| � e|2 Me�,e� (∗α)h(e). (109)

Finally, we can summarize (108) and (109) with the PD-1-form α ∈ Λ1
h(K;T∗E) on

every edge e ∈ E to

M · α :=
[

1
|e|2 Me,e − 1

|e||�e|Me,e�

− 1
|e||�e|Me�,e

1
|�e|2 Me�,e�

]

· α ≈
[

(Mα)h
(∗Mα)h

]
, (110)

123



J Nonlinear Sci (2018) 28:147–191 189

where the evaluation argument e is omitted for a better readability.
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