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We consider a continuum model for collective cell movement. Each cell is modelled by a phase
field active polar gel model and the cells interact via steric interactions. We provide a finite
element implementation with a parallel efficiency of at least (.5 in the number of cells. This is
achieved by considering each cell on a different processor and various improvements to reduce
the communication overhead to deal with the cell-cell interactions. We describe implementation
details and demonstrate results for up to 768 cells.

1 Introduction

Computational modelling of cell movement (and related topics such as tissue dynamics)
is a large and very active topic at the frontiers between physics, biology, mathematics and
biomedical engineering. Various computational approaches have been applied to this topic.
We here consider a phase field approach, where the most recent progress in modelling of
single and collective cell behaviour was achieved' . With the provided highly parallel im-
plementation of the phase field active polar gel model’-3: previous results can be extended
to larger numbers of cells and simulations now allow the study of emerging phenomena,
such as cluster formation and phase-separation, which so far could only be modelled using
coarse grained particle models, e.g. Refs. 9-12. Our approach now allows to consider
for example the influence of shape change and elastic interaction on contact on the overall
dynamics. The shape evolution of cells is thereby described by a geometric evolution law
and the active motion by a splay instability in the cell bulk that induces a net-polarisation
of the cell. Each cell is described by its own phase field variable and polarisation field. The
interaction is based on a steric interaction term dependent on the distance of the cells.
While the phase field active polar gel model for one cell can be efficiently solved using
adaptive finite elements in space and standard time discretisation methods* and an exten-
sion to a moderate number of cells can be handled using an OpenMP parallelisation®, these
approaches are no longer sufficient for hundreds of cells. Also classical domain decom-
position approaches would be inefficient to handle hundreds of coupled partial differential
equations, due to a huge memory and communication overhead. We therefore consider
a different parallelisation approach, based on a physical decoupling. Each processor will
handle the evolution of one cell and communication is only needed to consider the inter-
action between cells. The approach is related to adaptive full domain covering meshes'3:'#
but achieves a better performance. Each processor handles a mesh of the whole domain,
which is adaptively refined according to its phase field variable. Communication thus re-
quires the interaction of variables which are defined on differently refined meshes. Such
interactions have been considered in sequential discretisations using the multi-mesh ap-
proach'1¢ which we adapt and parallelise. Our approach will in principle allow scaling
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with the number of cells as their local evolution is perfectly parallelisable. Only the inter-
action requires special care as its effort increases with the number of cells. To deal with
this interaction we adapt parallel concepts used for particle methods.

After briefly introducing the model we describe in the following sections the implemen-
tation of both, the local evolution equation and a communication procedure that allows an
efficient parallel setup and discuss some physical results.

2 Mathematical Model

We considerz = 1, ..., N phase field variables ¢; and polarisation fields P;, for which the
coupled evolution equations read
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considering the surface energy, interaction terms and a polar liquid crystal energy to model
the actin filaments in the cells. The parameters C'a, In and Pa act as weighting be-
tween these contributions. The surface energy is a classical Ginzburg-Landau function
with double-well potential W (¢) = 4(¢* — 1)? and interface thickness e. The interaction
term considers B(¢) = %W(qﬁ)) ~ dr an approximation of the surface delta function

and
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an approximation of a short range interaction potential, with signed distance function com-
puted from the tanh-profile of the phase field functions. The polar liquid crystal energy

(2)
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is of Frank-Oseen type and c;, [ are parameters controlling the deformation of the po-
larisation field P within the cell bulk and the anchoring on the cell interface. Activity is
introduced in the Eqs. 1 by a self-propulsion term, with velocity vg. For more details we
refer to Refs. 4,6,17, 16. Fig. 1 shows the phase field variable of one cell together with its
polarisation field and the net polarisation (a), as well as a snapshot of the interaction of 48
cells, for which only the cell boundaries I'; and the net polarisation in each cell are shown
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Figure 1. (a)Phase field variable ¢; == 1 (red) cell bulk and ¢; == —1 (blue) and polarisation field (white arrows)
together with net polarisation (black arrow). (b) Evolution of 48 cells by cell activity. The arrows indicates the
net polarisation of each cell. The cell boundaries I'; are the O level lines of the phase field variables. (c) The
grid-elements of two overlapping interaction-regions are highlighted. (d) Cells with enclosing balls (dashed lines)
defining neighbourhoods by overlap.

3 Implementation

The evolution equations are solved by using the finite-element method and are imple-
mented in the framework AMDiS!31% Therefore, the domain £ is partitioned in conform-
ing triangulation 7;, all resulting as an adaptive refinement of the same coarse triangulation
T. A simple discretisation in time by semi-implicit backward Euler discretisation is ap-
plied, utilising a sequential operator splitting approach to separately solve for ¢; and P;
and allow to evaluate the interaction terms in the old-timestep. As each cell is described
by its own phase field ¢; and its own polarisation field P; the integration of the dynamic
equations can be separated. We assign each cell to its own processor. This physical de-
composition guarantees a perfect scaling in the number of cells N for the local problem,
even if made more complex by incorporating more physical aspects of cell motility and
shape evolution, and the interaction only requires communication between the processing
units. With an increase in the number of cells the communication procedure gets more and
more complicated as in principle each cell can interact with all other cells. However, this
N2 complexity can be improved.

Due to the short interaction range and the structure of the interaction potential in Eq. 2
which is of exponential decay, a cut-off distance r. from the cell-interface can be defined
and only cells within an overlapping thin shell I'}* := I'; x [—r,, r,] need to be considered
for interaction. Within the finite element discretisation we thus need to consider the set of
neighbouring cells J; interacting with cell 4, ie., J; :== {j : T};* NI # 0} and T;; the
set of grid-elements overlapping the interaction region I';® N I‘;C, such that

> 3 [ B+ Bew e, VeV, G)

JE€L TET:;

371



with testfunction ¢ and finite-element space V', is sufficient for the integration of the in-
teraction term in Eqgs. 1. In Fig. 1 (c) two cells are sketched, each with an interaction
region I'}° overlapping some grid-elements (in red and yellow). The intersection of these
grid-elements (green) builds the support of the interaction term between the two cells. For
the construction of the neighbour lists J; and lists of overlapping interface grid elements
Ti;, we follow a two-step procedure: (1) Determine which cell needs to communicate with
which other cell. (2) Exchange the indices of the grid elements in the interface between
neighbouring cells. For the first step, we enclose each cell in a ball and communicate just
the ball centre and radius, leading to a simple construction of a Verlet list for overlapping
balls, see Fig. 1 (d). For cell 7 the algorithms reads

center = argmin (dp, (x) for x in (1)
max ( [distance (center, x) for x in I]) + rc

radius

# communicate with all cells

centers, radii = all_gather( (center, radius) )
Ii = [1
for 7 in cells:
if 7 != i and distance(centers[]], center) < radii[j] + radius:
Ji.append(3j)

Listing 1. Build neighbour list.

where distance (a,b) respects the periodic boundary conditions of the domain €2. The
radius of a cell is any radius large enough to enclose the cell in a ball around the centre
incorporating an interaction radius r.. For the second step, we need to collect interface
elements and to communicate these elements between neighbouring cells.

interface = []

for T in T():

if any([abs(dg,;(v)) < ro for v in vertices(T)]):
interface.append(T)

for j in J;:
interface; = send_recv(interface, _to=])
Ti7 = [T for T in interface if T in interface;]

Listing 2. Collect and exchange overlapping elements.

where a (coarse-grid) element 7' € T (£2) is assumed to be a tuple of vertices (vp, v1,v2).
Since the phase field variable is nearly constant away from its interface and has a steep
transition from —1 to 1 in the interface region, an adaptively refined grid is used to resolve
this interface smoothly. This leads to a large number of grid elements that would need
to be interchanged in the interface list and thus increases the communication cost
rapidly. Instead of this strategy only the coarse-grid elements are collected and exchanged.
However, for the interaction we need the phase fields from neighbouring cells and thus
need to communicate the (fine-grid) phase field data on the overlapping coarse-grid
elements.
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for 7 in J;:
for T in T;;:
éﬂT = send_recv{é”I, _to=7)
assemble (B'(¢i)w(d;) + B(¢;)w'(¢i), _on=T) # see Eg. 3

Listing 3. Communicate phase field data.

Since each phase field lives on a different refined grid with a common coarse-grid, the
phase field data communicated must incorporate position of the fine-grid values (DOFs)
in the overlapping elements. A compact data-structure to represent all positions and val-
ues of a refined coarse-grid element is described in Refs. 15,19, 16 and is based on the
representation of a binary refinement tree as a 64-Bits structure-code.

visited = [False]+num_dofs

values = []

for t in leaf elements(T): # pre-order traverse

for dof in DOFs (t):
if wvisited[dof]:
continue

values.append (¢; [dof])
visited[def] = True

Listing 4. Collect DOFs to communicate.

On the receiver side, the structure-code generates a refinement of a coarse-grid element
and afterwards, the data can be distributed to the leaf DOFs. This allows to reconstruct the
phase field solution on another processor and afterwards the evaluation of Eq. 3 with two
differently refined phase field representations.

4 Numerical Experiments

We study the motion and interaction of N cells distributed initially in a rectangular periodic
domain. The shape and position of each cell is a perturbation of a circular object with a
fixed radius R = 3 in a triangular lattice. Two different setups are considered. setup—-1
considers a domain of fixed size. The cells are packed in a rectangular cluster of local high
packing fraction. In setup-2 the cells are distributed in the whole domain such that a
given volume fraction ¢ of cells is achieved. This requires the scaling of the domain size
and thus changes the local problem. The initial orientation P;(¢ = 0) is set to a normalised
random vector constant inside the cells and zero outside in both settings.

In all simulations the parameters ¢ = 0.15, v = k = 1, Pa = 1,In = 0.05,
Ca =0.025, vg = 2.5 and ¢; = 10 are fixed. We here consider only different values
of 3. It’s influence on the emergence of collective motion can be seen in Fig. 2, where
the global orientational order 6(d) = (atan(dy/dz) + ) /(2n) is analysed. It is 1 if all
cells are oriented in the same direction and O if all polarisations d = P; or cell velocities
d = v; are independent. The results are in excellent agreement with the phase field crys-
tal simulations in Ref. 12 and thus validate this coarse-grained description. Other effects,
e.g. the influence of the deformability of the cells, characterised by C'a, will be studied
elsewhere. We are here more concerned with the scaling properties. In Fig. 3 the two
configurations setup—1 and setup-2 are considered for an increasing number of cells.
While for setup-1 an efficiency above 0.5 can be achieved for 768 cells, setup-2 be-

373



—_P,3=0.001 |
v,/ =0001
P jA=001 |
—_v,f=001

| T T
0 0 50 100 150 200 250

time ¢ A =0.01 B = 0.001

orientational order

Figure 2. (left) Orientational order # for two different values of S simulated for N = 576 cells in setup-2.
(centre) Configuration for 3 = 0.01 at time £ = 200. (right) Configuration for 3 = 0.001 at time ¢{ = 200,
different cell colours indicate different orientations.
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Figure 3. (left) Weak scaling for two different configurations. The dashed line corresponds to ideal scaling.
(right) Corresponding parallel efficiency. In both cases the simulation time is compared to a configuration with 6
cells.

comes inefficient for large cell numbers. This results from the adjustment of the coarse
grid, which leads to changes in the local problems and an increased complexity.

One parameter to adjust is the resolution of the coarse-grid, as it controls the commu-
nication cost. To determine the optimal background mesh we vary the resolution of the
coarse-grid, while keeping the fine-grid resolution on the cell interface fixed. The domains
away from the cell interface are resolved with the coarse-grid resolution. Thus, a finer
coarse-grid results in a larger total number of DOFs. Measuring the total simulation time
and comparing for various coarse-grid element sizes, defined as the maximal edge length
in the coarse-grid, we find the optimal background mesh to have an element-size of 6 — 8.
With the mean cell radius R = 3, this gives an element-size similar to the cell diameter,
see Fig. 4 (left). A more detailed view on the timings, see Fig. 4 (right), shows that the
update of J; and 7;; gets cheaper for larger coarse-grid elements, whereas the communica-
tion costs increase. Since the overall number of DOFs also increases, the time to assemble
and invert the linear system makes the biggest contribution in the time differences.
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Figure 4. (left) Comparison of simulation time for different coarse-grid element sizes. Three setups are con-
sidered. The highlighted marker determines the minimal simulation time. (right) The partitioning of the total
simulation time corresponding to the red curve for two different numbers of processors (12 and 96) and three
different coarse-grid element sizes. Inside the bars, the partial times of the simulations steps are given.

5 Conclusion and Outlook

We here consider a phase field active polar gel model to simulate cell movement. While
the model has been used before for single cells and the interaction of moderate numbers of
cells, our implementation allows for collection of cells in the order of 1.000, which could
be reached before only with coarse-grained models. Each cell is considered by a separate
set of phase field and polarisation variables. This allows to handle complex physical mod-
els for shape change and activity mechanisms and to parametrise each cell individually.
The parallelisation of the huge system of partial differential equations considers each cell
on its own processing unit. This allows perfect scaling in the number of cells for the lo-
cal problem, only the cell-cell interaction requires communication between the processing
units. Our parallelisation approach reduces this communication costs by construction of a
communication list and by sending only values on coarse-grid elements in an overlapping
region. The results show an optimal balance between communication cost and cost due to
computing time for coarse grid elements which are of the size of the cells. This leads to a
moderate scaling behaviour tested on up to 768 processors.

Further increasing the efficiency could be achieved by combining MPI based paral-
lelisation with a local shared-memory based parallelisation. If the local computing power
per processor allows, each unit can also handle not just a single, but a set of cells, all on
different grids and with different phase fields. This would reduce the costs for communica-
tion further, while increasing the workload per processor. Also an extension to three space
dimensions is possible, as long as the complexity for a single cell can be handled by one
processing unit. We thus expect the approach to be valuable for further investigations in
collective cell dynamics.
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