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We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces
with arbitrary genus g(S). The approach is based on a reformulation of the equation in Cartesian coor-
dinates of the embedding R3, penalization of the normal component, a Chorin projection method, and
discretization in space by surface finite elements for each component. The approach thus requires only
standard ingredients which most finite element implementations can offer. We compare computational
results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow
field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori. Published by
AIP Publishing. https://doi.org/10.1063/1.5005142

I. INTRODUCTION

While a huge literature exists for the numerical treatment
of the two-dimensional incompressible Navier-Stokes equa-
tion in flat space, results for its surface counterpart are rare.
The equation has been introduced in Ref. 34 and read for a
compact smooth Riemannian surface S without boundary

∂tv + ∇vv = −gradS p +
1

Re

(
−∆dRv + 2κv

)
, (1)

divS v = 0 (2)

in S× (0,∞) with initial condition v (x, t = 0) = v0(x) ∈ TxS,
thereby v(x, t) ∈ TS denotes the tangential surface veloc-
ity, p(x, t) ∈ R denotes the surface pressure, Re denotes the
surface Reynolds number, κ denotes the Gaussian curvature,
TxS denotes the tangent space on x ∈ S, TS = ∪x∈STxS
denotes the tangent bundle and ∇v, gradS, divS, and ∆dR

denote the covariant directional derivative, surface gradient,
surface divergence, and surface Laplace-deRham operator,
respectively. This intrinsic form of the incompressible sur-
face Navier-Stokes equation is independent of the choice of
the coordinate system. Compared with the incompressible
Navier-Stokes equation in flat space, not only the opera-
tors are replaced by the corresponding surface operators but
also an additional contribution from the Gaussian curvature
arises. This results from the surface divergence of the surface
strain tensor d = 1

2 (gradS v + (gradS v)T ), which reads using
the Codazzi-Mainardi equation and the incompressibility
condition

2 divS d = divS(gradS v) + divS(gradS v)T

= −∆dRv + κv + gradS(divS v) + κv

= −∆dRv + 2κv.

The unusual sign results from the definition of the surface
Laplace-deRham operator.1 As in flat space, Eqs. (1) and (2)
result from conservation of mass and (tangential) linear
momentum. Alternatively, the equation can also be derived

from the Rayleigh dissipation potential10 or as a thin-film
limit of the three-dimensional incompressible Navier-Stokes
equation.23

The incompressible surface Navier-Stokes equation is
related to the Boussinesq-Scriven constitutive law for the sur-
face viscosity in two-phase flow problems7,34,35 and to flu-
idic biomembranes.2,3,19,32 Further applications can be found
in computer graphics, e.g., Refs. 16, 24, and 37, and geo-
physics, e.g., Refs. 28 and 33. The equation is also studied as
a mathematical problem of its own interest, see, e.g., Refs. 15
and 22. The solution on toroidal surfaces is of special inter-
est for computing plasma motion in fusion plasma physics,
see, e.g., Ref. 6.

In contrast to this broad interest, numerical treatments
on general surfaces are very rare. In Refs. 27 and 31, a
surface vorticity-stream function formulation is introduced.
However, this approach cannot deal with harmonic vector
fields and is therefore only applicable on surfaces with genus
g(S) = 0. The only direct numerical approach for Eqs. (1)
and (2), which is also desirable for surfaces with genus
g(S) , 0, was proposed in Ref. 26 and uses discrete exterior
calculus (DEC).

The purpose of this paper is to introduce a surface finite
element discretization with only standard ingredients to be
applicable on general surfaces. This is achieved by consid-
ering an embedding in R3, extending the variational space
from vectors in TS to vectors in R3, and penalizing the normal
component. This allows us to split the vector-valued prob-
lem into a set of coupled scalar-valued problems for each
component for which standard surface finite elements, see
the review (Ref. 14), can be used. Similar approaches have
already been independently used for other vector-valued prob-
lems, see Ref. 18 for a surface vector Laplacian, Ref. 25 for a
surface Frank-Oseen problem and Ref. 20 for a surface Stokes
problem.

The paper is organized as follows. In Sec. II, we introduce
the necessary notation, reformulate the problem in Cartesian
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coordinates of the embedding R3, and introduce the penaliza-
tion of the normal component. We further modify the equation
by rotating the velocity field, which reduces the complexity of
the equation. In Sec. III, we describe the numerical approach.
For the resulting equations, we propose a Chorin projection
approach and a discretization in space by standard piecewise
linear Lagrange surface finite elements. We demonstrate the
reduction of computational time due to the introduced rotation
and validate our approach against a DEC solution on a torus
with harmonic vector fields, see Ref. 26. In Sec. IV, results
are shown and analyzed on n-tori and conclusions are drawn
in Sec. V.

II. MODEL FORMULATION

We follow the same notation as introduced in Ref. 25
and parametrize the surface S ⊂ R3 by the local coordinates
θ, ϕ, i.e.,

x : R2 ⊃ U → R3; (θ, ϕ) 7→ x (θ, ϕ) .

Thus, the embedded R3 representation of the surface is given
byS = x(U). The unit outer normal ofS at point x is denoted by
ν(x). We denote by

{
∂θx, ∂ϕx

}
the canonical basis to describe

the (tangential) velocity v(x) ∈ TxS, i.e., v = vθ∂θx + vϕ∂ϕx at
a point x ∈ S. In a (tubular) neighborhoodΩδ of S, defined by
Ωδ B {̃x ∈ R3 : dS (̃x) < 1

2 δ} with a signed-distance function

dS (̃x), a coordinate projection x ∈ S of x̃ ∈ R3 is introduced
such that x̃ = x + dS (̃x)ν(x). For δ sufficiently small (depend-
ing on the local curvature of the surface), this projection is
injective, see Ref. 14. For a given x̃ ∈ Ωδ , the coordinate
projection of x̃ will also be called gluing map, denoted by
π : Ωδ → S, x̃ 7→ x. The pressure p : S→ R and the velocity
v : S → TS can be smoothly extended in the neighborhood
Ωδ of S by utilizing the coordinate projection, i.e., extended
fields p̃ : Ωδ → R and ṽ : Ωδ → R3 are defined by

p̃(̃x) B p(x) and ṽ(̃x) B v(x), (3)

respectively, for x̃ ∈ Ωδ and x the corresponding coordinate
projection. To embed the R3 vector space structure to the tan-
gential bundle of the surface, we use the pointwise defined
normal projection

πS(x) : TxR3 � R3 → TxS;

v̂(x) 7→ v̂(x) − ν(x)(ν(x) · v̂(x)) = v(x),

for all x ∈ S, which maps the R3 velocity v̂ = vx ex + vy ey

+ vz ez ∈ R3, not necessarily tangential to the surface, to
the tangential velocity v ∈ TxS. We drop the argument x
when applied to velocity fields living on S. With these nota-
tions, we have the following correspondence of the different
representations of first order differential operators on surfaces:

TS gradS p rotS p divS v rotS v
R3 πS∇p ν × ∇p ∇ · v̂ − ν · (∇v̂ · ν) −H(̂v · ν)

(
∇ × v̂

)
· ν

,

thereby H denotes the mean curvature. We further define
divS v̂ = ∇ · v̂ − ν · (∇v̂ · ν) and rotS v̂ =

(
∇ × v̂

)
· ν =

− divS(ν × v̂), see Ref. 27, and thus obtain

∇vv =
1
2

gradS(v · v) + rotS vν × v

=
1
2

gradS (̂v · v̂) + rotS v̂ν × v̂.

Using the definition of Ref. 1, the surface Laplace-
deRham operator reads ∆dRv = −

(
∆RR + ∆GD

)
v with

∆RRv = rotS rotS v and ∆GDv = gradS divS v. In analogy, we
define ∆̂dRv̂ = −(rotS rotS v̂ + gradS divS v̂). In Ref. 25, it has
been shown that ∆dRv ≈ ∆̂dRv̂ if the normal component (̂v · ν)
is penalized by an additional term α(ν · v̂)ν. First order con-
vergence in the penalty parameter α was numerically shown
for this approximation. Due to the incompressibility, we thus
obtain ∆dRv = − rotS rotS v ≈ − rotS rotS v̂, and the approxi-
mation of the surface incompressible Navier-Stokes equation
in Cartesian coordinates reads

∂t v̂ + rotS v̂ν × v̂ = − gradS p̄ +
1

Re
(
−rotS rotS v̂ + 2κv̂

)
− α(̂v · ν)ν, (4)

divS v̂ = 0 (5)

with p̄ = p + 1
2 v̂ · v̂. This formulation ensures the velocity to

be tangential only weakly through the added penalty term and
is equivalent to Eqs. (1) and (2) only if v̂ · ν = 0.

The advantage of Eqs. (4) and (5) is that they can be solved
for each component 3x, 3y, 3z, and p̄ using standard approaches
for scalar-valued problems on surfaces, such as the surface
finite element method,11,12,14 level-set approaches,5,13,17,36 dif-
fuse interface approximations,29 or trace finite element meth-
ods.30 However, the rotS rotS v̂ term leads to a heavy workload
in terms of implementation and assembly time, as 36 second
order operators, 72 first order operators, and 36 zero order
operators have to be considered. This effort can drastically
be reduced by rotating the velocity field in the tangent plane.
Instead of v̂ we consider ŵ = ν × v̂ as unknown. Applying ν×
to Eq. (4), we thus obtain

∂tŵ − divS ŵν × ŵ = −rotS p̃ +
1

Re
(
gradS divS ŵ + 2κŵ

)
− α(ŵ · ν)ν, (6)

rotS ŵ = 0 (7)

where we have used the identities rotS v̂ = − divS ŵ, divS v̂
= rotS ŵ, v̂ = −ν × ŵ, and ν × (ν × v̂) = −v̂. The gradS divS ŵ
term now contains only 9 second order terms and the remain-
ing terms are of similar complexity as in Eqs. (4) and (5).
An alternative form proposed in Ref. 20 for a surface Stokes
problem is based on the identity for the surface strain ten-
sor d = 1

2πS(∇v̂ + (∇v̂)T )πS. This formulation is analytically
more trackable. However, it is expected to be computationally
more involved as the resulting system contains 18 second order
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terms. Another disadvantage might be the hidden dependency
of the velocity on geometric properties. Detailed parameter
studies to demonstrate the influence of the Gaussian curvature
as considered in Refs. 26 and 31 will be less straight forward.

III. DISCRETIZATION
A. Time discretization

Let 0 < t0 < t1 < . . . be a sequence of discrete times
with time step width τn B tn+1 � tn in the n-th iteration. The
fields v̂n(x) = v̂(x, tn), ŵn(x) = ŵ(x, tn), and p̄n(x) = p̄(x, tn)
correspond to the time-discrete functions at tn. Applying a
Chorin projection method8 to Eqs. (4) and (5) with a semi-
implicit Euler time scheme results in time discrete systems of
equations as follows:

Problem 1. Let v̂0
∈ C(S; R3) be a given initial velocity

field with v̂0
= v0. For n = 0, 1, 2, . . . find

1. v̂∗ such that

1
τn

(̂v∗− v̂n) = − rotS v̂∗ν × v̂n +
1

Re

(
− rotS rotS v̂∗ + 2κv̂∗

)
− α(̂v∗ · ν)ν,

2. p̄n+1 such that

τn∆Sp̄n+1 = divS v̂∗,

3. v̂n+1 such that

v̂n+1
= v̂∗ − τn gradS p̄n+1,

with ∆S being the Laplace-Beltrami operator.
The corresponding scheme for Eqs. (6) and (7) follows by

defining ŵ∗ = ν × v̂∗ and applying ν× to the equation in the
first step. We thus obtain the following:

Problem 2. Let v̂0
∈ C(S; R3) be a given initial velocity

fieldwith v̂0
= v0.Compute ŵ0

= ν× v̂0. For n = 0, 1, 2, . . . find

1. ŵ∗ such that

1
τn

(ŵ∗− ŵn) = divS ŵ∗ν × ŵn +
1

Re

(
gradS divS ŵ∗ + 2κŵ∗

)
− α(ŵ∗ · ν)ν,

2. p̄n+1 such that

τn∆Sp̄n+1 = rotS ŵ∗,

3. ŵn+1 such that

ŵn+1
= ŵ∗ − τn rotS p̄n+1,

4. v̂n+1
= −ν × ŵn+1.

For simplicity, we consider only a Taylor-0 linearization
of the nonlinear term in both problems.

B. Space discretization

For the discretization in space, we apply the surface
finite element method for scalar-valued problems14 for each
component. Therefore, the surface S is discretized by a con-
forming triangulation Sh, given as the union of simplices,
i.e., Sh B

⋃
T ∈T T . We use globally continuous, piecewise

linear Lagrange surface finite elements

Vh(Sh) =
{
vh ∈ C0(Sh) : vh |T ∈ P1, ∀T ∈ T

}

as trial and test space for all components v̂i of v̂ as well as ŵi

of ŵ and p̄ with T the set of triangular faces.
The resulting fully discrete problem for Problem 1 reads

as follows: For n = 0, 1, 2, . . . find v̂∗i , p̄n+1 ∈ Vh(Sh) such that
∀ ûi, q̂ ∈ Vh(Sh),

1
τn

∫
Sh

v̂∗i ûi dS +
∫
Sh

rotS v̂∗
(
ν × v̂n

)
i
ûi dS

+ α
∫
Sh

ν · v̂∗νiûi dS − 1
Re

∫
Sh

rotS v̂∗ rotS
(̂
uiei

)
dS

− 2
∫
Sh

κv̂∗i ûi dS = 1
τn

∫
Sh

v̂n
i ûi dS, (8)

τn

∫
Sh

gradS p̄n+1 · gradS q̂ dS +
∫
Sh

v̂∗ · gradS q̂ dS = 0, (9)

FIG. 1. Assembly times t̂v and tŵ for the 2 s order oper-
ators rotS rotS v̂ and gradS divS ŵ as a function of the
number of DOFs.

FIG. 2. Numerical solution of v̂ = −ν × ŵ at t = 0, 2, 10,
30, and 60 (left to right). The color indicates the absolute
value of the velocity v̂. The arrows are rescaled for better
visualization.
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FIG. 3. L2,2 norm of the error between the present velocity field v̂ and the velocity field v̂DEC computed with DEC against the penalty parameter α (left) and
L2,2 norm of the normal component of the rescaled velocity field v̄ = v̂/‖v̂ ‖L2 against the penalty parameter α (right). The first superscript index denotes the Lp

norm regarding time t and the second superscript index denotes the spatial Lp norm. The blue diamond indicates the penalty parameter α used for visualization
in Fig. 2 and in the following examples.

for i = x, y, z, from which v̂n+1 can be computed according to
step 3 in Problem 1.

The resulting fully discrete problem for Problem 2 reads
as follows: For n = 0, 1, 2, . . . find ŵ∗i , p̄n+1 ∈ Vh(Sh) such that
∀ ûi, q̂ ∈ Vh(Sh),

1
τn

∫
Sh

ŵ∗i ûi dS −
∫
Sh

divS ŵ∗(ν × ŵn)iûi dS

+ α
∫
Sh

ν · ŵ∗νiûi dS +
1

Re

∫
Sh

divS ŵ∗
(
gradS ûi

)
i dS

− 2
∫
Sh

κŵ∗i ûi dS = 1
τn

∫
Sh

ŵn
i ûi dS, (10)

τn

∫
Sh

gradS p̄n+1 · gradS q̂ dS

+
∫
Sh

ν × ŵ∗ · gradS q̂ dS = 0, (11)

for i = x, y, z, from which ŵn+1 and v̂n+1 can be computed
according to step 3 and 4 in Problem 2.

To assemble and solve the resulting system, we use the
FEM-toolbox AMDiS38,39 with domain decomposition on 16
processors. As a linear solver, we have used a BiCGStab(l)
method with l = 2 and a Jacobi preconditioner with ILU(0)
local solver on each partition.

C. Comparison and validation

Both approaches lead to the same results. However, the
computational cost for Problem 2 is drastically reduced. To
quantify this reduction, we compare the assembly time for
the second order operators in Problem 1 and Problem 2. We
consider a sphere as a computational domain S = S2 and vary
the triangulation T. Figure 1 shows the assembly time as a
function of degrees of freedom (DOFs). The time is the mean
value of multiply runs of the assembly routine. The results
indicate a reduction by a factor of approximately 50.

We now compare the solution of Problem 2 with an exam-
ple considered in Ref. 26 using DEC. It considers a nontrivial
solution with divS v = 0 and rotS v = 0. Such harmonic vector
fields can exist on surfaces with g(S) , 0. We consider a torus
which has genus g(S) = 1. A torus can be described by the
level-set function T (x) = (x2 +y2 +z2 +R2−r2)2−4R2(x2 +z2)
with x = (x, y, z) ∈ R3, major radius R and minor radius r.
We here use R = 2 and r = 0.5. Let φ and θ denote the
standard parametrization angles on the torus. Then, the two
basis vectors can be written as ∂φx as well as ∂θx and

read in Cartesian coordinates ∂φx = (�z, 0, x) as well as
∂θx = (− xy

√
x2+z2

,
√

x2 + z2 − 2,− yz
√

x2+z2
). There are two (linear

independent) harmonic vector fields on the torus,

vharm
φ =

1

4
(
x2 + z2) ∂φx and vharm

θ =
1

2
√

x2 + z2
∂θx.

The example considers the mean of the two harmonic vector
fields as initial condition v0(x) = 1

2 (vharm
φ + vharm

θ ) and shows
the evolution towards a Killing vector field which is propor-
tional to the basis vector ∂φx. The surface Reynolds number
is Re = 10. Figure 2 shows the results obtained with the fully
discrete scheme of Problem 2 with time step width τn = 0.1
and penalization parameter α = 3000 on the same mesh as

FIG. 4. Numerical solution of v̂ = −ν × ŵ for the 1-torus (top row) at
t = 0, 5, 10, 15, 25, and 100 (left to right), the 2-torus (2nd and 3rd
row) at t = 0, 10, 20, 30, 50, and 100 (left to right) as well as the 3-
torus (4th and 5th row) at t = 0, 10, 20, 30, 50, and 100 (left to right)
visualized as noise concentration field aligned to the velocity field v̂.
The red squares and blue circles indicate +1 defects (vortices) and �1
defects (saddles), respectively. The full evolution for the three exam-
ples is provided. Multimedia views: https://doi.org/10.1063/1.5005142.1;
https://doi.org/10.1063/1.5005142.2; https://doi.org/10.1063/1.5005142.3

https://doi.org/10.1063/1.5005142.1
https://doi.org/10.1063/1.5005142.2
https://doi.org/10.1063/1.5005142.3
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FIG. 5. H1 semi-norm of the rescaled velocity field v̄ = v̂/‖v̂ ‖L2 against time t (left) and normalized kinetic energy E/Emax against time t (right), where Emax
is the maximum value of the kinetic energy E over time. The colored dots indicate the time points at which the defects reach their final position and only viscous
dissipation takes place or a Killing vector field is formed. We identify these points if the decay rate of the H1 semi-norm of the rescaled velocity field v̄ reaches
0.001% of its maximum value over time.

considered in Ref. 26. For the Gaussian curvature κ, we use
the analytic formula.

In Fig. 3 (left), we compare v̂ with v̂DEC for various α,
thereby v̂DEC is the solution v of Eqs. (1) and (2) with zero nor-
mal component from Ref. 26. Again first order convergence in
α can be obtained. In Fig. 3 (right), we consider the rescaled
velocity field v̄ = v̂/‖v̂‖L2 in order to show that the penaliza-
tion of the normal component v̄ · ν is numerically satisfied.
For fixed α, the same convergence properties in space and
time are found as in flat geometries with periodic boundary
conditions.9

IV. RESULTS

The Poincaré-Hopf theorem relates the topology of the
surface to analytic properties of a vector field on it. For vector
fields v ∈ TS with only finitely many zeros (defects), it holds
that

∑
x∈v−1(0) Indxv = 2 − 2g(S) with Indxv being the index

or winding number of x for v and g(S) being the genus of
the surface S. To highlight this relation, we consider n-tori for
n = 1, 2, 3 with genus 1, 2, and 3, respectively. Obviously, the
simulation results have to fulfill the Poincaré-Hopf theorem
in each time step, but they will also provide a realization of
the theorem which depends on geometric properties and initial
condition. Similar relations have already been considered for
surfaces with g(S) = 0 in Refs. 26 and 31.

A general form of a level-set function for a n-torus can be
written as L(x) =

∏n
i=1 T (x −mi) − (n − 1) δ with a constant

δ > 0 and the midpoints of the tori mi ∈ R3 for i = 1, . . ., n.
In the following examples, we consider the fully discrete
scheme for Problem 2 and use Re = 10, τ = 0.1, α = 3000,
R = 1, and r = 0.5. For the Gaussian curvature κ, we use
the analytic formula. The initial condition is considered to be
v0 = rotS ψ0 = ν × gradS ψ0 with ψ0 =

1
2 (x + y + z) which

ensures the incompressibility constraint.
Figure 4 (Multimedia view) (top) shows the time evolution

on the 1-torus with m1 = 0. The initial state has four defects,
two vortices with Indxv = +1, indicated as red dots, and two
saddles with Indxv = �1, indicated as blue dots (one vortex and
one saddle are not visible). These defects annihilate during the
evolution. The final state is again a Killing vector field without
any defects.

For n > 1, the rotational symmetry is broken and Killing
vector fields are no longer possible. We thus expect dissipa-
tion of the kinetic energy and convergence to v = 0 for any

initial condition. Figure 4 (Multimedia view) (middle) shows
the time evolution on a 2-torus where we have used the mid-
points m1 = (�1.2, 0, 0) and m2 = �m1 as well as δ = 1.
The initial state has two vortices and four saddles and thus∑

x∈v−1(0) Indxv = −2. Two vortex-saddle pairs annihilate each
other and the final defect configuration consists of two sad-
dles located at the center of the 2-torus (one is not visible).
The velocity field decays towards v = 0. Figure 4 (Multime-
dia view) (bottom) shows the time evolution on a 3-torus with
midpoints m1 = (�1.2, �0.75, 0), m2 = (1.2, �0.75, 0), and
m3 = (0, 1.33, 0) as well as δ = 10. Initially we have three vor-
tices and seven saddles and thus

∑
x∈v−1(0) Indxv = −4, which

is also fulfilled for the final defect configuration with two vor-
tices and six saddles at the center of the 3-torus (one vortex and
three saddles are not visible). Again the velocity field decays
towards v = 0.

To show the differences in the evolution on the n-tori
before and after the final defect configuration is reached,
we consider the H1 semi-norm of the rescaled velocity field
v̄ = v̂/‖v̂‖L2 . If the defects do not move, this quantity is con-
stant. Figure 5 shows the evolution over time together with the
decay of the kinetic energy E = 1

2 ∫S ‖v̂‖
2 dS.

These results clearly show the strong interplay between
topology, geometric properties, and defect positions.

V. CONCLUSIONS

We have proposed a discretization approach for the incom-
pressible surface Navier-Stokes equation on general surfaces
independent of the genus g(S). The approach only requires
standard ingredients which most finite element implementa-
tions can offer. It is based on a reformulation of the equation
in Cartesian coordinates of the embedding R3, penalization of
the normal component, a Chorin projection method, and dis-
cretization in space by globally continuous, piecewise linear
Lagrange surface finite elements for each component. A fur-
ther rotation of the velocity field leads to a drastic reduction
of the complexity of the equation and the required comput-
ing time. The fully discrete scheme is described in detail and
its accuracy is validated against a DEC solution on a 1-torus,
which was considered in Ref. 26. The interesting interplay
between the topology of the surface, its geometric properties,
and defects in the flow field are shown on n-tori for n = 1, 2, 3.

Even if the formulation of the incompressible surface
Navier-Stokes equation is relatively old,15,22,34 numerical
treatments on general surfaces are very rare. We are only
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aware of the DEC approach in Ref. 26 and therefore expect
the proposed approach to initiate a broader use and advances
in the mentioned applications in Sec. I. We further expect it
to be the basis for further developments, e.g., coupling of the
surface flow with bulk flow in two-phase flow problems, as,
e.g., considered in Ref. 32 using a vorticity-stream function
approach or in Ref. 4 within an alternative formulation based
on the bulk velocity and projection operators. Another exten-
sion considers evolving surfaces. With a prescribed normal
velocity, this has already been considered in Ref. 31, again
using a vorticity-stream function approach. The correspond-
ing equations are derived in Ref. 21 using a global variational
approach and in Ref. 23 as a thin-film limit. A mathematical
derivation of the evolution equation for the normal component
is still controversial. The derivation in Ref. 2 is based on local
conservation of mass and linear momentum in tangential and
normal directions, while the derivation in Ref. 20 is based on
local conservation of mass and total linear momentum. The
resulting equations differ. However, in the special case of a
stationary surface, all these models coincide with the incom-
pressible surface Navier-Stokes equation in Eqs. (1) and (2).
In all considered examples, the Gaussian curvature was ana-
lytically given. However, this is not necessary. For appropriate
algorithms to compute κ from a given surface triangulation,
we refer to Ref. 27.
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