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ERRATUM: THE INTERPLAY OF CURVATURE AND VORTICES IN
FLOW ON CURVED SURFACES\ast 

SEBASTIAN REUTHER\dagger AND AXEL VOIGT\ddagger 

Abstract. We here correct the model and the derivation of the vorticity-stream function for-
mulation for the incompressible surface Navier--Stokes equation on moving surfaces, proposed in
[S. Reuther and A. Voigt, Multiscale Model. Simul., 13 (2015), pp. 632--643].
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In [6] the vorticity-stream function formulation for an incompressible surface
Navier--Stokes equation, introduced in [5], was extended to surfaces with a prescribed
normal velocity. As the underlying Navier--Stokes equation the model proposed by
Arroyo and DeSimone [1] was used. A more detailed derivation of the equation in [9]
shows that the acceleration term in this model has to be corrected (cf. [9, Remark
2.3]). In the notation of [6] the tangential balance of linear momentum (equation (4.1)
in [6]) should read

\partial tv + 2vnSv  - vn\nabla \Gamma vn + v \cdot \nabla \Gamma v =  - \nabla \Gamma p+ \mu 
\bigl( 
\Delta R

\Gamma v + 2Kv  - \nabla \Gamma (vnH)
\bigr) 

+ 2\mu \nabla \Gamma \cdot (vnS) ,

with tangential velocity v = (v1, v2) with components corresponding to the local basis
vectors e1(x) and e2(x) for each x on the evolving surface \Gamma (t). The other quantities
are pressure p, surface viscosity \mu , shape operator S, Gaussian curvature K, mean
curvature H, and normal velocity vn. Together with mass conservation (equation
(4.2) in [6])

\nabla \Gamma \cdot v + vnH = 0,

this gives the correct form for an incompressible surface Navier--Stokes equation on
a prescribed surface which moves in normal direction with velocity vn [9]. In the
meantime other approaches to derive the incompressible Navier--Stokes equations on
evolving surfaces have been proposed, in [3, 2] by using a variational principle and in
[4] by using a thin shell limit. However, these approaches consider a three-dimensional
surface velocity field u in Cartesian coordinates. Following [2] and considering the
decomposition u = uT + vnn in tangential and normal components with n being the
normal vector, an equation for uT is derived (equation (3.12) in [2]). Considering our
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ERRATUM 1449

general model above in the embedding three-dimensional space with v3 = (v1, v2, 0),
extending all its components constantly in the normal direction and transforming it
to Cartesian coordinates leads exactly to this model with a prescribed normal velocity
vn. To achieve this identity one has to deal with the delicate definition of the time
derivative, which lacks tangentiality and tensorial properties; \partial tv3 thereby transforms
to P\partial tuT  - vnSuT , where P is the orthogonal projection onto the tangent space. The
corrected formulation and the established identity between the general model above
and the three-dimensional models in Cartesian coordinates in [3, 2, 4] should end the
controversial discussion on a proper definition for flow problems on evolving surfaces.

Not only the model in [6] has to be corrected but also the derivation of the
vorticity-stream function formulation. It turns out that in the present setting the
substitution v3 = curl\psi +\nabla \Gamma \Phi , with stream function \psi and potential \Phi , leads to a
more rigorous approach. Inserting this into the mass conservation law gives \Delta \Gamma \Phi +
vnH = 0, an equation for \Phi . The equations for the stream function \psi and the
vorticity \phi result from applying the curl (\cdot ) operator to the above momentum balance
equation. In contrast to the assumption in [6] the curl operator curl (\cdot ) and the partial
time derivative \partial t are noncommuting operators, in general curl (\partial tv3) \not = \partial tcurl (v3).
The correct identity is

curl (\partial tv3) = \partial tcurl (v3) - vnS : \nabla \Gamma (n\times v3) - curl(vn) \cdot Sv3.

The complete system of scalar surface PDEs for the stream function \psi , the vorticity
\phi , and the potential \Phi thus reads

\partial t\phi + vn\nabla \Gamma \cdot (S (\nabla \Gamma \psi  - curl(\Phi ))) + vnJ(H,\Phi ) + vn\nabla \Gamma H \cdot \nabla \Gamma \psi 

 - curl (vn) \cdot S (curl(\psi ) +\nabla \Gamma \Phi ) + curl (vnS (curl(\psi ) +\nabla \Gamma \Phi ))

+ J(\psi , \phi ) +\nabla \Gamma \cdot (\phi \nabla \Gamma \Phi )

= \mu (\Delta \Gamma \phi + 2\nabla \Gamma \cdot (K\nabla \Gamma \psi ) + 2J(K,\Phi ) - 2\nabla \Gamma \cdot (n\times \nabla \Gamma \cdot (vnS)))
\phi = \Delta \Gamma \psi 

 - \Delta \Gamma \Phi = vnH.

Discretization. We first solve in each timestep the equation for the potential
\Phi m, with index m denoting the new time, and afterward the equations for the stream
function \psi m and the vorticity \phi m. The finite element approximation thus reads as
follows: Find \Phi m \in V m

h such that for all \gamma \in V m
h\Bigl( 

\nabla \Gamma \Phi 
m , \nabla \Gamma \gamma 

\Bigr) 
=

\Bigl( 
vnH , \gamma 

\Bigr) 
.

Furthermore, find (\phi m, \psi m) \in V m
h \times V m

h such that for all (\alpha , \beta ) \in V m
h \times V m

h\Bigl( 
d\tau \phi 

m + p \cdot \nabla \Gamma \psi 
m + J(\psi m - 1, \phi m) , \alpha 

\Bigr) 
= \mu 

\Bigl( 
 - \nabla \Gamma \phi 

m  - 2K\nabla \Gamma \psi 
m , \nabla \Gamma \alpha 

\Bigr) 
+
\Bigl( 
M\nabla \Gamma \psi 

m + \phi m\nabla \Gamma \Phi 
m , \nabla \Gamma \alpha 

\Bigr) 
+

\Bigl( 
g , \alpha 

\Bigr) 
+
\Bigl( 
q , \nabla \Gamma \alpha 

\Bigr) 
\Bigl( 
\phi m , \beta 

\Bigr) 
=  - 

\Bigl( 
\nabla \Gamma \psi 

m , \nabla \Gamma \beta 
\Bigr) D
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1450 ERRATUM

with discrete time derivative d\tau and coefficient terms

M := vn
\bigl( 
S+ n\times Curl(n)T

\bigr) 
,

p := vn\nabla \Gamma H  - S\nabla \Gamma vn +Curl(n)curl(vn),

q := 2\mu n\times \nabla \Gamma \cdot (vnS) + vnJ(n,\Phi 
m) - vnn\times (S\nabla \Gamma \Phi 

m) ,

g := \nabla \Gamma \Phi 
m \cdot Scurl (vn) - vnJ(H,\Phi 

m) + J(n,\Phi m) \cdot \nabla \Gamma vn + 2\mu J(K,\Phi m)

with a generalized cross product n\times A with a matrix A and components [n\times A]ij :=
(n\times Aej)i, where ej is the jth unit vector, another curl operator Curl(n) with compo-
nents [Curl(n)]ij = (curl(nj))i, and the generalized Jacobian J(n, \cdot ) with components
[J(n, \cdot )]i = J(ni, \cdot ). The implementation is again done in the adaptive finite element
toolbox AMDiS [7, 8].

Results. The simulation results shown in Figures 4--8 in [6] are reproduced with
the corrected approach. The results are shown in Figures 4--8, respectively. In contrast
to [6] we consider the tangential velocity v for visualization to also incorporate effects
induced by the potential \Phi . All numerical simulations show qualitatively the same
and quantitatively very similar results. Small differences can be seen in Figures 7
and 8, where the vortex stays within the Gaussian saddle for longer times and the
transition between equal and different vortex centers and saddle locations seems to
be more linear, respectively. Both effects indicate an even tighter coupling between
geometric properties and flow dynamics.

UG

0 1 2 3

UG

 - 1.2 1

Fig. 4. Time evolution of v for the bump and the Gaussian saddle for t = 2, 14, 26, 38, and 50
visualized as a noise concentration field aligned to the velocity field v. The color coding is according
to the geometric potential UG.
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Fig. 5. Time evolution of v for the bump for t = 2, 11, 19, 27, and 36 (left to right and top to
bottom) visualized as a noise concentration field aligned to the velocity field v (left) and evolution of
the bump location (m1,m2)T and the vortex location (x1, x2)T for a full period of rotation (right).
The color coding is according to the geometric potential UG.
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Fig. 6. Time evolution of v for the Gaussian saddle for t = 2, 11, 19, 27, and 36 (left to right
and top to bottom) visualized as a noise concentration field aligned to the velocity field v (left)
and evolution of the bump location (m1,m2)T and the vortex location (x1, x2)T for a full period of
rotation (right). The color coding is according to the geometric potential UG.
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Fig. 7. Time evolution of v for the accelerated rotation of the Gaussian saddle for t =
2, 7, 10, 12, and 14 (left to right and top to bottom) visualized as a noise concentration field aligned
to the velocity field v (left) and time evolution of the Gaussian saddle location (m1,m2)T and the
vortex location (x1, x2)T (right). The color coding is according to the geometric potential UG.
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Fig. 8. Viscosity versus angular velocity phase diagram. Here it is assumed that the vortex
is placed off the Gaussian saddle if | | (m1,m2)T  - (x1, x2)T | | \geq 0.075 (red circles). Blue crosses
indicate high geometric influences through vortex trapping.
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