
1 Competition Between Kinetics and Thermodynamics
2 During the Growth of Faceted Crystal by Phase Field
3 Modeling
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5 and Francesco Montalenti

6 The faceting of a growing crystal is theoretically investigated by a continuum
7 model including the incorporation kinetics of adatoms. This allows us for
8 predictions beyond a simple Wulff analysis which typically refers to faceted
9 morphologies in terms of the equilibrium crystal shape for crystals with an
10 anisotropic surface-energy, or to steady-state kinetic shape when the crystals
11 grow with orientation-dependent velocities. A phase-field approach is
12 implemented in order to account simultaneously for these contributions in
13 two- and three dimensions reproducing realistic kinetic pathways for the
14 morphological evolution of crystal surfaces during growth. After a systematic
15 characterization of the faceting determined by orientation-dependent incorpo-
16 ration times, several different crystal morphologies are found by tuning the
17 relative weights of thermodynamic and kinetic driving forces. Applications to
18 realistic systems are finally reported showing the versatility of the proposed
19 approach and demonstrating the key role played by the incorporation
20 dynamics in out-of-equilibrium growth processes.

21 1. Introduction

22 Faceting is one of the most distinctive traits of a finite crystal,
23 from the macroscopic scale down to the micro- and nanoscale.[1]

24 In the latter case, the enhanced surface-to-volume ratio makes it
25 a crucial aspect for material properties and applications.
26 Understanding, and possibly controlling, the crystal faceting
27 has then been the object of intensive studies dating back to the

119th century. Already in 1901, indeed,
2G. Wulff proposed its famous geometric
3construction[2] for predicting the equilib-
4rium crystal shape (ECS) on the basis of the
5principle of surface energy minimization.
6This geometric procedure, formalized and
7demonstrated only decades later (see in
8particular Ref. [3]), is illustrated in Figure 1
9in two dimensions (2D). Once the surface
10energy density γ is known as a function of
11the local surface orientation n̂, one traces
12its polar plot and at each point along it
13draws a plane normal to n̂. The inner
14envelope of all these planes corresponds to
15the ECS. This shape can be meant as the
16trade-off between the tendency toward
17exposing the facets having minimum
18energy and the minimization of the total
19surface area. The thermodynamic princi-
20ples behind the definition of the ECS[4,5]

21find good applicability for inspecting the
22faceting of crystals under annealing or,
23more in general, in the case of close-to-equilibrium growth
24processes, that is, at high temperature and slow growth rates.
25Indeed, adatoms at the surface must be sufficiently mobile to
26diffuse according to thermodynamic driving forces prior to their
27permanent incorporation in the crystal and/or being covered by
28additional deposited material.
29When considering growth, out-of-equilibrium conditions can
30alter the crystal faceting corresponding to the ECS. A more
31convenient description of the crystal faceting during growth is then
32providedby thekinetic crystal shape (KCS),obtainedbyconsidering
33that each facet growswith an assigned velocity v ¼ v n̂Þð . TheWulff
34procedure canstill be applied todetermine the shapeof thegrowing
35crystal just replacing γ with v,[6–8] as in Figure 1.
36Both the ECS and the KCS scale self-similarly with volume so
37that they just provide the final shape of the crystal, without any
38information on kinetic pathways. In particular, ECS describes
39the minimum energy configuration and the KCS provides a
40description of the growth front when stationary conditions hold.
41However, since normally the growth does not start from a crystal
42seed with the same shape of the KCS, a first transient state can be
43expected with changes in the relative extensions of facets, that is,
44in contrast with the KCS. In a very simplified way, this evolution
45can be traced by evolving each point according to its velocity v n̂Þð
46(Borgstrom construction[9]), as shown by the dashed profiles in
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1 the Figure 1b. By simple geometric arguments, it can be shown
2 that the slowest growing facets expand in size at the expenses of
3 the fastest ones, up to expelling them from the growing profile if
4 not present in the KCS.[10]

5 Although the ECS can be considered a property of the
6 material for given environmental conditions, for example,
7 temperature, (partial) pressure of the components, surface
8 reconstruction, . . . and, in principle, it could be theoretically
9 predicted by computing the surface energy of all possible facets,
10 it is much more difficult to estimate the KCS without a direct
11 comparison of experiments. Indeed, the growth rates of facets υ
12 result from a complex combination of surface/energetic
13 properties and details of the growth procedure, for example,
14 kind of reactants, distribution of the species, chemical
15 environment and possible side reactions (e.g., etching,
16 passivation, . . .), sticking/desorption at the surface, . . . (for a
17 topical review, see Ref. [1]). Reasonably, the set of possible facets
18 should be the same for ECS and KCS but the two can be quite
19 different and only a subset of such facets may really be
20 distinguishable in a growing profile.
21 ECS and KCS can be considered the two limiting cases when
22 the shape is defined by thermodynamics or by the growth
23 kinetics, respectively. The former is established when the
24 surface diffusion prevails over the deposition dynamics so that
25 the material can redistribute to achieve the minimum energy
26 configuration. Vice versa, the latter is obtained when only short-
27 range diffusion is enabled so that the local velocity of the

1growth front is essentially determined by the net income of
2material.
3An intermediate condition is yet possible if the time-scale for
4adatom diffusion, before the incorporation in the crystal,
5becomes comparable with the one of deposition. This regime
6has been discussed in details by Cahn and Taylor in Ref. [11]
7(see also Ref. [12] for a detailed derivation) and takes into
8account that atoms deposited on the surface require a finite
9time to get incorporated in a definitive site during which they
10can migrate elsewhere. As this process is expected to
11significantly depend on the actual facets, it introduces another
12anisotropic contribution that can compete, and even overrule,
13the thermodynamic driving force toward the ECS. At the same
14time, the morphology also diverts from the KCS, making the
15net growth rate dependent on the adatom flux exchanged
16between neighboring facets.
17In Ref. [13], Stöcker and Voigt investigated the effect of an
18isotropic kinetic term on the faceting by annealing of crystal
19surfaces caused by strongly anisotropic surface free energies.
20Later, Raẗz et al. inRef. [14] introduced an anisotropic kinetic term,
21depending on the facet orientations. It is the goal of the present
22work to extend such study to the case of a growing crystal, showing
23how faceting can change from ECS to KCS by controlling the
24incorporation kinetics. To this purpose a phase-field (PF)
25approach[15,16] is exploited, as detailed in the Section 2. Simulation
26results arefirst reported for a few test cases inSection3, showing in
27a systematic way how the crystal faceting may occur because of
28anisotropies in the incorporationdynamics.Then, inSection4, the
29competition between anisotropic surface energy and/or growth
30rates and the incorporation dynamics is investigated. More
31specifically, we show the possibility to account for intermediate
32morphologies that recover the ECS and the KCS as limiting cases.
33Finally, a few applications to morphologies observed in experi-
34ments are reported in the Section 5 to validate the method and
35illustrate its capabilities.

362. Continuum Modeling and Phase-Field
37Approach

38Simulations of crystal growth are based on the kinetic model
39from Ref. [11], exploiting the phase-field approach described in
40Ref. [14]. Here we briefly review the key concepts of this model
41and its implementation in the PF framework.
42Thegrowthof a crystal is typically characterizedby anet transfer
43of matter from a gaseous (or liquid) medium surrounding the
44crystal into its bulk phase. However, this mechanism proceeds
45through the crystal surface, where adatoms can move, interact, or
46desorb before being incorporated in a crystal-lattice site.[17,18] The
47temporal evolutionof theadatomdensityNat agivenpointxon the
48surface can be described by a continuity equation, including an
49external material supply, that is, the deposition flux F, and a sink
50corresponding to the incorporation into the crystalline phase
51underneath with rate υ:

@N
@t
¼ rs � Mrsμ½ � þ F � υ ð1Þ

Figure 1. Schematics of the Wulff construction for the ECS, starting from
a γ-plot, and the KCS, starting from a υ-plot. The geometric construction
is the same for both cases and it is sketched for the ECS only. An
illustrative growth sequence for the evolution of a circular seed to the KCS
is illustrated by the dashed profiles and it is obtained by moving points
accordingly.
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1 M is the adatommobility, μ is the local adatom chemical potential,
2 andrs is the surface gradient operator. The diffusion of adatoms
3 follows the gradient of chemical potential along the surface,
4 J ¼ � Mrsμ, according to the Onsager linear law. An additional
5 sink term accounting for the loss of adatoms due to the desorption
6 could be included in the equation, but it is here assumed to be
7 negligible. The external flux can in general depend on the facet
8 orientation F ¼ F n̂Þð . For the sake of simplicity, in the following
9 we shall consider isotropic mobility M.
10 The attachment/detachment of adatoms into the crystal,
11 resulting in the advancement of the growth front along its
12 normal direction n̂, directly corresponds to the velocity υ. In a
13 first approximation, the incorporation rate is proportional to the
14 difference between the chemical potential of an adatom at a
15 location x on the surface and the chemical potential μeq of an
16 atom incorporated within the crystal at the same position:

v ¼ μ � μeq
� �

=τ ð2Þ

17 with τ a kinetic coefficient setting the timescale of the exchange
18 process. More physically, τ corresponds to the adatom lifetime
19 prior to incorporation and is expected to depend on the profile
20 orientation, that is, τ ¼ τ n̂Þð . By definition, the equilibrium
21 chemical potential is equal to the variation of the system free
22 energy μeq ¼ δG=δN. As we here just consider surface energy,
23 μeq � rsξ, with ξ ¼ r rγ n̂Þð Þð the Cahn-Hoffmann vector (r the
24 magnitude of vector r ¼ rn̂).[19,20] In 2D, it can be written in the
25 simplest form μeq � κ γ þ γ00 θð Þð Þ, with κ the profile curvature, γ
26 the surface energy density and θ the local orientation of the
27 surface.
28 Following Ref. [11] in the assumption of quasi-stationary
29 conditions for the adatom densities, that is, @N=@t � 0,
30 Equations (1) and (2) can be combined into a coupled system
31 of equations describing the profile evolution due to adatom
32 incorporation:

v ¼ rs � Mrsμ½ � þ F

μ ¼ μeq þ τv

(

ð3Þ

33 As stated by the second equation, the adatom chemical
34 potential μ includes both the thermodynamic contribution μeq,
35 accounting for the crystal energetics, and a kinetic term,
36 proportional to the profile velocity υ. In the limit of infinitely fast
37 incorporation (τ ! 0), the adatom chemical potential reduces to
38 the one of the crystal atoms μ! μeq and diffusion results only
39 from surface energy differences. In such a case, the evolution
40 will tend to the ECS in the absence of deposition,[15,21] or to the
41 KCS if mobility is negligible.
42 The phase-field approach is well suited to efficiently solve
43 these coupled equations without any geometrical prescription on
44 the crystal shape. Indeed, the profile is traced implicitly by
45 means of the phase-field function φ, set equal to 1 within the
46 crystal and 0 outside, and is nominally located at the φ ¼ 0:5 iso-
47 surface (or iso-line in 2D), as shown in following plots. In
48 particular, φðxÞ ¼ 0:5½1 � tanhð3dðxÞ=ϵÞ� with d the signed-
49 distance between the point x and the surface profile and e a
50 parameter setting the width of the diffused-interface. The
51 motion of the crystal profile is then expressed in terms of the

1evolution of the φ-field itself, that is, v! @φ=@t, so that
2Equation (3) becomes

@φ
@t
¼ r � M φð Þrμ½ � þ F rφj j

g φð Þ � μ ¼ μeq þ τðn̂Þϵ
@φ
@t

8
>><

>>:

ð4Þ

3where gðφÞ ¼ 30φ2 1 � φð Þ2 is a stabilizing function[22–24] and ϵ
4is included in the second equation as a scaling factor. M φð Þ ¼
5M0 36=ϵð Þφ2 1 � φð Þ2 is the mobility function restricted to the
6surface with M0 an effective coefficient, accounting for the
7energy barrier for site hopping and following the Arrhenius law.
8As detailed in Refs. [15,25], the equilibrium chemical potential
9for the general case of anisotropic γ is

μeq ¼ � ϵr � ½γ n̂Þrφð � þ
1
ϵ
γ n̂ÞB0 φð Þð

1011

� r � �
ϵ
2
rφj j 2 þ

1
e
B φð Þ

� �

rrφγðn̂Þ

#"

ð5Þ

12whererrφ is thegradient that takeseffect along therφdirection.
13In order to tackle strong anisotropy conditions, the Willmore
14regularization[15] is implemented, thus introducing a small corner
15rounding.[26] This adds an additional term to μeq in Equation (5):

μW ¼ β � r2ωþ
1
ϵ2
B00 φð Þω

� �

ð6Þ

16with ω ¼ � ϵr2φþ 1=ϵð ÞB0 φð Þ, and β a coefficient to set the
17strength of the rounding. In particular, the length scale where
18this term is active is proportional to

ffiffiffi
β

p [27] and hence it becomes
19less effective as the particle grows in size. By including this
20regularization the system of partial differential equations to be
21solved becomes of sixth order.
22In order to set the anisotropic functions F n̂ð Þ, γ n̂ð Þ, and τ n̂ð Þ
23in a convenient way, we follow Refs. [21,28], and use the generic
24continuum function:

f ðn̂Þ ¼ f 0 þ
X

i

f i n̂ � m̂iÞ
w
�Θ n̂ � m̂iÞðð ð7Þ

25with the baseline value f0 andmaxima (orminima if f i < 0) at the
26assigned orientations mi, with height (depth) set by fi and width
27w. In the following, we set f0¼ 1 for F n̂ð Þ and γ n̂ð Þ, while it is 0
28for τ n̂ð Þ. w is chosen to exclude any overlap between the different
29peaks: it is set to 50 for F n̂ð Þ and γ n̂ð Þ, and to 100 for τ n̂ð Þ.
30Outward-pointing vectors are only considered thanks to the
31Heaviside function Θ, thus permitting to treat systems without
32inversion symmetry and to tune each minimum independently.
33Numerical solution of Equation (4) is obtained by Finite
34Element Methods with the AMDiS toolbox.[29,30] It exploits
35adaptive mesh refinement allowing for a proper resolution
36within the diffuse interface region, still guaranteeing a limited
37computational cost, and a semi-implicit numerical scheme for
38the temporal integration. For the 2D simulations we set ϵ ¼ 0:05,
39while for three dimensions (3D) we set ϵ ¼ 0:2.
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1 In the following,weshallusedimensionlessparameters forF,γ,
2 τ, and M as we here focus on the relative weight of the
3 different contributions in the model without considering any
4 specific material. If experimental time and size scales had to be
5 matched, a unit measure analysis returns the following scaling of
6 the simulation parameters: F0½ � ¼ l½ � t½ � � 1, γ0

� �
¼ e½ � l½ � � 2,

7 τ0½ � ¼ t½ � e½ � l½ � � 4, M0½ � ¼ l½ � 6 e½ �� 1 t½ �� 1 with respect to the length
8 [l], time [t], and energy [e] units.

9 3. Faceting by Orientation Dependent
10 Incorporation Dynamics

11 In this section, we investigate the formation of faceted crystal
12 shapes during growth as due only to anisotropic incorporation
13 times τ n̂ð Þ. Both isotropic surface energy γ n̂ð Þ ¼ γ0 and
14 material supply F n̂ð Þ ¼ F0 are considered so that the expected
15 ECS and KCS are simply spheres (or circles in 2D).

1In Figure 2 the growth sequence of an octahedral particle,
2starting from a spherical nucleus, is simulated by considering a
3τ n̂ð Þ having maxima for all [111] orientations, as shown in the
4color map in panel (c) for the profile at t¼ 2. Because of this
5choice, the chemical potential of adatoms m at the center of the
6{111} facets is maximum as they accumulate due to the slow
7incorporation into the crystal. Conversely, in the regions with
8intermediate orientations, where adatom incorporation is faster,
9a lower population and hence a lowerm is obtained. This is made
10evident in the panel (d) where m is illustrated by a color map. In
11particular, the lowest value of m is found at the facet vertices.
12Accordingly, a continuous transfer of material occurs by surface
13diffusion from the facets toward the vertices (and edges),
14enforcing straight facets. It must be noted that the faceted shape
15obtained here is not energetically favored and it can be achieved
16only during growth. Indeed, as shown in panel (e), the energetic
17contribution to the chemical potential of adatoms μeq

Figure 3. Growth simulation of a faceted shape with competing {110} and {111} facets, with τ ¼ 20 and 16, respectively. Color maps show the the
incorporation time τ, the chemical potential μ and the equilibrium chemical potential μeq on the surface. M0 ¼ 0:1.

Figure 2. a) Growth simulation of a {111} faceted shape with the kinetic incorporation term. b) Time evolution of cross-section profiles. Color map for
(c) the incorporation time τ, (d) the chemical potential m and (e) the equilibrium chemical potential μeq, corresponding to the surface curvature.
τ111 ¼ 20 and M0 ¼ 0:1.
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1 corresponds to the profile curvature since γ is isotropic and
2 would hence drive the system in the opposite direction, toward a
3 global smoothing. While this term is practically ruled-out within
4 the facets, it becomes strong enough at the facet boundaries,
5 causing a local smearing. As evident in the cross-section profiles
6 in Figure 2b, the rounding is more pronounced at the facet
7 vertices, where the curvature is maximum, while the edges look
8 sharper as forming a wider angle, that is, lower curvature.
9 The same principle of transferring material away from the
10 orientation of maximum τ discussed above governs the
11 competing formation and development of different facets. As
12 far as facets have the same τ, they all grow with the same rate,
13 tending to the same polyhedron obtained as KCS by assigning
14 equal F to all facets. However, in the more realistic case where
15 different facets have different ability of incorporating atoms, that
16 is, different τ, they compete for the incoming material. An
17 example is reported in Figure 3, showing a growth simulation
18 including both {111} and {110} planes as local maxima in the
19 τ n̂ð Þ function. In particular, as shown in the color map in the
20 inset, τ111 < τ110. As expected, both facets appear in the growing
21 particle as they tend to slowly incorporate material with respect
22 to the intermediate orientations. Moreover, as {110} facets tend
23 to accumulate more adatoms than the {111} ones, a net transfer
24 of material from {110} to {111} facets is observed, frustrating the
25 lateral expansion of the {111} facets in advantage of the {110}
26 ones. This is demonstrated by the m color map, maximum on
27 {110} facets and slightly lower on the {111} ones. Figure 3 also
28 reports a view of μeq having high values at the facet edges and
29 vertices due to high curvatures, showing thus that the observed
30 faceting is in contrast with the surface energetics.
31 Themagnitude ofmaterial transfer between the facets directly
32 depends on their difference in incorporation times, that is, on
33 their relative population of adatoms. This is made evident in
34 Figure 4 where the faceted growth of an initially circular 2D
35 profile, determined by considering localmaxima of τ in both {10}
36 and {11} directions, is compared for a case where τ10 is just a
37 10% greater than τ11 and another where it is twice larger. In the

1former case, both {10} and {11} facets coexist, returning an
2octagonal shape with {10} segments extending slightly more
3than {11} ones. In the latter case, on the contrary, the actual
4growth rate of {11} facets is dramatically enhanced by the
5adatom diffusion from the slow {10} so that it shrinks in size up
6to disappear from the crystal shape, leaving a {10}-bounded
7square.
8As the faceting behavior due to the incorporation kinetics has
9been so far discussed in terms of dominance of the slowest
10growing facets, it closely relates with the principles of the KCS.
11Indeed, the hierarchy of incorporation times roughly corre-
12sponds to the hierarchy of the facet growth rates. However, at
13variance with the KCS construction, facet velocities are not
14assigned constants but are dynamically determined by the
15redistribution of adatoms between the competing facets. This
16process is enabled by the surface diffusion and it is then effective
17only over a distance within the actual diffusion length. The finite
18extent of the diffusion length has a great impact on the faceting
19evolution, as made evident in the Figure 5 where the effect of
20changing the particle size or the surface mobility on the {10}
21versus {11} facets is shown for two ratios of incorporation times.
22Panels (a) and (b) illustrate the evolution sequence for two τ
23ratios, starting from an initial circle of small size. As already
24discussed, the facets with higher τ, here the {10}, are going to
25prevail in the growing shape. In (a), the transfer of material
26toward {11} facets is larger so that they shrink and quickly
27disappear, leaving a square shape. In (b), the transfer of material

Figure 4. Comparison of the shape evolution from circular to faceted
shape for different τ10=τ11 ratios, by using the anisotropy functions shown
in the top panel.

Figure 5. a and b) Time evolution of the surface contours for two different
τ10=τ11 ratios. c) Plot of the {10}/{11} area ratio for two sets of τ (blue as
in panel (a), red as in panel (b)) for different diameters D of the initial
shape and F0=M0 ratios.
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1 is lower as the incorporation on the two facets is more similar, so
2 that {11} facets persist for a longer time. To better compare the
3 different timescale in the two cases, the ratio of the length of {10}
4 versus {11} segments is plotted against the evolution time in
5 Figure 5c. In both cases, the shrinkage of {11} facets is
6 exponential, with a lower velocity for the smaller τ ratio. Indeed,
7 as the facet size decreases, the same amount of material coming
8 from the {10} facets is spread over a shorter length and hence
9 result in an increment of the growth rate.
10 By repeating the evolution starting from a particle with a four-
11 times larger diameter, the {10}/{11} ratio grows significantly
12 slower for both cases since the diffusion cannot cover the whole
13 facet size, thus making the facet competition less effective. It is
14 then worth mentioning that this size dependency makes an
15 important difference with respect to the kinetic Wulff construc-
16 tion, which on the contrary always returns a self-similar
17 morphology. A similar effect can be achieved by decreasing
18 the surface mobility as reported by the shallowest curves in the
19 plot. Even if material always tends to flow from the facets with
20 slower incorporation with respect to the neighboring ones, the
21 timescale for this process can become slow enough to consider
22 the multifaceted morphology as metastable.

23 4. Competing Regimes Driving the Crystal
24 Faceting

25 The faceting induced by orientation-dependent incorporation
26 times requires surface diffusion to be established. Moreover, in
27 order to enforce the faceting by τ-anisotropy, the kinetic term
28 entering μ must be larger than μeq (see Equation (3)). This
29 competition is made evident in Figure 6, where simulation
30 profiles obtained for different incorporation times (a) and
31 deposition fluxes (b) are compared at the same growth stage.

1Longer incorporation times τ and larger material supply by
2means of larger F values, enforce the kinetic regime. In the
3opposite case, μeq prevails in driving the diffusion toward a
4rounded shape, corresponding to the ECS since γ is isotropic.
5More precisely, the balance between the kinetic and energetic
6contribution is given by the ratio μeq= τvð Þ ¼ κγð Þ= τvð Þ and hence
7it also depends on the actual profile, as due to the local curvature
8κ. Indeed, high curvature regions will be strongly contrasted by
9surface energy, thus resulting in smoothed profiles even if a
10kinetic faceting is achieved elsewhere. This can be observed in
11the intermediate profile of Figure 6a where a faceted squared-
12shape is obtained except for a local rounding at the vertices. More
13generally, as sharp vertices correspond to singularities in the
14local curvature, they will always tend to smooth, on a local scale
15as small as the τv term dominates. Also, as for a circle the
16curvature directly relates to its radius κ ¼ 1=R, the strength of μeq
17will progressively decrease as the growth proceed so that those
18rounded profiles in Figure 6 will eventually tend to facets when
19their radius becomes large enough.
20A similar competition can be illustrated for the more realistic
21case of anisotropic surface energy. In such a case, if the τmaxima
22coincide with the γ minima, both incorporation kinetics and
23surface energy will enforce the same faceting, eventually
24accelerating the shape transformation. Vice versa, if the set of
25expected facets for τ and γ differs, the resulting shape will depend
26on their relative strength. As an example, inFigure 7we consider a
27γ ¼ γ n̂Þð withdeepminimaalong h10i directionsdominating the
28ECS, while τ hasmaxima in the h11i directions, where γ has only
29shallowminima (panel a). If the τ=γ ratio is small enough (panelb),
30the main driving force causing the redistribution of the (isotropi-
31cally) deposited material is the energy minimization, so that the
32profile tends to the ECS exposing the most stable {10} facets
33despite their fast incorporation rate. Vice versa, when increasing
34the τ=γ ratio, the role of the different kinetics becomes dominant,
35hindering the growth of the most stable {10} facets in favor of the
36slower growing {11} facets. Then, a rotated {11}-faceted squared
37profile tends to form (panel c and d), even if amuch higher energy

Figure 6. Comparison of the out-of-equilibrium conditions needed for the
kinetic faceting. a) Profiles obtained by changing the deposition flux, for a
fixed τ11. b) Profiles obtained by changing τ11, for the same F0 ¼ 10. All
the profiles have the same volume, and the initial stage is a circle.
M0 ¼ 0:1.

Figure 7. Competing role of incorporation time and surface energy
anisotropy. For larger τ (center and right) the kinetic faceting dominates
over the thermodynamic one resembling the ECS (left). Corner
regularization is used with β ¼ 0:05, while the anisotropy functions for
τ n̂Þð and γ n̂Þð are plotted in the top panel.
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1 compared to the ECS is retained. Evidently, if the growth would be
2 interrupted, the followingevolutionwoulddrive the systemtoward
3 the ECS, eventually following a kinetic path influenced by the
4 anisotropic τ.
5 The distribution of material supply can be anisotropic as well,
6 F ¼ F n̂Þð , driving the system toward the KCS, and then compete
7 with the anisotropic incorporation times in determining the
8 crystal morphology, as illustrated in Figure 8. If maxima in τ
9 coincide with minima of F, both terms will lead to the same
10 faceting, as in the case of the panel (b). On the contrary, if
11 τ-maxima and F-minima do not correspond, as in panels (c) and
12 (d) where they are out-of-phase by 45�, the actual faceting results
13 from the competition between them. In particular, since the
14 faceting due to τ n̂Þð requires diffusion, it is expected to prevail
15 only in the case of a smaller F/M ratio and only if the size does
16 not exceed the actual diffusion length. These conditions are not
17 fulfilled in the case in panel (c), where the diffusion is frustrated
18 by the fast growth rate, so that the faceting is given by the
19 minima in F, as for the KCS. A small trace of diffusion from the
20 {11} vertices to the {10} facets is barely distinguishable and too
21 weak for altering the shape evolution. On the contrary, by
22 reducing the F/M ratio it is possible to significantly enhance the
23 transfer of the deposited material prior to the incorporation into
24 the crystal so that the shape evolution depends more on the
25 different τ. This is the case for the first evolution stages in the
26 Figure 8d, where the {11} facets, corresponding to τmaxima, are
27 clearly recognizable despite corresponding to the F maxima.
28 However, the extent of material transfers is limited by the
29 diffusion length while the profile size becomes indefinitely large

1as the growth proceeds. Therefore, at some point, the faceting
2sustained by diffusion is out-ruled by the anisotropy of the
3growth rates F and the shape tends to the expected KCS as
4evident in the latest stages of the reported evolution. Notice that a
5certain broadening due to local diffusion is always present at the
6{11} corners, trying to preserve the slow incorporating facets.
7However, it remains limited in a region as long as the diffusion
8length and hence it becomes negligible for a very large diameter.
9This example allows us to conclude that the faceting induced by
10orientation-dependent incorporation times τ plays a major role
11for particle sizes as small as the diffusion length while it loses
12efficacy for larger sizes where the system tends to the KCS
13determined by the anisotropy in the growth rates F.
14Finally, it is worth noting that the balance between the different
15contributions driving the faceting holds on a local scale so that, the
16same growing system may behave differently from one region to
17the other. This is not unusual if one considers directional
18deposition[31,32] or shielding effects[18,33] with material arriving
19only on a certain portion of a sample and possibly diffusing on
20other regions. To illustrate this situation, inFigure 8e the evolution
21of an initially circular profile with material supply only from the
22right-hand side is considered. As expected the growth proceeds
23asymmetrically, with material accumulation on this latter side.
24Kinetic faceting is obtained there as the deposited material is
25redistributed according to the different incorporation times. On
26the opposite side, a small amount of material diffuses by surface
27diffusion under the influence of the thermodynamic driving force
28thus favoringa roundedprofileof larger radius, due to the isotropic
29γ. Then, on the same particle a faceted growing region, controlled
30by the incorporation times τ, and a smooth circular one, driven by
31the energy reduction, coexist.

325. Applications to Realistic Structures

33As observed in the previous section, the kinetically faceted
34shapes exist only in connection with growth and do not
35necessarily correspond to the most stable morphologies. Post-
36growth, high-temperature processes, for example, annealing,
37could drive further changes in the crystal shape, still influenced
38by the incorporation kinetics (see Ref. [13]), but directed toward
39the ECS. Nonetheless, kinetic faceting is fully meaningful in
40experiments when growth is the only high temperature process
41at which surface diffusion is active. The model discussed here
42finds a direct application to several different experimental
43systems where out-of-equilibrium growth conditions return
44peculiar faceting different from both the ECS and the KCS. To
45validate this, here we show a couple of examples where taking
46into account the incorporation dynamics is essential to capture
47the details of the growth mechanism.
48In Figure 9, we simulate the growth of a faceted crystal
49starting from a simple parallelepiped, laterally bounded by {110}
50planes and terminated by a (001) top facet. Incorporation times
51are assumed to be maximum for these facets and for {111}
52planes, with τ001 one order of magnitude smaller. A vertical
53deposition flux oriented along the [00-1] direction is considered.
54The growth sequence for a small base structure is reported in
55panel (a). Since the early stages, {111} facets nucleate and tend to
56grow larger at the expenses of the (001) top, up to form a

Figure 8. Combination of anisotropic incorporation time and material
supply. a) Plot of the F n̂Þð and τ n̂Þð anisotropy functions used. b) Both
anisotropies lead to the {11} square (M0 ¼ 0:001). c) The flux anisotropy
is rotated by 45� (dotted line in panel (a)) and imposes {10} faceting
(M0 ¼ 0:001). d) The mobility is increased (M0 ¼ 0:007), while keeping
the opposite anisotropies for flux and kinetics as in (c). e) The flux F0 ¼ 5
is directed on one side of the crystal, following the arrow.
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1 pyramidal tip. This process results from a continuum transfer of
2 material from the slow incorporating {111} facets to the faster
3 (001), resulting in a significant enhancement of its growth rate.
4 The process is not linear in time as it would be expected by
5 simply assigning different facet velocities as in a KCS
6 construction, but proceeds exponentially. Indeed, the larger
7 the {111} grows the more material is driven by diffusion to the
8 (001), whose area is continuously shrinking at a faster pace. In
9 panel (b), an intermediate profile obtained for the same
10 conditions but considering a larger base width is shown and
11 compared with a case obtained for lower mobility (panel c).
12 Reasonably, the larger dimensions lead to a delay of the closure
13 of the {111} pyramid, requiring a greater amount of material to
14 diffuse onto the (001) top. Furthermore, the selected size is large
15 enough to exceed the diffusion length and hence, the material
16 moved from the {111} facets to the borders of the (001) top
17 cannot spread uniformly on it, as in the case of panel (a), thus
18 producing overgrowth mounds along the (001) perimeter. These
19 are better noticeable in the plot in panel (d) where the profile is
20 traced in cross-section along the [110] direction. Evidently, the
21 lateral extension of the mounds directly depends on the actual
22 diffusion length as the peaks are much broader and shallower in
23 the high mobility case. These simulations closely compare with
24 the experiments of micro-crystals growth on pillar-patterned
25 substrates reported in Refs. [18,34–36]. Indeed, therein the growth
26 conditions were pushed toward a kinetic regime by exploiting a
27 Low-Energy Plasma-Enhanced Chemical Vapour Deposition,
28 allowing for the deposition of several mm of Ge by high growth
29 rates (4–7.5 nm s� 1) at relatively low temperatures (400–600 �C).
30 Our results offer a deeper insight on the possible mechanisms
31 responsible for the observed temperature dependence of the
32 crystal morphology, changing from nearly planar at low
33 temperature to pyramidal at higher temperature. Indeed,
34 according to the simulations, the pyramidal shape is achieved

1only if diffusion is active, which is the case of high enough
2temperature. The consistency of the simulation results with the
3experimental evidences is also corroborated by the overgrowth
4features recognized on larger structures. A more quantitative
5analysis, aimed at the determination of the characteristic facet
6incorporation times, is left to a future, more focused work.
7In a recent study,[37] the growth by Selective-Area Epitaxy ofGaAs
8nanomembranes[38] has been demonstrated to proceed in a kinetic
9regime dominated by the large difference in the adatom
10incorporation times of the exposed facets. In particular, by
11performing a Molecular Beam Epitaxy growth (with 1 Å s� 1

12deposition rate for 60min), mm-long trapezoidal fins bounded by
13{110} facets and a (111)B at the topwere observed to evolve toward a
14triangular shape, with a progressive shrinkage of the (111)B facet.
15Thismechanismwasexplainedby considering that incorporationof
16the top facet is faster than on {110} ones and a difference of anorder
17of magnitude was estimated between the respective incorporation
18times: τ110 � 10τ111. In Figure 10we show a comparison of growth
19simulations of a fin-like structure by taking into account both
20orientation dependent incorporation times and anisotropic surface
21energy(neglectedinRef. [37]). Inparticular, thesequence inpanel (a)
22is obtained by considering just anisotropic surface energy γ n̂Þð ,
23compatible with literature values from Ref. [39]. This is compared
24with the sequence in panel (b), achieved when admitting also the
25expected differences in the incorporation times. Evidently, in the
26former case the criterion of free-energy minimization causes a
27strong redistribution of material into a compact shape, faceted
28according to the relative stability of the considered facets. Indeed, at
29the lateststagesof theevolution, thegrowingcrystalcloselyresemble
30theECS, except for thebottomportionwithin the slit that isdistorted
31by the non-contact boundary condition imposed at the sides of the
32slit to mimic the effect of the oxide mask. Vice versa, in the case of
33panel (b), the thermodynamic driving forces are canceled by the
34strong difference in incorporation times. Thus, the morphology

Figure 9. a) Time evolution of a pillar top with competing incorporation times for the top (001) and the lateral {111} and {110}. b) and c) Comparison of
the growth on a four-times larger base for two different mobility coefficients ((c) 10 times smaller). d) Comparison of the central (110) cross-sectional
profiles, shifted arbitrarily in the vertical direction. The flux F0 ¼ 0:5 is vertical, τ110¼ τ111¼ 10, τ001 ¼ 1. The scale bar is 1.5 length units.
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1 evolves in a kinetic regime where {110} facets extend from the slit
2 perimeter returning a shape evolution very similar to the
3 experimental one. It is worth noting how in this example both γ
4 and τ anisotropies are considered as expected for the real system
5 thus showing how the latter plays a major role at the experimental
6 conditions, still maintaining the energy differences between the
7 facets. If, after growth, the fins were annealed at high temperature,
8 material would possibly evolve to restore themost convenient facets
9 more similar to the case of panel (a).

10 6. Conclusions

11 The role of orientation-dependent incorporation kinetics in
12 driving the faceting of a crystal has been in-depth analyzed by
13 means of growth simulations. It has been shown that large
14 differences in the incorporation times can play a major role in
15 the faceting of a crystal during growth, and compete with the
16 anisotropies in surface energy andmaterial supply. The interplay
17 of all of these factors has been discussed in details and it is
18 shown to allow for crystal shapes beyond the simplistic
19 description of ECS and KCS. This makes the approach well
20 suitable to tackle realistic cases.
21 It must be however noted that, as for the growth rates in the
22 KCS, also the incorporation times τ are not simple to be
23 estimated a priori as this would require an extensive and
24 dedicated analysis of the atomistic processes behind adsorption
25 and redistribution of atoms within the surface of a crystal under
26 out-of-equilibrium growth conditions. Nonetheless, at variance
27 with the growth velocities, incorporation times are expected to be
28 independent of the growth parameters and hence to be real
29 properties of the material.
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