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The present study deals with the characterization of bone quality in a sheep

model of postmenopausal osteoporosis. Sheep were sham operated (n ¼ 7),

ovariectomized (n ¼ 6), ovariectomized and treated with deficient diet

(n ¼ 8) or ovariectomized, treated with deficient diet and glucocorticoid

injections (n ¼ 7). The focus of the study is on the microscopic properties

at tissue level. Microscopic mechanical properties of osteoporotic bone

were evaluated by a combination of biomechanical testing and mathematical

modelling. Sample stiffness and strength were determined by compression

tests and finite-element analysis of stress states was conducted. From this,

an averaged microscopic Young’s modulus at tissue level was determined.

Trabecular structure as well as mineral and collagen distribution in samples

of sheep vertebrae were analysed by micro-computed tomography and time-

of-flight secondary ion mass spectrometry. In the osteoporotic sheep model,

a disturbed fibril structure in the triple treated group was observed, but bone

loss only occurred in form of reduced trabecular number and thickness and

cortical decline, while quality of the residual bone was preserved. The pre-

served bone tissue properties in the osteoporotic sheep model allowed for

an estimation of bone strength which behaves similar to the human case.
1. Introduction
Osteoporosis is a widespread disease characterized by loss of bone mass and a

reduction in trabecular number and thickness that leads to a significantly

increased fracture risk [1]. For an optimized bone defect treatment with

next-generation implant materials, a detailed knowledge of the mechanical

and physiological properties of the osteoporotic bone and its composition

is essential.

Several in vivo and ex vivo techniques are applied to describe bone quality from

the macroscopic to the microscopic scale [2]. Throughout the manuscript, a length

scale pertaining to bone samples or whole bones is referred to as macroscopic,

while a length scale below the size of a trabecula is referred to as microscopic.

Thus, macroscopic properties and measurements on trabecular bone are depen-

dent on both the effects of trabecular structure (e.g. relative bone volume) and
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tissue properties. By contrast, microscopic properties and

measurements are dependent on tissue properties only. In

order to be consistent, in the following the apparent bone

strength is denoted as macroscopic bone strength.

On the macroscopic scale, the diagnosis of osteoporosis is

mainly made by dual-energy X-ray absorptiometry (DEXA)

measurements [3]. The obtained bone mineral density

(BMD) and the T- and Z-score values derived from BMD are

the prevailing parameters in clinical routine [4]. DEXA

measurements do not reveal any insights into the trabecular

structure or the microstructure of bone. Quantitative

computed tomography (QCT) offers three-dimensional infor-

mation at the macroscopic level and the local volumetric

BMD, but at the expense of higher X-ray dose. The continuous

change of the mechanical bone properties under osteoporotic

conditions on the macroscopic scale is mostly measured by

bending and compression tests [1].

Micro-computed tomography (m-CT) with a resolution of

10 mm or better provides insights into the microscopic three-

dimensional bone structure [2,5]. To assess bone tissue quality

on the microscopic scale, time-of-flight secondary ion mass

spectrometry (ToF-SIMS) is a suitable technique [6,7]. Owing

to the high spatial resolution of up to 100 nm and the simul-

taneous detection of calcium and collagen distributions [8],

ToF-SIMS complements the m-CT measurements. In a

comprehensive study on rodents with induced osteoporosis,

ToF-SIMS enabled the determination of the osteoporotic stage

in combination with a semi-quantitative evaluation of the

mineral content. Within this study, pathological changes

and significant reduction in the mineral content under

osteoporotic conditions and a strong heterogeneity of

mineralization were observed [9].

As bone remodelling is activated by mechanical load, the

elastic properties also have to be considered [10,11]. The micro-

scopic mechanical properties are accessible by a number of

direct measurement methods like bending and tensile tests

[12,13] or nano-indentation [14–16]. In addition, ultrasonic

methods are used [13,17]. The indirect estimation of an

averaged microscopic Young’s modulus by a combination of

compression tests and finite-element analysis (FEA) was

demonstrated by Ladd et al. [18] for human bone. Using a simi-

lar procedure, recently, remarkable osteoporosis-induced

decay of the microscopic Young’s modulus was found in an

osteoporotic rat model [19].

Knowledge of mechanical and chemical bone properties

is important in human patients as well as for animal

models resembling human osteoporosis. Basic research on

osteoporosis is usually done on rodent models, but large

animal models are needed to reach experimental and mech-

anical conditions close to the human situation [20]. Besides

undemanding keeping and handling [21], sheep turned out

to be the most applicable animals as the bone forming

units, the harversian system and remodelling process pat-

terns are similar to those in humans [22]. It is the non-

rodent large animal model recommended by the Food and

Drug Administration (FDA) to study postmenopausal

osteoporosis [23]. Furthermore, sheep models have been

established to study osteoporosis and osteoporotic fractures

after induction via ovariectomy combined with calcium and

vitamin D2/3 deficient diet as well as steroid administration

[24–26]. The sheep model described in this study was

recently used to assess the role of osteocytes in bone remodel-

ling in loaded and unloaded bone regions [27]. While
osteoporosis-induced changes of macroscopic properties in

the sheep model are well known [24,25,28], the development

of microscopic bone properties during osteoporosis is

scarcely documented.

Therefore, the aim of the present study is to evaluate

the evolution of bone properties during osteoporosis in a

sheep model at the microscopic tissue level rather than the

macroscopic scale. Herein, we present a combination of

biomechanical testing, m-CT and FEA, to evaluate the elastic

properties of trabecular bone tissue in a sheep model of

postmenopausal osteoporosis. In addition, for the first time,

ToF-SIMS is applied to gain spatially resolved information

about the inorganic and organic composition of the sheep bone.

As guidance, table 1 provides descriptions of terms and

variables used throughout the following sections.
2. Material and methods
2.1. Osteoporotic sheep model
The study was conducted in strict accordance with the European

Union legislation for the protection of animals used for scientific

purposes and approved by the district’s Animal Ethics Commit-

tee ‘government presidium of Darmstadt, Germany; permit no.

Gen. Nr. F31/36’.

2.2. Experimental design
Twenty-eight sheep were divided into four groups with a mean

age of 5.5 years: (i) non-operated sham group (control, n ¼ 7),

(ii) bilaterally ovariectomized group (O, n ¼ 6), (iii) bilaterally

ovariectomized and treated with special diet deficient of calcium

and vitamin D group (OD, n ¼ 8), and (iv) triple treatment

group, which received glucocorticoid treatment (ODS, n ¼ 7) in

addition to the treatment received in OD. A detailed description

of the treatment can be found elsewhere [27]. After eight months,

animals were euthanized and lumbar vertebral samples were

explanted. A detailed description of the experimental design

can be found in the electronic supplementary material.

2.3. Dual-energy X-ray absorptiometry measurements
An in vivo DEXA scan of the lumbar vertebrae in the anterior–

posterior direction was obtained directly prior to euthanasia

using the scanner and software from Lunar Prodigy version

13.40; GE Healthcare, Darmstadt, Germany. Data and further

details were published earlier in [32] and can be found in the

electronic supplementary material.

2.4. Micro-computed tomography protocol
Cylindrical samples from the centre of the vertebra body (L1,

length h ¼ 10 mm, diameter d ¼ 8 mm) were stored in phosphate

buffer and imaged using the m-CT system SkyScan 1173 (Bruker

Micro-CT, Kontich, Belgium). Post-processing was done follow-

ing the guidelines for assessment of bone microstructure [5].

Scanning and reconstruction parameters can be found in the

electronic supplementary material.

Treatment-induced changes in bone morphology were quan-

tified by relative bone volume, trabecular separation, trabecular

thickness, trabecular number, surface to volume ratio, and struc-

ture model index (cf. table 1). Visualization of m-CT data was

done using Paraview software [33]. After m-CT imaging, samples

were stored at 2208C.

2.5. Compression tests
Subsequent to m-CT imaging, uniaxial compression tests were

conducted on the samples. They were defrosted for 1 h and



Table 1. Definition and description of terms and variables used in the article.

term, variable description abbreviation unit

stiffness constant measure of the rigidity of a body. k¼ dF/ds (Hooke’s Law, force F, deformation s) [29] k N m21

Young’s modulus measure of the ability of an isotropic material to withstand changes in length under

lengthwise tension or compression [29]

E Pa

Poisson’s ratio ratio between transversal and axial strain [29] n dimensionless

ultimate stress stress at which a material or structure breaks down sultim Pa

structure length geometrical coupling between averaged Young’s modulus E and stiffness k. S¼ k/E [19] S m

Pistoia criterion fracture is assumed to occur if 2% of the bone tissue is strained beyond a critical

limit of 7000 microstrain [30]

relative bone volume ratio between bone tissue volume and total volume of the region of interest [5] BV/TV %

bone surface to bone

volume ratio

ratio of bone tissue surface to its volume [5] BS/BV 1 mm21

trabecular thickness mean thickness of trabeculae [5] Tb.Th mm

trabecular separation mean distance between trabeculae [5] Tb.Sp mm

trabecular number average number of trabeculae per unit length [5] Tb.N 1 mm21

structure model index an indicator of the structure of trabeculae; SMI will be 0 for parallel plates and 3

for cylindrical rods [5]

SMI dimensionless

Pearson correlation

coefficient

measure for linear correlation between two variables [31] R dimensionless
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then processed in wet state at 258C. Samples were placed

between the plate and the punch of the testing machine and com-

pressed in longitudinal direction until failure (materials testing

machine Z10, Zwick, Ulm, Germany).

A typical force–displacement curve obtained from the com-

pression test is shown in figure 1 (red). The curves for

compression of trabecular bone samples can be divided into

three parts: in the first nonlinear part (I), loose tissue is com-

pressed and remaining non-alignment between sample surface

and compression stamps is eliminated. Then a linear part (II)

with mainly elastic deformation follows. In the last part (III), non-

linear behaviour is observed, where irreversible destruction of

tissue starts. In the linear part, the bone sample exploits linear

elastic behaviour. The slope k ¼ dF/ds remains approximately

constant and represents the stiffness.

The macroscopic ultimate strength of the sample is approxi-

mated by

sultim ¼
4Fmax

pd2
: ð2:1Þ

The macroscopic Young’s modulus of the cylindrical sample

with height h and diameter d is

Emacro ¼ k
4h
pd2

: ð2:2Þ

For more details and limits of this test procedure, see the

electronic supplementary material.
2.6. Time-of-flight secondary ion mass spectrometry
In ToF-SIMS, the sample surface is bombarded with a Bi3

þ-

primary ion beam, leading to the emission of secondary ions

which are analysed by a ToF analyser. By scanning the primary

ion beam over the sample surface, the distribution of the chemical

compounds is obtained. Measurements were performed with a

TOF-SIMS 5–100 machine (ION-TOF Company, Germany)

equipped with a 25 kV Bi-cluster ion gun for surface analysis.

Measurements were recorded with spectrometry mode, which
implies high mass resolution (full width half maximum of about

8000 at m/z ¼ 29.003) and a lateral resolution of about 10 mm. For

data evaluation, the Surface Lab 6.5 software of ION-TOF Com-

pany was used. For a more detailed description of the method,

measurement parameters and details of the semi-quantitative

evaluation, see the electronic supplementary material.

2.7. Finite-element analysis
The effective microscopic Young’s modulus of trabecular

vertebrae tissue was determined by virtual compression tests on

the cylindrical samples. The actual compression experiment

was reconstructed in silico by linear elastic FEA based on the

m-CT of the bone sample (figure 2). By comparing the compu-

tational stiffness k with the experimental stiffness, an effective

microscopic Young’s modulus of the bone tissue can be

extracted. The FEA was done with parallel in-house software

[19,34,35] using the library PETSc [36].

Assuming linear elastic behaviour and fixed Poisson’s ratio,

the sample stiffness k is determined by bone morphology and

the microscopic Young’s modulus. These quantities can be com-

bined by defining the structure length S as the sample stiffness

normalized by the microscopic Young’s modulus Emic

S ¼ k
Emic

: ð2:3Þ

S is a measure for the influence of the bone structure on the stiff-

ness k. It can be obtained from equation (2.3) by calculating the

sample stiffness by FEA while setting the microscopic Young’s

modulus Emic to 1. For more details of the numerical procedure

and a discussion on the basic elasticity model of bone tissue,

see the electronic supplementary material.

2.8. Predictors for bone strength
Bone strength is defined as the bone’s resistance to mechanical

load and is closely related to fracture risk. The maximum toler-

ated force in a compression test of a cylindrical bone sample
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with radius r (cf. figure 1) normalized by its base area pr2 can be

considered as a measure for macroscopic bone strength. As the

base area of the samples is approximately constant, throughout

the paper, we use the term maximum tolerated force

synonymous to macroscopic bone strength.

Indicators for the bone strength, measured by the maximal

compressive force, were tested in the sheep model. Measured

bone sample stiffness, BMD obtained by in vivo DEXA, the

FEA-based Pistoia criterion [30] and the FEA-based structure

length were compared with respect to their predictive power

for bone strength.

The clinical gold standard for estimating bone quality is

DEXA, which yields the BMD (unit g/cm2). FEA-based

approaches using m-CTs have been established for human bone

[30,37]. Compared to DEXA, m-CT measurements require more

effort and cause more radiation exposure, but bone strength pre-

diction is more accurate [37]. In the presented work, two different

FEA-based indicators were tested: the Pistoia criterion [30] and

the structure length S (see the last paragraph). For quantification,

the Pearson correlation coefficient R between each indicator and

the measured maximum force for the samples was calculated.

For more details, see the electronic supplementary material.
2.9. Statistics
Statistical evaluation was done by software R [38], with the

Shapiro–Wilk normality test, Levene’s test for homogeneity of

variance, analysis of variance and multiple pairwise compari-

sons using the t-test. The significance codes are: ***p , 0.001;

**p , 0.01; *p , 0.05.
3. Results
3.1. Imaging and morphometry of trabecular structure
From the m-CT datasets, representative stacks of n ¼ 50 hori-

zontal cross-sections were cut out and visualized using a

volume rendering technique (cf. figure 3). The images indi-

cate nearly no bone loss in the O and OD groups (cf.

figure 3b,c) and a pronounced loss of bone material in the

ODS group, with most of the struts still existing (cf.

figure 3d ). For quantitative comparison of the different treat-

ment groups, morphometric indices were evaluated for the

complete volume of interest, consisting of voxels of isotropic

side length (cf. figure 4). The mean values and standard

deviation are listed in table 2.
Relative bone volume (BV/TV) shows a mild, but stat-

istically significant bone loss both in the O and OD groups

(cf. figure 4a). In the ODS group, BV/TV drops down to

50% of the control group value (cf. figure 4a). Consequently,

the surface to volume ratio of mineralized bone (BS/BV, cf.

figure 4b) shows the inverse behaviour with an increase of

108% in the ODS group. Trabecular thickness (Tb.Th)

exhibits a characteristic similar to bone volume with a

decrease in trabecular thickness by 50% in the ODS group

(cf. figure 4c).

Contrary to the loss of bone tissue in the ODS group, the

overall network topology is preserved in all treatment groups

(cf. figure 3). This is quantified by the absence of drastic

changes in trabecular separation (Tb.Sp), trabecular number

(Tb.N) and structure model index (SMI). In Tb.Sp, only a

small increase is observed in the O and OD groups (cf.

figure 4d ). Besides a small decrease for the O group, Tb.N

also shows no statistically significant change (cf. figure 4e).

SMI shows a tendency to higher values in the treated ani-

mals, which is statistically significant only in the case of the

O group (cf. figure 4f ).

In summary, pronounced bone loss in the ODS group

indicates an osteoporosis-like bone status, while changes in

the trabecular topology are mild.

3.2. Compression tests
Compression tests confirm the results of bone imaging and

bone morphometry. The mean of the maximum force until

structural failure in the control (O, OD, ODS) group was

determined as F¼ 1.1 (0.84, 0.99, 0.36) kN (cf. table 3 and

figure 5a). According to equation (2.1), the average macro-

scopic ultimate stress sultim follows as sultim ¼ 22 (17, 20,

7.2) MPa. The mean stiffness of the bone samples k in the con-

trol (O, OD, ODS) group was determined as k¼ 8.7 (6.7, 8.0,

2.9) N mm21 (cf. table 3 and figure 5b). According to equation

(2.2), the average macroscopic Young’s modulus Emacro fol-

lows as Emacro ¼ 1.7 (1.3, 1.6, 0.58) GPa. Strength values as

well as stiffness values in the O and OD groups do not

differ significantly from those of the control group. For the

triple treated ODS group, the mean stiffness value dropped

by 66%, while the bone strength dropped by 69%.
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Interestingly, the scattering of stiffness and strength data in

the ODS group is lower compared to the control group.

This indicates a strong influence of the threefold treatment

on bone metabolism, overriding the individual variability

of the animals to a certain extent.
3.3. Finite-element analysis
The microscopic Young’s modulus Emicro (cf. figure 6a and

table 4) is one parameter to characterize the quality of bone

tissue. No significant difference in Emicro among the four

groups was found. The lowest value of all animals was

even detected in the control group. Note the broad range of

values in the control (ODS) group with almost a factor of

2.6 (2.3) between the strongest and the weakest animal of

each group. Data scattering seems to be lowest in the O

group.

The structure length S (cf. figure 6b and table 4) describes

the hypothetical stiffness of the trabecular bone while setting

Young’s modulus to 1 and is an indicator for the preservation

of the trabecular structure in the treated groups. Compared to

the control group, slightly lower values of S can be seen in the

O and OD groups. This indicates mild loss of bone material.

In contrast with the O and OD groups, in the ODS group, the

mean value of the structure length is decreased by 67%.
3.4. Time-of-flight secondary ion mass spectrometry
Figure 7 exemplarily shows ToF-SIMS mass images of entire

sheep vertebrae, while figure 8 presents close-ups of the

regions chosen for the compression tests. The collagen

matrix is imaged by the C4H8Nþ signal that derives from

the amino acid proline, one of the main components of col-

lagen type I [9]. Assessing the whole vertebrae as shown in

figure 7, the collagen has a homogeneous distribution and

the Caþ images reveal a homogeneous mineralization for

both groups. However, trabecular number and thickness

seem to be slightly reduced in the case of the treated animal.

The detailed image of the biopsy region (cf. figure 8)

shows a deterioration of the trabecular network in the case

of the ODS vertebra. While the collagen signal is depicted

in blue, the calcium signal is given in green. The overlay of

both shows a slight inhomogeneous mineralization. The het-

erogeneity is even more pronounced at the single trabecular

level. Nevertheless, an ordered fibril superstructure can be

assumed for the control group, with increased calcium con-

tent in the centre of the trabecula, while a more disordered

fibril superstructure and mineralization can be found in the

case of the ODS group. Integral evaluation of the local cal-

cium and collagen content within the biopsy region

revealed a slight, but not statistically relevant decrease for

the ODS group (cf. figure 9 and table 5).
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Table 2. Morphometric indices. Mean+ s.d.

group BV/TV (%) BS/BV (1 mm21) Tb.Th (mm) Tb.Sp (mm) Tr.N (1 mm21) SMI

control 31.7+ 4.3 15.8+ 2.0 0.190+ 0.021 0.539+ 0.032 1.66+ 0.11 0.161+ 0.154

O 26.7+ 4.3 16.2+ 2.3 0.187+ 0.021 0.681+ 0.063 1.42+ 0.11 0.404+ 0.267

OD 26.8+ 3.1 17.3+ 1.6 0.171+ 0.017 0.602+ 0.070 1.58+ 0.21 0.218+ 0.249

ODS 15.7+ 3.4 32.8+ 8.0 0.095+ 0.025 0.585+ 0.045 1.67+ 0.13 0.300+ 0.076

Table 3. Results of compression tests. Maximum force F and stiffness k.
Mean+ s.d.

group F (N) k (N mm21)

control 1129+ 268 8673+ 2446

O 839+ 225 6651+ 1657

OD 991+ 133 7958+ 1743

ODS 355+ 124 2930+ 1324
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3.5. Bone strength predictors
The Pearson correlation coefficients R between macroscopic

bone strength and stiffness measurements, BMD measure-

ments, Pistoia’s criterion as well as structure length (the
latter two obtained by FEA of m-CT data) were calculated.

Experimentally determined values for both stiffness and

strength span almost one order of magnitude. Nevertheless,

there is a strong linear correlation (R ¼ 0.92) between the

measured sample stiffness and its strength over all groups

(cf. figure 10a). By contrast, BMD shows only a moderate

linear correlation to bone strength (R ¼ 0.65, figure 10b).

The Pearson correlation coefficient R between the maximum

force predicted by the FEA-based Pistoia criterion and bone

strength over all animal groups is R ¼ 0.87 (cf. figure 10c).

Nearly, the same correlation (R ¼ 0.86) over all groups was

found between structure length calculated by FEA and

bone strength (cf. figure 10d ). The overall correlation between

bone volume BV/TV and bone strength was measured to R ¼
0.83 (cf. figure 10e).
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Table 4. Results of FEA. Structure length S and microscopic Young’s
modulus E. Mean+ s.d.

group S (mm) E (GPa)

control 1179+ 234 7.5+ 2.3

O 801+ 213 8.4+ 0.8

OD 858+ 94 9.2+ 1.6

ODS 390+ 110 7.3+ 2.3
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4. Discussion
A detailed analysis of the macroscopic and microscopic elas-

tic properties of mineralized tissue is imperative for the

adaption of implant materials for osteoporotic bone. Several

groups have reported on successful induction of osteoporotic

conditions in a sheep model. By ovariectomy combined with

a diet and steroid medication, they observed a significant

reduction in overall bone mineral content and mineral

density within six months [27,28,39].

While other groups conducted biomechanical tests for

assessing the macroscopic properties of bone only

[27,28,39], the study presented herein used a combination of

macroscopic and microscopic analyses to distinguish the

pure bone loss caused by osteoporosis from tissue changes

induced by the disease. Averaged microscopic elastic proper-

ties as well as detailed information obtained by ToF-SIMS on

the calcium and collagen content and distribution were

evaluated in a sheep model of postmenopausal osteoporosis.

4.1. Bone properties in the ODS treatment group
m-CT imaging revealed a dense trabecular network in the

samples of the control group as well as in the O and OD
groups. Correspondingly, the mean of relative bone volume

(BV/TV), Tb.Sp as well as Tb.Th and BS/BV did not change

significantly between the control and the O and OD groups.

This is in accordance with previous reported observations

on osteoporotic sheep [27,28,40]. Due to the different hormo-

nal cycles of sheep and humans, oestrogen deficiency caused

by ovariectomy has less influence on female sheep. Shown by

the so-called ‘rebound’ effect, where the initial BMD is

reached again after six months, ovariectomy alone is not

decisive within eight months [41,42]. The additional treatment

with hormones is known to be more effective [43].

Consequently, BV/TV as well as Tb.Th decreased by about

50%, while BS/BV increased by 108%. ToF-SIMS images in

figure 8a,b also visualize an almost intact trabecular network

topology, but with reduced trabecular thickness and some

deterioration in the ODS sample. Overall mineral content

showed only a slight, insignificant tendency towards lower

values in the ODS group.

After eight months of steroid treatment, struts in the trabe-

cular network show thinning (cf. figures 3d and 4c). However,

Tb.Sp, Tb.N and SMI suggest an intact topology of the net-

work. This indicates, that even after eight months of steroid

treatment, the animals are still in an early phase of osteoporo-

sis. Nevertheless, BMD is usually used as criterion for the

diagnosis of osteoporosis in clinical routine, when a deviation

of more than 2.5 from the standard value (Z-score) is

observed. In the study of Khassawna et al. [27], a significant

decrease in the BMD value compared to the age-matched

controls of O as well as OD groups is obtained for the same

animal experiment. This is not in contradiction to the

presented changes in morphometric indices during treatment.

The influence of observed bone loss on mechanical stab-

ility of the vertebra was investigated by compression tests.

The average macroscopic ultimate stress sultim was estimated

to sultim ¼ 22 (17, 20, 7.2) MPa for the control (O, OD, ODS)
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group. For healthy animals, Mitton et al. [44] obtained a simi-

lar result of sultim ¼ 23 MPa. The average macroscopic Young’s

modulus Emacro was estimated as Emacro ¼ 1.7 (1.3, 1.6,

0.58) GPa for the control (O, OD, ODS) group. This is in

agreement with the values obtained for healthy animals by

Mitton et al. [44] (1.3 GPa) and Schorlemmer et al. [40]

(1.7 GPa), using similar compression tests on trabecular

bone samples from healthy sheep vertebrae.

As it is expected for porous or cellular structures in gen-

eral [45], stiffness and macroscopic strength data showed

very similar behaviour. In the OD group, a small but
statistically significant decrease can be observed. Accord-

ingly, the relative bone volume both in the OD and the O

groups shows a small decay. In the ODS group, the mean

of strength and stiffness strongly drop down by 69% respect-

ive 66%, while loss in bone volume is only 50%. This

indicates non-trivial changes in the morphology of the trabe-

cular structure. From m-CT data, the structure length was

computed by FEA. Similar to strength and stiffness, the struc-

ture length shows mild decay in the O and OD groups. For

the ODS animals, a drop of the mean value of the structure

length by 67% was found. This strong change matches the
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Table 5. Results of semi-quantitative evaluation of calcium and collagen
content given in arbitrary units. Mean+ s.d.

group Ca1 (au) C4H8N1 (au)

control (4.0+ 1.2) . 106 (5.6+ 1.0) . 106

ODS (3.3+ 0.5) . 106 (4.8+ 0.8) . 106
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decay in stiffness and strength but not in pure bone volume

and again emphasizes that the observed changes in bone

structure are not soley due to bone volume reduction.

In summary, the results of m-CT imaging and morpho-

metry as well as the compression tests indicate an almost

healthy bone status for the O and OD groups. By contrast,

additional administration of steroids in the ODS group

leads to significant changes towards an osteoporotic bone

status in the reported parameters. The observed changes on

the macroscopic scale correspond qualitatively to the obser-

vations in the osteoporotic rat model, with the only

exception being the structure length [9,19,46,47].
4.2. Preservation of microscopic bone properties
The microscopic composition of the bone material from the

control and ODS groups was analysed. ToF-SIMS mass

images depict the organic matrix as well as the distribution

of Ca to assess the mineralization state. While the trabecular

network of the biopsy region gives the impression of a homo-

geneous mineralization in figure 8a,b, at the single trabecular

level, the fibril structure is visible and the mineralization

appears to be more heterogeneous in the case of the ODS

group. The control group reveals increased calcium content

in the centre of the trabecula and a less mineralized edge

region, which might be the collagenous zone of new bone for-

mation. A tightly controlled mineralization along the

collagen fibrils can be seen in the overlay. By contrast, a

more disturbed fibril superstructure and mineralization can

be recognized for the ODS group. A disorder of collagen

fibrils in osteoporotic bone has already been reported in

former studies for ovariectomized rats and sheep or osteo-

porotic humans [28,48–51]. Nevertheless, semi-quantitative

evaluation of the integral calcium and collagen content of

the sheep trabeculae showed only a non-significant difference

between the healthy-control and the osteoporotic-ODS

groups. This might reveal an early stage of osteoporosis

which is in accordance with studies of Brennan et al. [49,52]
who stated an increased bone turn over after 12 months

and a clear osteoporotic bone status only after 31 months,

however, only related to ovariectomy and diet-induced

changes. As our study includes steroid medication, it is

reliable to assume an early stage of osteoporosis after eight

months as reported elsewhere [28,53,54], but with minor

changes in the microstructure. FEA-based determination of

the microscopic Young’s modulus could confirm these find-

ings. Despite the observed dramatic drop of strength and

stiffness in the ODS group, no significant change in the

microscopic Young’s modulus was found among all groups.

In contrast with the sheep model, the osteoporotic rat

model presented by Govindarajan et al. [46] showed a signifi-

cant inhomogeneous calcium distribution at the trabecular

level: large parts of the bone structure were basically com-

posed of collagen [9]. Correspondingly, FEA revealed a

strong decay in the microscopic Young’s modulus by a

factor of three [19]. In addition to the macroscopic bone

loss, also the remaining material showed severe decay in

the treated rats, making it rather a model for osteomalacia

than osteoporosis.

In summary, in the sheep model, apart from the dis-

turbed fibril structure, no significant changes in the

microscopic properties of the bone material were detected

in the ODS group. The disordering of the fibrils has no sig-

nificant influence on the calcium and collagen content, and

no influence on the microscopic Young’s modulus was

observed. According to equation (2.3), this means, changes

in stiffness and strength are predominantly caused by

changes in the trabecular morphology, quantified by the

structure length. From the observed changes in macroscopic

stiffness and strength, it becomes clear that these changes in

morphology cannot be exclusively be explained by reduced

bone volume BV/TV or reduced trabecular thickness. Hom-

minga et al. [55] found only negligible changes in the mean

microscopic elastic properties of bone tissue from human

patients suffering from typical osteoporotic fractures.

Changes in macroscopic mechanical bone properties could

be attributed dominantly to structural changes.
4.3. Bone strength estimation in the control and
treatment groups

Different predictors for bone strength were tested. The stiff-

ness–strength correlation is very strong (R ¼ 0.92, cf.

figure 10a), but of extremely limited practical usability. The

clinical gold standard DEXA (BMD) is easily applicable to
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living animals, but BMD shows only a moderate correlation

with strength (R ¼ 0.65, cf. figure 10b). BMD is mainly influ-

enced by the density of bone mineral at the region of interest

and therefore closely related to the bone volume BV/TV,

respectively, the Tb.Th obtained from m-CT. Interestingly,

the correlation between bone volume BV/TV and macro-

scopic bone strength is much higher (R ¼ 0.83, cf.

figure 10e). One of the reasons is, probably, that the BMD

measurement procedure integrates over several lumbar ver-

tebrae, whereas the samples are all explanted from vertebra

body L1. Further, DEXA measurements cannot distinguish

between cortical and trabecular bone. The anterior–posterior

projection might emphasize this effect, as the radiation has to

pass the posterior part of the vertebra, including arch and

process. Our findings are in accordance with literature data

for long bones [56], which are also composed of trabecular

and cortical bone, but in a different ratio than vertebrae.

The two predictors based on the combination of m-CT and

FEA showed a correlation to the macroscopic bone strength

almost as strong as the stiffness-strength relation (R ¼ 0.87

for the Pistoia criterion, R ¼ 0.86 for the structure length S).

FEA-based predictions of human bone strength with compar-

able precision can be found in the literature [30]. As FEA

models are based on the knowledge of the elastic bone prop-

erties, similar correlations do not exist in the case of the rat

model with osteoporosis-induced strong changes in bone

tissue properties [9].
The correlation between bone volume BV/TV and

macroscopic bone strength is almost as high as between

the FEA-based predictors and strength (R ¼ 0.83, cf.

figure 10e). This is especially interesting as the overall struc-

ture of the samples is not homogeneous due to the large

cavity caused by the vena ventralis (cf. figure 2). However,

the most interesting ODS group shows a much higher devi-

ation from the linear relation between BV/TV and strength

opposed to the relation between S and strength (cf.

figure 10e,d ). This again indicates that loss in strength

indeed is due to loss in BV/TV, but in addition influenced

by changes in the trabecular architecture.
4.4. Summary
Microscopic properties of bone samples from an osteoporotic

sheep model were tested by compression tests, m-CT imaging,

FEA and ToF-SIMS. Bone loss and changes in bone mor-

phology parameters revealed an osteoporotic bone status in

the ODS treatment group. At the microscopic level, a disturbed

fibril superstructure and a more heterogeneous mineralization

in the ODS group were observed. Unlike a previously studied

rat model, the microscopic Young’s modulus as well the min-

eral content in the remaining bone tissue did not change in

the osteoporotic sheep.

The preserved microscopic Young’s modulus enabled the

prediction of macroscopic bone strength in the sheep model
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for treated and untreated animals based on FEA of m-CT data

without the necessity for determining elastic properties of

treated animals. As in human bone, this prediction turned

out to be much more precise than the estimation based on

in vivo DEXA measurements. These microscopic findings

show a certain similarity of osteoporotic sheep to osteoporotic

human bone and makes our sheep model suitable to mimic

human osteoporotic properties [28].
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