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Abstract
The study of polycrystalline materials requires theoretical and computational
techniques enabling multiscale investigations. The amplitude expansion of the
phase-field crystal model allows for describing crystal lattice properties on diffusive
timescales by focusing on continuous fields varying on length scales larger than the
atomic spacing. Thus, it allows for the simulation of large systems still retaining
details of the crystal lattice. Fostered by the applications of this approach, we
present here an efficient numerical framework to solve its equations. In particular,
we consider a real space approach exploiting the finite element method. An opti-
mized preconditioner is developed in order to improve the convergence of the linear
solver. Moreover, a mesh adaptivity criterion based on the local rotation of the
polycrystal is used. This results in an unprecedented capability of simulating large,
three-dimensional systems including the dynamical description of the micro-
structures in polycrystalline materials together with their dislocation networks.

Keywords: polycrystalline growth, grain boundaries, finite element method,
coarse graining, dislocations, phase field modeling, phase field crystal

(Some figures may appear in colour only in the online journal)

Introduction

The study of polycrystalline materials requires modeling over various length scales. While the
nucleation and structure of defects has to be considered on an atomistic resolution, the size,
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shapes and arrangements of grains can be considered on mesoscopic length scales and
mechanical behavior can be tackled on a macroscopic scale. However, all these phenomena
strongly affect material properties, such as fracture or yield stress and thus require multiscale
investigations [1].

Coarse-grained, mesoscale approaches are therefore viable tools to provide bridging-
scale information of polycrystalline materials. Among the many different models reported in
the literature, the so-called phase-field crystal (PFC) model has been developed in order to
filter out atom vibrations and enabling the investigation of relatively long dynamics [2–4]. It
describes the crystal lattice by means of a continuous field that is the atomic probability
density, n, averaged over vibrational length scales. Although the original model has been
further extended, as e.g. in [5–7], and applied to describe several different properties and
mechanisms for crystals and quasicrystals, as e.g. in [8–13], it is restricted to relatively small
sizes as the continuous density has still to be resolved at the atomic length scale.

This limit has been overcome by the so-called amplitude expansion of the PFC model
(APFC), providing coarse graining in both time and space in a single framework [14–17].
This model focuses on the amplitudes of the atomic probability density which vary on a larger
length scale than the atomic spacing. In its standard formulation, it is restricted to relatively
small deformations [18] and approximate atomic rearrangements such as dislocation-core
structures. However, it encodes a detailed description of deformations matching continuum-
elasticity theories and allows for large simulations approaching the macroscopic length scales,
still retaining details of the atomic length scale [19]. The original model can be further
extended as it has been done, for instance, to account for binary systems [20] and to control
the energy of defects and interfaces [21]. Moreover, it has been recently used to study the
anisotropic shrinkage in 3D of small-angle spherical grain boundaries (GBs) regardless of the
crystal lattice symmetry [22]. In addition, the APFC framework has been proven suitable to
allow for the description of hydrodynamics [23], dislocation dynamics [24] and surface-
energy anisotropy [25] within the more general PFC framework.

In this work, we report on the development of an efficient numerical framework to
integrate the partial differential equations of the APFC model, enabling unprecedented
simulations of large polycrystalline systems in two- and three-dimensions. We provide an
optimized discretization of the APFC equations based on the one reported in [21]. Then, we
propose a new preconditioner allowing for faster convergence of iterative linear solvers. We
also illustrate a mesh-adaptivity strategy exploiting continuous fields, namely local crystal
rotations, which can be derived directly by the complex amplitudes to solve for in the APFC
model. Performance studies showing comparisons with a standard solver and assessment of
the numerical parameter entering the method are reported. Then, we use the developed
framework to simulate the large scale growth of a polycrystal in 2D and 3D accounting for
both the evolution of the microstructures and the defects forming between grains having
different orientations.

Model and implementation

The APFC model [14–17] is based on the representation of the atomic probability density, n,
as sum of plane waves
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with n0 the average density, here set to zero without loss of generality, ηj(r) the amplitude of
each plane wave, and kj the reciprocal lattice vector representing a specific crystal symmetry.
Complex amplitude functions :j h W  with Ω a rectangular (2D) or parallelepiped (3D)
domain are considered, allowing for describing distortions and rotations of the crystal lattice
with respect to a reference state described by the kj vectors. The model is based on the
definition of a free energy in terms of the ηjʼs in the approximation of slowly varying
amplitudes, i.e. varying over a length scale significantly larger than the lattice spacing,

F f r,
1

2
d , 2

j

J

j j
s

1

2* ò åh h h h+
W =

  ( ) ≔ ( ) ∣ ∣ ( )

with k, 2ij j jh h= D + 
 { } ≔ · , and f s a polynomial bulk free energy density. For the

sake of convenience, the energy is here normalized by a positive, non-zero parameter a0
which would multiply the second term at the right-hand side of (2) [21, 26]. The evolution
laws for amplitudes ηj are given by the L2-gradient flow of the energy F
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The bulk energy term f ,s *h h ( ) entering equation (2) can be written as
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with ai positive parameters, g ,s *h h ( ) a polynomial in h and *h encoding the lattice
symmetry, and A 2 j

J
j1

2h= å = ∣ ∣ . In this work we consider a triangular lattice in 2D and a face-
centered cubic (fcc) lattice in 3D. The former is obtained by setting J=3, gs entering
equation (4) as
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For the fcc lattice J=7, thus leading to a larger number of amplitude functions to be
considered. For the sake of brevity we refer to [21] for the corresponding gs polynomial and kj
vectors. Following [21, 22, 26], the parameters entering the energy are set to favor the growth
of the solid phase as a0=0.98, a1=0.01, a2=0.25, a3=0.5.
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Discretization and nonlinear solver

Throughout the following, we use the L ,2 W( ) scalar product u v u vr r r, d*òW( ) ≔ ( ) · ( ) ,

with u v, complex scalar or vector valued functions and u* the complex conjugate of u. By
introducing a set of auxiliary variables j j jz h≔ , we derive the weak form of the evolution

equations (3) using a natural splitting of the operator j
2 :
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This set of coupled second order equations can then be discretized using conforming finite-
dimensional approximations of the functions space H ,1 W( ). Therefore, let us now consider
a triangulation of the domain , hW , with h the minimal diameter of the grid elements, and the
finite-element space H ,h

1 Ì W( )
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the continuous space of complex valued local linear polynomials on elements S hÎ of the
triangulation. The space discretization method of (8) corresponds to find L T, 0, ,j

h
j
h

h
1 h z Î ([ ] )

such that

9
t

f

k

k

, , 2i , 0

, , 2i ,
,

, , , ,

j
h h

j
h h

j j
h h

j
h

h
j j

h h
j j

h h
h h

j

h h h
h

1 1 1

2 2 2

s

2 1 2
*

*


h h

z J h J h J

h
J k z J z J

d
dh

J J J

+   -  =

¶

¶
-   -  = " Î

 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

( )

( ) ( ) ( · )

(( ) ( · )) ( )

for j= 1,K,J in the time interval [0, T] provided that t 0j
h

j
h,0h h= =( ) is given. For better

readability, we drop the superscript h in the following.
Due to the bulk polynomial f s, equations (9) are a set of nonlinear equations. We

combine a simplified Newton method with the idea of an operator splitting method, in order to
separate the equation for each amplitude. This will allow us to efficiently solve the set of
equations also if the number of amplitudes is large, as in the case of fcc symmetry. We
introduce the Jacobian of F fj

s sd≔ / j
*dh , but only in direction ηj, i.e.

F
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Let {fi} be a basis of h . Moreover, let us introduce the mass matrix M ,i jf f≔ [( )], the
stiffness matrix FK T k J, , 2 , , d ,i j

k
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k
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the vector F Fh d ,k

k k k j
s sh h h h f-

  ( ) ≔ [( ( ) ( ) )]. Note, that these matrices are assembled with
the real valued basis functions fi.

For the time discretization we choose a backward Euler method. In the following let
0=t0<t1<K<tM=T be a discretization of the time interval [0, T] with
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Algorithm 1. Timestepping scheme and nonlinear solver for the APFC equation.

Let j J, 1, ,j j
V0 0 dim hh z Î = ¼( )( ) be given. > Initial solution

for m=1, K, M do > Loop over all timesteps
Let j j

m0 1h h= -( ) and j J1, ,j j
m0 1z z= = ¼- ( )( ) . > Initial iteration for Newton method

for k=1,K,K do > Newton iteration
for j=1,K,J do > Loop over amplitudes
Find ,j

k V
j
k Vdim dimh h h zÎ Î( ) ( ) ( ) ( ), such that

M K T

K T M J M h

i

i
1

0
1 . 10

j

j
j

m

j k
j
k

j
k

m
j
m j k1 1 1h

z

h h hk
t t

-

- - + = +- - - 
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟( ) ( ) ( ) ( )( )

( )

( ) ( )

endfor
endfor
Update j

m
j
Kh h= ( ) and j J1, ,j

m
j
Kz z= = ¼( )( ) .

end for

The timestep iteration with an inner Picard iterative process for the linearized Fj
s can be

found in algorithm 1. The discretization is implemented in the finite-element framework
AMDiS [27, 28].

Solving the linear system

The skew symmetric linear system (10) needs to be solved in each timestep and in each
Newton iteration. For large-scale numerical setups in 3D, the widely used direct spare LU
factorizations are out of applicability due to large memory requirements. Therefore, we
concentrate on preconditioned iterative methods, belonging in particular to the Krylov sub-
space, to solve (10). Two strategies will be compared: domain decomposition with local
sparse LU factorization also known as block Jacobi (bjacobi) preconditioner [29] and a
dedicated preconditioner based on the schur-complement method (apfc), as detailed in the
following.

For the construction of the schur-complement preconditioner, we follow the lines of
[30, 31], and first simplify the notation by neglecting the amplitude index j. For each
amplitude a structurally similar system has to be solved, so we can construct one precondi-
tioner that can be applied to all amplitudes, with adapted coefficients. Also, we drop the
timestep index m and Newton iterate index (k) and just write τ≡τm. In spite of the operator

j we introduce G K Tij j- +≔ and write the linear system as
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with schur-complement S M J GM G1 1k= + +
t

- .
While M and K are real matrices, G, J, and h may be complex valued. Following the

ideas of [30, 31] to approximate the schur-complement matrix S in a way that allows for a
simple factorization, we propose the preconditioner:
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with schur-complement S M K M M KP
1 1 1k k+ +
t t

-( ) ( )≔ . Since the highest order

term in GM−1G corresponds to KM−1K, the matrix SP is expected to be a good
approximation of S.

The application of P to a vector b , V
1 2

2 dim h b b= Î( ) · ( ), i.e. x P b2
1= - , with

x ,1 2
c c= ( ) , can be performed in four steps:

1. solve M 1 1b b¢ =
2. solve M K G1

2 2 1b b bk k+ ¢ = - ¢
t( )

3. solve M K M1
2 2c bk+ = ¢

t( )
4. 1 1

1
2

1
2c b b c= ¢ - ¢ -

k t( ).
Thus, only one mass-matrix and two diffusion-matrix systems need to be solved, plus two
matrix-vector products need to be performed in the application of the preconditioner. Since
efficient (iterative) linear solvers exist to approximate the solution of M b1- and

M K b1 1
k+

t

-( ) , the preconditioner is cheap to apply.
In order to analyze the quality of the preconditioner P, we look at the eigenvalue

spectrum of the right-preconditioned linear system AP−1. Instead of evaluating the eigen-
values directly, we consider the symbols of the differential operators and the resulting
spectrum for a simplified system. Therefore, let Ω be a periodic one-dimensional domain of
length 2π. We set the nonlinear term to J=0, and consider only lattice vectors
k 1, 1Î - +{ }. Let  denote the non-unitary Fourier transform in angular frequency q, i.e.

q r re d ,q ri òh h h=
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with inverse transform 1- and the linear operators A and P expressed as Ax x1 = - ( ) and
Px x1 = - ( ), respectively, with symbols  and  . In terms of the frequency q, these
symbols can be written as
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For , 11  k =-≔ , and τ=1, we obtain the spectrum
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where the sign of the second term in the nominator depends on the choice of the k-vector,
see figure 1 for a visualization. The eigenfunction λ approaches the value 1 for zero and
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¥ frequencies and has a minimum q qmin 0.035l Î »{ ( )∣ } and maximum
q qmax 2.70l Î »{ ( )∣ } . The operator symbol  forms a normal matrix for k 1j =∣ ∣

and the preconditioned operator spectrum is in the positive and real interval [0.035, 2.7],
leading to an asymptotic convergence factor (see [29])

1

1
0.796,max min

max min

r
l l

l l

-

+
=≔

and thus rapid convergence of an iterative Krylov subspace method, like the flexible
generalized minimal residual method [32] (known as FGMRES). See [33] for a similar
analysis on a preconditioner for the discretized PFC equation.

Note, if the operator j contains higher order derivatives, a similar procedure for the
construction of the preconditioner can be performed that may lead to a slightly different
sequence of mass and diffusion-like systems but follows the same structure. A construction of
a preconditioner for a sixth order PFC, an eighth order PFC, and a Lifschitz–Petrich type
energy is discussed in [34], eventually leading to a sequence of diffusion equations to solve in
the application of the preconditioner. The state potential f s may be extended in different
directions and we expect the same procedure to work as above, provided that f s contains no
derivative terms and the problem is well defined.

Mesh adaptivity

The variables to solve for within the APFC model, namely ηjʼs, are constant for relaxed
crystals, oscillate with different periodicity according to the local distortion of the crystal with
respect to the reference one, and exhibit significant variation at defects and solid-liquid
interfaces. This allows for exploiting mesh adaptivity in order to optimize the numerical
approach [35, 36]. We set a local grid refinement in order to resolve the oscillation of
amplitudes within grains and ensuring a proper resolution at defects and interfaces.

Amplitude functions describing a rotated crystal of an angle θ can be computed as

e , 13j j
k ri jh f= d q ( )( )·

with k k R k R,j j jd q q q= -( ) · ( ) ( ) the counterclockwise rotation matrix and fj the real
amplitudes describing a relaxed, unrotated crystal. Therefore, the wavelength of ηjʼs in the
presence of a certain rotation θ is k2j jl q p d q=( ) ∣ ( )∣ and the spatial discretization is set as a

Figure 1. Visualization of the operator spectrum for k 1, 1Î - +{ }.
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fraction of the smallest λj(θ) i.e. h= nminj jl q(∣ ( )∣) . We determined that a proper
discretization is achieved with n�10. In order to practically use this idea we then need to
evaluate the local rotation field during the evolution. Notice that equation (13) cannot be just
inverted due to its functional form. In order to compute the local rotation we then use the
approach described in [19] where the rotational tensorw is determined by considering the curl
of the local displacement with respect to the relaxed crystal. In practice, its components ωij

representing the rotation in the xi–xj-plane, are given by

u

x

u

x

1

2
, 14ij

i

j

j

i
w =

¶
¶

-
¶

¶

⎡
⎣⎢

⎤
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with ui the result of inverting the system of equations

k u arctan
Im
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. 15j

j

j

h

h
=

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥·

( )
( )

( )

Explicit expressions for ui, both in 2D and 3D can be found in [19]. In 2D, equation (14)
delivers just a scalar field ωij≡ω. In 3D, w has three independent components, ωd with
d=1, 2, 3, and the largest rotation component is chosen in order to ensure the proper
resolution for the fastest oscillation in the system. Within grains the discretization, hamp, then
reads

h
n

1
min max . 16

j
j

d
damp l w= ⎜ ⎟⎛

⎝
⎞
⎠[ ( )] ( )

The evaluation of rotations considered here is well posed in the solid phase and also at defects
[19]. However, it is not well posed for the liquid, disordered phase as ηjʼs vanish. Therefore,
in order to properly discretize interface regions we define an additional refinement for the
interfaces controlled by hint where A∣ ∣ is significantly larger than a relatively small threshold
ò as done in [21]. As a result, hint is ensured also at defects and we set it as the smallest
resolution imposed in the system. In addition, a large discretization bound hmax is defined for
region where A∼0 or where the local rotation vanishes. Summarizing these ideas, the local
discretization, h, is set as

h
h A

h h h A A

h

, if
min max , , , if 0 and

, elsewhere.

17
int

amp int max

max





=


>  <

⎧
⎨⎪
⎩⎪

∣ ∣
( ( ) ) ∣ ∣ ( )

Although not addressed here, this criterion can be extended in order to account for amplitude
oscillations due to strain fields, exploiting continuous strain-field components, as derived in
[19], instead of w.

The model and the mesh discretization are illustrated in figure 2 where a simulation
reproducing the growth of 20 crystal seeds in 2D with θ ä (−15°, 15°) is illustrated. A square
simulation domain with a side length of 200π is considered (more details are reported in the
following section). The initial rotation of the grain is set by initializing the amplitudes by
means of equation (13). A, Re(η1) and ω at different stages during the evolution over time are
shown superposed to the mesh used for the simulation. The refinement of the mesh where A
changes can be recognized at the solid-liquid interface and at defects, see in particular
figure 2(a). The variables to solve for are the amplitudes ηj as illustrated in figure 2(b) by
Re(η1). Notice that the correct resolution of these oscillating functions is ensured by the
discretization (17), exploiting the local rotations shown in figure 2(c).
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The mesh adaptivity criterion illustrated in figure 2 leads to larger refined regions and, in
principle, to larger computational costs than the one reported in [35] where an efficient mesh
refinement strategy exploiting a polar representation of amplitudes has been proposed.
However, as discussed therein, a robust regularization scheme for phase equations and special
care to treat high-order derivatives were needed. This practically restricts the applicability of
that method and prevents its extension to 3D calculations. An improvement of this description
has been recently proposed in [36], exploiting spatially-dependent rotation of the kj vectors,
although it has been demonstrated only in 2D. The approach we use here allows for an
optimized spatial discretization by using the standard APFC model. As it will be illustrated in
the following it can be readily exploited to simulate different systems regardless of system
dimensionality.

Performance studies

For the numerical evaluation of the linear solvers and the mesh adaption strategy, we con-
centrate on two types of setups, a triangular symmetry in 2D (TRI) and a fcc symmetry in 3D.
The domain Ω is of size [0, s·10π]d where d is the space dimension and s a scaling factor.
The unit of length and time are dimensionless as they enter in the equations of the APFC
model reported above. For the setups (TRI, fcc 1, fcc 2, fcc 3), we have chosen s as (20, 7, 14,
28), respectively. To test the numerical framework we consider configurations already known
and discussed in literature. The 2D triangular setup is initialized with 20 randomly positioned
and oriented grains with orientation in the range (−15°, 15°), corresponding to the

Figure 2. Growth of 20 crystal seeds (in 2D) with 15 , 15q Î -  ( ) randomly
distributed and triangular lattice symmetry. The spatial discretization is represented by
means of the mesh while colors represent: (a) A, (b) Re(η1), (c) ω. (d) Magnification of
two regions showing the mesh on a smaller length scale at the solid-liquid interface
(top) and at a defect (bottom). In this simulation the discretization bounds are hint≈2.0
and hmax≈40.0.
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configuration for the growth of a polycrystal as shown in figure 2 (see, e.g. [18, 19, 35]). The
3D, fcc configurations, are initialized with one grain of size 30π, 60π, or 120π, for the setup
fcc 1, fcc 2, or fcc 3, respectively, rotated by 10° about the [111] direction with respect to a
surrounding, unrotated crystal (see [22]). The discretization bounds are hint≈2.0 and
hmax≈40.0 in 2D and hint≈3.0 and hmax≈60.0 in 3D.

In a first comparison, we evaluate the linear-solver performance for the preconditioner P
defined in equation (12) (apfc) and a block Jacobi preconditioner (bjacobi) applied to the
blocks resulting from an element-wise domain decomposition, with a local sparse direct
solver UMFPACK [37]. The domain decomposition is combined with a distributed memory
parallelization. In figure 3 the timings for solving the linear system per timestep are sum-
marized for TRI, fcc 1, and fcc 2 setup. Timings for the two preconditioners are evaluated by
averaging over 100 timesteps over all amplitudes. Depending on the size of the setup different
improvements of the apfc preconditioner compared to the bjacobi preconditioner can be
found, ranging from a factor 10 for small number of cores and thus large local partitions, to 2
for large number of cores and thus small local partitions. In 2D the improvement is nearly
constant over all subdomain sizes, but in 3D the local linear system size matters for the
bjacobi solver significantly. The three setups show a similar behavior: the time to solve
one linear system goes down with increasing number of processors, while it stagnates after
some threshold in the number of cores. This is due to the fact that the local domain sizes
become too small and additionally the load balancing gets more and more complicated.
Increasing the number of cores further would increase also the solver time. Then, commu-
nication cost imbalance of the local problems would dominate the solution procedure.

While the bjacobi preconditioner uses a direct solver on each local subdomain, that
results in large memory costs, the apfc preconditioner requires the solution of mass matrix
and diffusion-like equations, using an iterative solver optimized for the specific type of linear
system. For the mass matrix, we use three iterations of a diagonally preconditioned conjugate
gradient (CG) method. The diffusion system, on the other hand, is solved using either a
diagonally preconditioned CG method with 5 iterations (parameter= 1), or an algebraic
multigrid method (AMG, parameter= 2), based on the so-called Hypre BoomerAMG [38],
with one V-cycle and symmetric relaxation. In figure 4(a) the difference in the solver time per
timestep is plotted, depending on the timestep parameter τ that is part of the preconditioner
definition (12). Increasing the timestep size results in slower convergence of all the linear
solvers, but the effect is more pronounced with the apfc preconditioner. In the same figure
also the difference in the solver time for different solver parameters is shown. For this setup, a

Figure 3. Comparison of bjacobi and apfc preconditioner for various setups. The
large setup fcc 3 could not be solved using bjacobi, due to memory limitations and is
thus not shown here. The TRI setup is solved with a timestep size τ=2 and the fcc
setups with a timestep size τ=1.
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simple CG iteration outperforms the AMG subsolver. Concerning just the performance of the
linear solver the optimal timestep would be as large as possible, but the accuracy of the
scheme is just first order in τ so that a balance between accuracy and performance has to be
found for a concrete setup.

A third benchmark considers the parallel scalability of the apfc preconditioner.
Therefore, we run setup fcc 3 with an increasing number of subdomains, that is, an increasing
number of compute cores. These benchmarks are run on the JUWELS cluster of the Jülich
Supercomputing Centre on regular 2×24 core nodes. Since an allocation of a different
number of running processes per node results in different node performance, e.g. due to
parallel usage of memory pipelines, we have assigned a fixed number of cores per node for
each scaling benchmark. In figure 4(b) the relative speedup for an allocation of 24 and 48
cores per node is plotted with respect to the smallest possible number of cores, i.e. one node
with 24 or 48 cores, respectively. Using less cores per node leads to a slightly better speedup
that might even exceed the ideal scaling line. Although the parallel efficiency drops down if
the local problems get too small, in the intermediate range of up to 300 cores, we see very
good speedup and thus parallel efficiency of the apfc preconditioner.

Application: growth of polycrystals with dislocations

In this section we illustrate some applications of the numerical approach illustrated above. In
order to allow for estimates and comparisons in terms of number of atoms, e.g. to other
methods, simulations or real systems, the length scale is here reported in terms of the lattice
constant for the considered symmetries as set by the corresponding set of kj vectors. They
read atri and afcc for the triangular and fcc lattice symmetry, respectively. Figure 5 shows the

Figure 4. (a) Comparison of the solver performance per timestep of setup fcc 1 for
different timestep widths τ. While the block preconditioner (apfc) performs better if
the timestep is small, the bjacobi preconditioner seems more robust for large
timesteps. The configuration parameter= 1 indicates a CG solver for the diffusion sub-
system and parameter= 2 an AMG subsolver. (b) Strong parallel scaling for the fcc 3
setup. Computations are run on compute nodes with 2×24 cores each. Those nodes
are either fully assigned (P=48) or with only half the cores used (P=24), resulting
in different memory throughput and thus different performance. The minimal
configuration p1 for the speedup estimation is one node with 48 or 24 cores,
respectively. The overstepping of the ideal solution line might be due to variations in
the domain decomposition and thus in the communication pattern for different core
counts. For large number of cores, the efficiency drops down to 60%. This may be
because of too small local problems.
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growth of 200 crystal seeds in 2D having triangular symmetry. A rotation of crystals
θ ä (−15°, 15°) set as initial condition by means of equation (13) as in figure 2 is considered.
We set here a square domain of side length ∼103atri. The initial crystal seeds are generated in
a square region at the center (see figure 5(a), t=0). As shown by two representative steps
during the evolution, t=2000 and t=5500, the growth of these seeds results in a poly-
crystal with several dislocations at the center while almost straight GBs form between the
peripheral grains which are free to grow towards the liquid phase. The formation of such GBs
is also highlighted at t=12 000 by means of a portion of the entire simulation domain. Insets
of figure 5(a) illustrate the arrangement of defects on a smaller length scale in a portion of the
crystal. The motion and eventual annihilation of dislocations is accounted for by the approach
as illustrated in figure 5(b) where the arrangement of defects in the central region of the
simulation (green shaded square superposed to the crystal at t=5500) is compared at
t=600 (blue, filled) and t=12 000 (red, empty). The coarsening dynamics results faster in
the early stages than at later times as can be noticed by comparing the main features of the
dislocation networks at different times in figure 5. Indeed, small grains are present at the
beginning leading to the formation of curved GBs formed by a few dislocations, which, in
turn, move fast [39, 40]. Later, the grains at the center of the polycrystal are larger and the
resulting GBs are more stable having smaller curvatures. However, the coarsening dynamics
with motion and annihilation of defects continues as can be notice in the insets of figure 5(a),
where significant changes in the arrangement of defects are observed at later times. The
straight GBs forming due to the growth of the polycrystal can be considered as long-lasting
defects as their curvature is negligible, while the spacing between dislocations depends on the
relative tilts of grains. Notice that the growth velocity of the polycrystal is a function of the
parameters entering the free energy that control the energy difference between the solid and
the liquid phase [41]. Therefore, faster or slower grain growth compared to defect motion can
be inspected.

Figure 5. Large-scale simulation of the growth of a polycrystal in 2D with triangular
symmetry. The initial configuration consists of 200 crystal seeds with rotation
θ ä (−15°, 15°), randomly distributed around center of the simulation domain (marked
by the red point C). (a) The initial configuration (t=0) and three representative steps
are shown in terms of the region where A>0, i.e. in term of the solid phase.
t=12 000, where the crystal fills the entire simulation domain, is reported by means of
a portion of the crystal highlighting the formation of straight GBs. A is also shown
by greyscale map, showing the presence of defects. The length scale is the same for
every step. Insets show the arrangement of defects in a small portion of the crystal (gray
shaded area, see t=2000). (b) Comparison between the distribution of defects in the
green shaded region of panel (a) at t=600 (blue, filled) and t=12 000 (red, empty).
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The main features of the dynamics obtained by the standard APFC approach considered
here qualitatively correspond to predictions of classical theories and simulations [39, 40].
However, a quantitative description can be achieved by accounting for extensions of the PFC
and APFC approach, including a proper description of elastic and plastic relaxation during the
motion of defects [23, 42].

A 3D example is shown in figure 6. Two fcc crystals, having a rotation of 5  about the
[111] direction are considered. The simulation size is set as in the setup fcc 3, corresponding
to a square domain of side length ∼80afcc. They are also aligned along the [111] direction,
therefore their growth is expected to form a (111) twisted GB with a typical hexagonal
arrangement of defects [22, 43, 44]. Figure 6 reports four stages during the evolution in terms
of A>0 along with the dislocation networks at the resulting planar GB illustrated as insets.
They correspond to regions where A A0 0.8 max< < W( ) at the (111) blue shaded plane. The
study of these kind of planar GBs, in particular for what concern the morphology of the
emerging dislocation network, are typically accounted for by assuming ideally infinite
crystals by means of periodic boundary conditions or even just by 2D approaches. Here, the
GB is obtained together with the explicit description of crystal growth which enable more
general investigations tackling the simultaneous presence of different GBs with different
orientations. A more general case, illustrating the general capability of the approach, is
reported in figure 7. Therein 30 crystals having random rotation about the [111] direction are
considered. A simulation domain that is double the size of the setup fcc 3, namely
corresponding to a square domain of side length ∼160afcc, is considered here. Figure 7(a)
shows the morphologies of the seeds and of the resulting, growing polycrystal in terms of
A>0 regions. Figure 7(b) shows half of the crystals reported in figure 7(a) by the isosurface
A A0.8 max= W( ) revealing also the dislocation network forming at the internal GBs. In this
case the initial seeds are distributed randomly and are not aligned along a specific direction.
Therefore, together with the twist GBs as shown in figure 6, other orientations for the
boundaries between grains are present thus leading to different morphologies for the dis-
location networks. This can be observed in more detail in figures 7(b)–(d). Hexagonal patterns
mostly lying on (111) planes, can be recognized along with elongated defects typical of pure

Figure 6. Growth of 2 crystal seeds in 3D with fcc lattice symmetry and rotation
θ=±5° about the [111] directions. Four steps during the evolution are shown by
means of region where A>0. Insets illustrate the the defect structure forming at the
planar, twist (111) GB by means of the regions at the blue shaded plane
where A A0 0.8 max< < W( ).
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tilt GBs. Moreover, similar patterns having different spacing between dislocations are present
due to different relative rotations between grains.

The simulations reported in this section are unprecedented in terms of sizes for what
concern APFC (and PFC) approaches. Just by focusing on the largest system of figure 7, we
were able to simulate a crystalline system with fcc lattice symmetry including 8 106~ ´
atoms. For specific materials exhibiting such a lattice symmetry as, e.g. Cu, Ag/Au, Pb this
would mean a volume of 45 nm , 50 nm , 65 nm3 3 3~ ~ ~( ) ( ) ( ) respectively [45], which lie in
the typical size range of nanoparticles and nanostructures. The simulation in figure 7 is done
on 720 cores. Increasing the number of cores will also allow to consider even larger samples
and thus realize the envisioned multiscale approach, ranging from atomistic details to
micrometer sizes.

Figure 7. Growth of 30 crystal seeds in 3D with fcc lattice symmetry and random
rotation θ ä (−15°, 15°) about the [111] directions. Initial seeds are randomly
distributed at the center of the simulation domain. (a) Regions where A>0.
(b) Isosurface A A0.8 max= W( ) in half of the domain, cut along the (111) plane
passing through its center (blue shaded plane illustrated at t=0 and t=800).
(c) Magnification of two small spherical regions inside the polycrystal showing defect
arrangements on a small length scale (see corresponding colors in panel (b), t=800).
(d) View of hemispheres, fully contained in the growing polycrystal, showing the
arrangement of defects from two different perspectives: perpendicular to the [111]
direction (left) and to the [11̄0] direction (right).
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Conclusions

We illustrated a numerical approach to solve the equations of the APFC model efficiently. A
specific discretization scheme combined with a nonlinear solver has been proved to allow for
unprecedented size and performances for both 2D and 3D APFC simulations. In particular, we
have constructed a schur-complement preconditioner for iterative Krylov subspace methods that
outperforms a block Jacobi solver for the linear systems arising from the discretization with
adaptive finite elements. The schur-complement solver requires much less memory, converges
fast in terms of wall-clock time, and scales well in parallel setups. On the other hand, it is more
sensitive to an increase in timestep size, compared to the bjacobi solver.

Moreover, an optimized criterion for mesh adaptivity has been proposed and used,
exploiting features of the complex amplitude functions ηj and derived physical quantities such
as the local rotation field. This can be applied in both 2D and 3D and allows for a significant
reduction of the overall number of DOFs.

Some applications involving the growth of polycrystals in 2D and 3D as well as the
simultaneous description of dislocations forming at GBs have been shown. They set new
limits for APFC and then, more in general, PFC approaches, enabling the investigation of
large systems matching the size of real nanostructures. This is a crucial step to address large,
mesoscale problems still retaining details of the atomic length scale. Future work will be
devoted to explicitly include further details, compatible with the APFC model, in the num-
erical framework presented here as, for instance, an improved description of interface-energy
anisotropy [25, 46], binary systems [26], an improved description of the dynamics [23, 42],
the coupling with magnetic fields [47], as well as improvements on scaling properties of the
numerical approach to enable larger systems addressing grain growth in 3D.
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