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Closing the gap between atomic-scale lattice deformations and
continuum elasticity
Marco Salvalaglio 1, Axel Voigt 1,2 and Ken R. Elder 3

Crystal lattice deformations can be described microscopically by explicitly accounting for the position of atoms or macroscopically
by continuum elasticity. In this work, we report on the description of continuous elastic fields derived from an atomistic
representation of crystalline structures that also include features typical of the microscopic scale. Analytic expressions for strain
components are obtained from the complex amplitudes of the Fourier modes representing periodic lattice positions, which can be
generally provided by atomistic modeling or experiments. The magnitude and phase of these amplitudes, together with the
continuous description of strains, are able to characterize crystal rotations, lattice deformations, and dislocations. Moreover,
combined with the so-called amplitude expansion of the phase-field crystal model, they provide a suitable tool for bridging
microscopic to macroscopic scales. This study enables the in-depth analysis of elasticity effects for macroscale and mesoscale
systems taking microscopic details into account.
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INTRODUCTION
Strains and defect-induced deformations have tremendous effects
on the macroscopic properties of single and poly-crystalline
materials.1 These effects have fostered a huge variety of studies
for more than a century, starting with the first theories describing
the elastic field generated by dislocations in solids.2,3

Deformation of crystal lattices, although involving changes in
the positions of atoms, are crucial for understanding the behavior
of systems defined on larger length scales.4 Continuum
mechanics, and associated continuous elastic fields, are very
useful for describing elastic effects on the mesoscopic and/or
macroscopic scales. In this approach, a continuous representation
of the displacement of atoms in a lattice with respect to a
reference crystal is employed.5 It is useful for either relatively
simple distortions, as the one given by pure elastic deformations
and rotation, or for deformations induced by the presence of
dislocations.5–8 Indeed, it can be exploited to provide in-depth
studies of material properties allowing for direct comparisons with
experiments and/or a priori predictions, as, e.g, for plasticity onset
in complex heterostructures9,10 or elasticity effects on material
transport mechanisms and morphological evolution.11,12

For some applications, however, continuum mechanics is not
enough as neglecting the description of atoms leads to a crucial
loss of information. For instance, this applies to contributions of
the dislocation core to the elastic field13,14 and, in turn, to
dislocation nucleation, motion, and reaction. In these cases, in
order to describe material properties by elasticity theory, the
elastic field must be described within mesoscale15,16 or atomistic
approaches. Typically, severe restrictions are present for these
methods in the description of long timescale and large-length
scale.
An attempt to overcome the timescale limits of atomistic

approaches, by focusing on diffusive timescales, lead to the

development of the so-called phase-field crystal (PFC) model. It
focuses on the dimensionless atomic density field difference, n,
filtering out vibrations on lattice sites.17–19 It provides good
descriptions of elasticity20 and dislocation dynamics21 even if it
usually requires fine spatial discretizations. This latter limitation is
overcome by the complex amplitude expansion (APFC)22–25 of the
PFC model for which both long-time scales and large-length scales
can be examined. It consists of a coarse-grained representation of
the density n that is expressed by the sum of Fourier modes
representing specific lattice symmetries. The slowly oscillating
complex amplitudes of these modes, ηj, are then the variables
used to characterize the crystalline lattice. Real amplitudes, which
may be regarded as a special case of the APFC model, have been
also considered,26,27 delivering long-range order parameters as in
the classical phase-field approaches based on atomistic descrip-
tions. They can be used to account for bridging-scale descriptions
of elasticity effects by means of additional contributions as, e.g., in
the presence of precipitates, alloys, or point defects.28–32 However,
they do not directly encode rotational invariance and elasticity
associated to the deformations of the crystal lattice.
Although some intrinsic limitations for large deformations and

tilts exist,25 APFC has proved useful in the advanced modeling of
materials as illustrated in studies of elasticity effects,20,25

compositional domains,33 binary alloys,34 dislocation
dynamics,35,36 morphology and motion of dislocation networks
at grain boundaries (GB),37 and control of material properties.38–40

However, the basic concept of APFC, namely the coarse-graining
of an explicit lattice representation by focusing on the complex
coefficients of Fourier modes, can be readily applied to any
atomistic description as obtained, e.g, from theoretical modeling,
atomistic simulations, or experimental imaging. Still, a direct
connection to continuum elasticity (CE) is missing.
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In this work, we first show how to exploit the representation
delivered by the complex amplitudes expansion of the PFC model
to derive expressions for elastic field components independent of
lattice symmetry and system dimensionality. In practice, we
describe how to reconstruct strain and rotation fields from the
atomic density provided that the complex amplitudes functions of
the corresponding Fourier modes are known. Then, we consider
numerical simulations for some generic systems involving
strained/tilted crystals and apply the new framework in order to
depict and analyze the resulting deformations. To this purpose, we
numerically solve the equations of the APFC model directly
delivering the amplitudes function. Standard simulations as well
as simulations which extend the current state of the art for APFC
and PFC approaches are presented and discussed. The combina-
tion of using a coarse-grained approach as APFC with the detailed
analysis of deformations proposed here results in a bridging-scale
framework enabling the study of elasticity effects from the
microscale to macroscale while describing microstructural evolu-
tion, at variance with many other methods focused only on some
of these aspects at once. Moreover, using the APFC model allows
us for its further assessment as a reliable coarse-grained method
accounting for microscopic effects. The elastic field in presence of
defects, derived from complex amplitudes as computed by APFC
simulations, reproduce predictions of continuum mechanics as
expected from PFC-based modeling.17,18,25 Moreover, the results
also indicate that APFC includes some deviation from continuum
mechanics that may be ascribed to atomistic structure at the
dislocation cores, as it has also been observed and discussed in
other continuum or atomistic approaches.13,14,41

RESULTS AND DISCUSSIONS
Strain and rotation fields from complex amplitudes
The complex amplitude functions, ηj, entering the APFC model
(see Methods section) are connected to the deformation of a
crystal u with respect to a reference lattice by the following
equation:

ηj ¼ ϕjexp ikj � u
� �

; (1)

with {kj} a specific set of reciprocal space vectors describing the
lattice of an undeformed crystal. Equation (1) defines N
independent equations. ϕj’s are the real values corresponding to
the amplitudes in a relaxed, unrotated crystal. They can be
computed by the minimization of the energy functional in Eq. (9)
assuming constant, real amplitudes for each different length of kj.
The quantity A2 � 2

PN
j¼1jηjj2 delivers an order parameter which is

constant in the solid/ordered phase, decreases at defects and
interfaces, and vanishes when approaching the liquid/disordered
phase. Equation (1) can be rewritten as

φj ¼ kj � u; (2)

with φj= arg(ηj)= arctan[Im(ηj)/Re(ηj)]. In order to determine the
components of the deformation field ui from amplitudes (with i=
x, y in 2D and i= x, y, z in 3D), Eq. (2) must be inverted, resulting in
a system of d equations with d the dimensionality of the system. In
2D, by selecting d= 2 amplitudes labeled by generic indexes l and
m, ui � u2Di results in

u2Di ¼ ϵij
jkl ´ kmj kjmφl � kjlφm

h i
; (3)

with the two components of the displacement field obtained by
index permutations on the group (i, j)= (x, y) and ϵij the 2D
Levi–Civita symbol. In 3D, by selecting d= 3 amplitudes labeled

by generic indexes l, m, and n, ui � u3Di and we obtain

u3Di ¼ 1
kn � km ´ klð Þ φl kκmk

j
n � kjmkκn

� �
þ φm kκn k

j
l � kjnkκl

� �h
þφn kκl k

j
m � kjl k

κ
m

� �i
;

(4)

with the three components of the displacement field obtained by
index permutations on the group (i, j, κ)= (x, y, z). Amplitudes
must be chosen in order to have a non-vanishing denominator of
the prefactor entering Eq. (4). Without loss of generality we fix l=
1, m= 2, and n= 3, referring to kj with the same length for each
symmetry considered here. For small deformations, the strain
tensor ε can be written ε= (1/2)[∇u+ (∇u)T]. The strain compo-
nents can then be explicitly computed from ηj by means of spatial
derivatives of Eq. (3) (d= 2) or Eq. (4) (d= 3). This leads to ∂φj/∂xi
terms. Notice that, φj are inherently discontinuous due to their
functional form. However, ηj are, by definition, continuous
complex functions in both their real and imaginary part and

∂φj

∂xi
¼ 1

jηjj2
∂ImðηjÞ
∂xi

ReðηjÞ �
∂ReðηjÞ
∂xi

ImðηjÞ
� �

: (5)

Since jηj j2 ¼ ϕ2
0 gt; 0 almost everywhere in the crystal phase, the

terms ∂φj/∂xi and then ε can be readily computed. |ηj|
2 only

vanishes exactly at the dislocation core position for some indexes,
j, consistent with CE theory. By exploiting the components of the
displacement field, rotations of the crystal structure with respect
to the reference orientation can also be evaluated as ω=∇ × u. ωij

corresponds to the rotational angle in the xi–xj plane. For d= 2,
ωij≡ ω, describing the rotation in the two-dimensional domain.
For the sake of readability, the expressions of ε and ω for d= 2, 3,
as functions of ∂φj/∂xi, are reported in the Supplementary
Information S2. The resulting deformation fields deliver descrip-
tions similar to advanced continuum theories, as e.g. in refs. 41–43,
directly connected here to atomic arrangements via ηj functions.

Deformations induced by dislocations
Let us consider pairs of dislocations in a 2D triangular lattice that
form at the interface between layers of different atomic spacing in
order to accommodate a misfit strain. As performed in ref. 39, the
dislocations can be described by APFC by setting an initial
condition for ηj in order to reproduce opposite deformations
(namely initial strains) ±ε. This can be done using Eq. (1) with an
in-plane displacement field u(r) defined by ux= ±(atri/Lx)x and
uy= 0, where r ¼ xbxþ yby (þzbz in 3D). atri is the distance between
maxima of the density as in Eq. (8) for triangular symmetry and Lx
is the size of the computational domain, both evaluated along the
x-axis. These opposite deformations are imposed as illustrated in
Fig. 1a.
The relaxation of such an initial condition until the defect shape

is stationary in a square system of linear dimension Li= 40atri is
illustrated in Fig. 1a (details about simulations are reported in the
Methods section and references therein). A2 is shown on the left
and the reconstructed density n from Eq. (8) is shown on the right.
Two pairs of dislocations form within the simulation domain
where A2 is constant in the solid and decreases at defects.
Although the APFC approach does not allow for the exact
representation of atoms at the dislocation-core, the lattice
distortion is well described as shown by the illustration of atomic
planes by solid lines, highlighting the presence of one specific
defect. The deformation of the lattice can be quantified at the
atomic level by evaluating the Burgers vector, b, as shown in Fig.
1b. Notice that it corresponds to a lattice spacing in bx direction, i.e.
jbj ¼ 4π=

ffiffiffi
3

p
. εxx is shown in Fig. 1c while, for the sake of

completeness, other components are shown in the Supplemen-
tary Information S3.
The elastic field as computed from the complex amplitudes

matches very well with CE as shown in Fig. 1d–g. The latter can be
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computed provided that the dislocation character, namely edge,
screw or mixed,8 as well as b and elastic constants are known.
Within the APFC model the elastic constants are determined by
the parameters entering the energy (see Methods section and Eq.
(9)) as discussed in ref. 20. They do not appear explicitly in the
equations reported above but affect amplitude values and their
spatial derivatives. As reported in the Supplementary Information
S4, the defects in Fig. 1c can be modeled as a 2D array of edge
dislocations and the strain field according to CE εce can be
computed as superposition of the elastic field of single disloca-
tions. The elastic constant entering these equations is the Poisson
ratio ν set here to 1/3 as in refs. 17,18 (see also Supplementary
Information S4). Figure 1d–g show εce by solid red lines along ‘1,
‘2, and ‘3 as defined in Fig. 1c. The strain components computed
from ηj’s are shown by black circles. An almost perfect agreement
is found far away from dislocation cores as observed along ‘2 for
εxx. The same holds true for the other cases except for regions

close to the dislocation cores, namely at ‘i�± 10atri where,
however, a continuous description of lattice deformations is not
well-posed.
Deeper insight can be obtained by focusing on the analysis of

the elastic field as in refs. 13,14. Therein, the components of the
strain field in the presence of a straight dislocation, εdij , are

decomposed as εdij ¼ εffij þ εcoreij , with εffij a far-field predictor of the
elastic field and εcoreij a correction due to the core effects. A decay

εffij � r�1, with r the distance from the dislocation core, is expected
in agreement with CE theory. The dislocation core effects are
characterized by a decay εcoreij � r�2 independently on the lattice
symmetry, except for some high-symmetry nominal position of
the core where εcoreij � rp with p <−2.13,14 εceij corresponds to an

explicit expression of εffij . The contribution of the dislocation core

can then be analyzed by evaluating εcoreij ¼ εapfcij � εceij , with εapfcij

Fig. 1 Dislocations and strain field in 2D for a crystal having triangular symmetry. a A2 (left) and n (right), showing a schematics of the position
and orientation of defects, as well as atomic planes at and close to one defect. bMagnification of n and Burgers vector. c εxx as computed from
ηj. Comparison between results from APFC (black circles) and from continuum elasticity (CE) (solid red line) along specific directions as in
panel (c) are shown: (d) εxx along ‘1, (e) εxx along ‘2, (f ) εyy along ‘1 , (g) εxy along ‘3
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the elastic field components computed from ηj. The scaling of
these quantities is illustrated in Fig. 2 where a system as in Fig. 1 is
considered with Li= 320atri. εapfcxx (red squared) and εcexx (green
triangles) are shown along the line ‘1 (see Fig. 1c) with r= 0 the
position of one of the defects. In the large r limit the strain shows a
decay that is very close to ~r−1, but some small deviations are
observed. By evaluating the difference, εapfcxx � εcexx , (blue circles) we
observe a faster decay that scales as ~rq with q=−2.05 ± 0.15
recalling the more localized correction given by the dislocation
core. We can then conclude that the elastic field description
proposed here not only matches the description of CE far from
dislocation cores but also includes a correction that may be
ascribed to atomic-scale effects.
The evaluation of the elastic field can be readily provided also in

3D regardless of the lattice symmetry (see also Supplementary
Information S2). We consider now a configuration with peculiar 3D
features as shown in Fig. 3. An initial condition mimicking layers
with opposite, biaxial strain along the bx and by directions is
considered. ηj’s are initialized as in Fig. 1 with uy= ux

39 and,
without loss of generality, we select a crystal having bcc lattice
symmetry (by setting kj accordingly, see Supplementary Informa-
tion S1). The size of the domain is set to Li= 60abcc, with abcc the

lattice constant for bcc arrangements. Interfaces between layers
are (001) planes. APFC simulations account for the formation of
dislocation networks at the interface as shown in Fig. 3a. In this
figure, the gray structure corresponds to the region where A2 < 0.8
max(A2), i.e. to the defects as A2 significantly decreases. The initial
interfaces between layers are higlighted by blue (top) and green
(bottom) planes. The atomic structure at the defects as
constructed by Eq. (8) and the Burgers vector (here jbj ¼ 2π

ffiffiffi
2

p
)

are illustrated in Fig. 3b in a small 2D region around a defect lying
on the yz-plane Π highlighted in Fig. 3a. The strain field computed
from amplitudes is illustrated by means of εyz in Fig. 3c. By
accounting for the parallel dislocations forming along both the in-
plane directions, the elastic field can be approximated by CE. A
comparison of εyz as obtained from amplitudes (APFC), computed
by the simulations illustrated in Fig. 3a, and from CE, by adapting
the equations of Supplementary Information S2 (accounting then
for two sets of dislocations oriented along bx and by directions and
having perpendicular Burgers vector as in Fig. 3b), is reported in
Fig. 3d showing a general agreement similar to Fig. 1. Large-
length scale decays as in Fig. 2, not explicitly addressed here, are
expected also in this case.13,14

Lattice rotations and polycrystalline systems
We focus here on the analysis of deformations and rotations in
polycrystalline systems, which involve the evolution of small-angle
GBs. We study first a simple system made of a straight GB forming
between two crystals with a symmetric tilt. In particular, a
rectangular domain, Lx × Ly with bx ¼ ½10� and by ¼ ½01�, is
considered with a straight vertical GB at the center. The relative
tilt angle between the two crystals, namely 2θ, is set by initializing
the ηj functions as

ηj ¼ ϕj exp iδkjðθÞ � r
� �

; (6)

with δkj(θ)= kj · R(θ)− kj and R(θ) the counterclockwise rotation
matrix. A ±θ tilt is imposed for the left and the right part of the
simulation domain, respectively (see also Fig. 4a). By using
periodic boundary conditions a GB with infinite extension is
considered. A second GB is also expected, that is shared between
the left and right periodic boundary of the simulation domain. Lx
can be chosen arbitrarily while Ly has to match the periodicity of
amplitudes along by. Specific details about this simulation setup
can be found in ref. 39.
Figure 4a illustrates the result of relaxing the aforementioned

initial condition by means of the A2 field in a small region at the
GB, formed by an array of dislocations, showing three defects as
minima of A2. ω is reported in Fig. 4b. A constant value of this field
is obtained when moving away from the GB, while a modulation

Fig. 2 Scaling of εxx along the direction ‘1 as in Fig. 1c with r= 0 the
position of a dislocation. The value computed by APFC (red squared)
and by continuum elasticity (green triangles) are shown along with
their difference (blue circles)

Fig. 3 Dislocations and strain field in 3D for a crystal having bcc lattice symmetry. a Defect network from APFC simulations for a multilayer
configuration. Π is the (orange) yz-plane on which next panels focus. b Reconstructed density at a defect shown in panel (a) and Burgers
vector. c εyz on Π. d Comparison between εyz computed from APFC (black circles) and from continuum elasticity (CE) (solid red line) along the
the line parallel to the by direction connecting the defects on Π
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at the defects and at the GB is observed, reproducing the effect of
the dislocation on the local orientation of the crystal lattice. The
values at which ω saturates in the crystals correspond to ±θ
imposed in the initial condition. A measure of the tilt angle is then
obtained by exploiting the deformation field. It should be noted,
however, that it is not possible to directly obtain the tilt angle by
inverting Eq. (6) due to the phase term. Figure 4c also illustrates
the strain component εxy, calculated from amplitudes ηj as
discussed previously. In this instance a significant superposition
of the strain lobes is obtained, due to the proximity of the
dislocations.
The importance of extracting the rotation of grains by means of

a scalar field defined everywhere becomes more evident when
looking at poly-crystalline systems, as illustrated in Fig. 5 (and
Supplementary Videos 1–3). Therein a system with Li= 320atri is
considered. The initial condition contains 10 crystal seeds, namely
circular regions with |ηj| > 0 and random positions, random radii
ranging from 10π to 20π, and uniformly distributed values of θ∈
(−5°, 5°). According to the parameters of the free energy, the
crystal phase has the lowest energy so that the crystals grow and
merge forming a complex network of small-angle GBs made of
dislocations. Afterward, these GBs evolve resulting in the
shrinkage of some grains and the annihilation of dislocations.
This is illustrated in detail in Fig. 5 by means of A2, ω, and εxy
starting from the merged crystal, as well as by an analysis of the
tilt-angle distribution over time. Faceted GBs are obtained (here in
2D corresponding to closed polygonal chains). Moreover, the
motion of dislocations leading to the shrinkage of grains occurs
along preferred directions related to the crystal lattice and the
local tilt, revealing the accurate description achieved by APFC
despite its coarse-grained nature. All these dynamic features can
be better observed in the Supplementary Videos 1 and 2. In
addition, the velocity of a specific defect (within the white and
black circles) is highlighted in Fig. 5. ω is nearly constant within
the grains and varies at the GBs, thus it can be used to identify
single grains as they are characterized by different tilts. Moreover,
ω accounts for the contribution of single dislocations. Indeed, the
features of the extracted rotation field allows for the analysis of
grains as reported in Fig. 5d. Here, the relative volume of regions
having the same tilt angle within bins of Δθ ≈ 0.2° is shown. The
top panel illustrates the initial condition where the crystal seeds
cover just a portion of the entire system. The panel at the bottom
shows the analysis of the three stages shown in Fig. 5a–c. By this
analysis (see also the Supplementary Video 3) important informa-
tion can be extracted, such as the volume fraction (V) occupied by
grains in a specific orientation. Peaks in V correspond to the grains
with different orientations as shown in Fig. 5d. Their broadening is
related to the presence of defects, missing in the first stages as the
crystals are separated with no dislocations. During the evolution,
the relative volume of grains changes and some of them
eventually disappear. Notice that before vanishing some peaks
shift to larger tilts pointing out a rotation due to the proximity of
the dislocations (see also Supplementary Video 3). This is in
agreement with 2D atomistic calculations showing an increase of

the interface energy and a rotation of the grains during similar
processes.20,44,45

A three-dimensional system involving rotations and consisting
of a single spherical crystal that is rotated with respect to the
larger single crystal surrounding it is shown in Fig. 6. Li= 50afcc
with afcc the lattice constant for fcc arrangements. A rotation of 5°
about the [111] direction is set. The initial condition for ηj is set by
exploiting Eq. (6) (see also ref. 37). The resulting dislocation
network after a first relaxation phase is shown in Fig. 6a. As in
Fig. 3a, the gray structure corresponds to the dislocations. A
closed network of defects forms, having the peculiar structure of
defects at twisted GBs when the surface normal of the spherical
inclusion approaches the rotational axis. As expected by classical
grain growth theory46 and 3D simulations37 this defect network
evolves leading to the shrinking of the rotated inclusion. As
noticed first in ref. 47, where PFC simulations of a similar
configuration with bcc lattice symmetry are reported, an
anisotropic shrinkage of the grain occurs, that is faster along the
rotational axis as a result of the dynamics and reaction of
dislocations. However, an almost linear scaling of the grain
boundary extension is expected.37,47 The extraction of the rotation
field on the yz-plane Π highlighted in Fig. 6a is illustrated in Fig. 6b
at different stages during the evolution. ωyz is zero outside the
inclusion and almost constant inside. Similarly to Fig. 5a, a short
wavelength modulation is observed at defects. From the ωyz color
map, a rotation of the grain is observed.20,44,45,47 The correspond-
ing εyz field is shown in Fig. 6c.
A 3D ploycrystalline system is shown in Fig. 7, where the growth

of 30 crystal seeds having fcc lattice symmetry with random
rotation θ∈ (−10°, 10°) about the [111] direction, random position
and size is simulated. Li= 100afcc while the seeds are generated
within a distance 40afcc from the center. The evolution is
illustrated in Fig. 7a by means of three snapshots showing the
region where A2 is significantly larger than zero. The rotation field
in the Π plane is shown in Fig. 7b. Figure 7c illustrates the analysis
of the local rotations in terms of the volume of regions with the
same angles within bins of Δθ= 0.1° normalized with respect to
the larger one. It delivers similar features as discussed in Fig. 5b. In
particular, the initial configuration exhibits a smaller angular
dispersion than later stages, while peaks broaden due to the
formation of dislocations. The capability of the adopted frame-
work can be further appreciated in Fig. 7d, where the complex
dislocation network forming in a central (spherical) region of the
growing polycrystal (last step of Fig. 7a) is shown. Features of the
dislocation network observed in Fig. 6a can be here recognized, as
hexagonal arrangements and elongated defects according to
direction of the normal of the interface between grains. Similar
dislocation networks with different spacing (e.g. see the presence
of hexagons with different sizes at GB highlighted as blue shaded
region) are obtained within the polycrystal due to the different
relative rotations between grains.
The analysis of polycrystalline systems allows us to summarize

the main findings of this work. A continuous description of lattice
deformations exploiting the complex amplitude of Fourier modes
representing the periodicity of crystal lattices has been derived.
Deformation fields can then be readily computed from an
atomistic representation of crystals, provided that amplitude
functions can be extracted, without any ad hoc post-processing
procedure and independently of system dimensionality and lattice
symmetry. This framework has been shown to achieve its full
potential combined with the APFC approach. Other than trivially
providing a direct access to amplitudes and allowing for
describing either strain or rotated crystals, the APFC model easily
allows for large-length scale simulations approaching the ones
typical of continuum theories, still retaining essential microscopic
features. This has been further demonstrated by showing that
APFC encodes dislocation-core contributions to the elastic field,
which are missing in standard CE and usually requires more

Fig. 4 Deformation and rotation field at a symmetric-tilt GB in 2D. A
(small) portion of the entire simulation domain is reported,
illustrating: a A2, b ω, and c εxy
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refined theories.41 The connection between amplitudes and
displacements or strains enables the detailed study of the effect
of any deformation which are encoded by continuous deforma-
tion fields, such as displacements or strain/stress due to single
dislocations or due to external loads. We explicilty illustrated that
extracting the local orientation as continuous field directly enables
microstructural analysis. In addition, it will enable the develop-
ment of optimized numerical method as, e.g., orientation-based
meshing criterion for APFC.48

It is worth recalling that the limitation of the APFC model in
describing large deformations25 poses some constraints to the
numerical approach adopted here, but not on the derivation of

the deformation fields and on the possible analysis of
deformations extracted from other atomistic frameworks (e.g.
the PFC model itself or experiments). Moreover, some attempts
to overcome this APFC limit have been recently proposed.49

Notice that several PFC type models, which are based on a
continuous probability density can be easily converted in the
proper set of amplitudes, and are therefore naturally compa-
tible with the descriptions illustrated in this work (see e.g.
refs. 50,51). In addition, work on extensions of the PFC model can
be done in order to derive the corresponding amplitude
expansions as done, for instance, in ref. 52 with the so-called
XPFC model.53

Fig. 5 Deformation and rotation in a polycrystalline system (2D, triangular symmetry). Ten crystals with θ∈ [−5°, 5°) evenly spaced, random
initial position, and radius are considered. The rows illustrate the coarsening dynamics with three stages by means of (a) A2, (b) ω, (c) εxy. (d)
Relative volume of regions having similar tilt angle with uniform binning Δθ ≈ 0.2°: the initial condition (“Ini”, top panel) and stages reported in
(a)–(c), labeled as left, center, and right, respectively (bottom panel), are shown. See also Supplementary Videos 1–3
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METHODS
Amplitude expansion of PFC model
The PFC model accounts for the lattice structure by means of a continuous
periodic field n describing the dimensionless atomic probability density.17–
19 It is based on a free-energy functional, Fn, that reads

Fn ¼
Z
Ω

ΔB0
2

n2 þ Bx0
2
nð1þ∇2Þ2n� t

3
n3 þ v

4
n4

� �
dr; (7)

where ΔB0, Bx0, v, and t are parameters as in ref. 54. In the crystalline state n
can be generally approximated as sum of plane waves as

nðrÞ ¼ n0ðrÞ þ
XN
j¼1

ηjðrÞeikj �r þ η�j ðrÞe�ikj �r
h i

; (8)

with n0(r) the average density, ηj(r) the amplitude of each plane wave, and
kj the reciprocal space vector representing a specific crystal symmetry (see
Supplementary Information S1). In the so-called amplitude expansion of
the PFC model (APFC),22–24 these amplitudes are the variables used to
describe a given crystalline system. Lattice symmetries are described by
means of a fixed set of vectors kj. Complex amplitude functions ηj(x) allow
for distortions and rotations of the crystal lattice with respect to a
reference state accounted for by kj vectors. The free energy, expressed in

terms of ηj’s, reads
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4
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" #
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(9)

with Gj � ∇2 þ 2ikj � ∇ and A2 � 2
PN
j¼1

jηj j2. The term f sðfηjg; fη�j gÞ
corresponds to a complex polynomial of ηj and η�j and depends on the
specific crystalline symmetry as reported in ref. 39 for triangular, body-
centered cubic (bcc) and face-centered cubic (fcc) lattices. The evolution
laws for ηj’s read

∂ηj
∂t

¼ �jkj j2 δF
δη�j

: (10)

Simulations
The simulations reported in this work are performed with the aid of high
performance computing facilities55 exploiting the finite element toolbox
AMDiS56,57 with a semi-implicit integration scheme and mesh adaptivity as
reported in ref. 39. Large, three-dimensional simulations as reported in Fig.
7 have been obtained thanks to an improvement of the numerical
approach described elsewhere.48 Periodic boundary conditions are used
for all the boundaries of the simulation domains. To describe crystalline

Fig. 6 Deformation and rotation in the presence of a spherical rotated inclusion with a rotation of θ= 5° about the [111] direction. Fcc lattice
symmetry is considered. a Emerging dislocation network at the interface between the rotated and the unrotated crystal. Π is the (orange) yz-
plane where the quantities shown in the following panels are evaluated. (b) ωyz and (c) εyz

Fig. 7 Growth of randomly tilted crystal seeds (3D, fcc lattice symmetry). Thirty crystals with random tilt θ∈ (−10°, 10°) about the [111]
direction are considered with random initial position and radius. a Three stages during the growth of the polycrystalline system. b ωyz in the
plane Π illustrated in panel a. c Normalized volume fraction of crystal with similar rotation of the first (“Ini”) and last (“End”) stages in panel a
within bins of Δθ= 0.1°. d Defects (yellow network) within a spherical region at the center of the growing polycrystal (last stage in panel a)
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phases, the parameters entering the free energy are set to favor the crystal
phase as follows: Bx= 0.98, v= 1/3, t= 1/2, and ΔB= 0.02.34,37,39
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