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Abstract: Large-time coarsening and the associated scaling and statistically self-similar properties
are used to construct infinite tilings. This is realized using a Cahn–Hilliard equation and special
boundaries on each tile. Within a compromise between computational effort and the goal to reduce
recurrences, an infinite tiling has been created and software which zooms in and out evolve forward
and backward in time as well as traverse the infinite tiling horizontally and vertically. We also analyze
the scaling behavior and the statistically self-similar properties and describe the numerical approach,
which is based on finite elements and an energy-stable time discretization.

Keywords: symmetric boundary condition; pattern formation; computational design;
finite-element method

1. Introduction

At first-order phase transitions, coexisting macroscopic domains of different phases emerge from
small fluctuations of a homogeneous phase. Late stages of this process are often dominated by the
motion of the interfaces separating the domains. Considering this large-time coarsening behavior,
i.e., the growth of a characteristic length scale l(t) as t→ ∞ determines important characteristics of
the dynamics and led to the identification of several universality classes of domain growth. We are
here concerned with conserved order parameters, for which the expected behavior is l(t) ∼ t1/3,
which results from the scale invariance of the Mullins–Sekerka system x → λx, t → λ3t. Rigorous
results exist for an upper bound for l(t), stating that microstructures cannot coarsen faster than the
similarity rate [1]. As there are non-generic configurations, e.g., stripe domains with zero curvature
which are stable, lower bounds cannot be expected within a deterministic framework. Besides this
scaling law, solutions with random initial data are also believed to be statistically self-similar in this
large-time regime. Numerical studies based on a Cahn–Hilliard equation and related coarse-grained
theories indicate that the approach of the large-time regime with the statistically self-similar structures
might be very slow [2]. To explore these regimes numerically thus requires large length and time
scales, which limits the accessible sample size. We are here interested in these statistically self-similar
structures, which have been used for various art and design projects, e.g., [3]. Here, we would like
to explore very large, in principle infinite, samples. To tackle such a system we consider, instead of
one huge simulation, many moderately sized domains with different initial data, and require the
boundaries to match. If appropriately done, this will allow construction of large (infinite) tilings
which are statistically self-similar. With a random arrangement of finitely many computed structures,
the impression of an infinite tiling with no recurrence could be achieved. For this impression,
the boundary conditions at the computational domains are crucial. They are described in detail
in Section 4 together with the finite-element approach to solve the Cahn–Hilliard equation. In Section 2
we show various results, among other things a computer program which allows navigation through
space and time of an infinitely extended structure. We further discuss improvements and outline
possible applications. In Section 3, we discuss scaling and self-similar properties.
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2. Results

As the underlying model for phase transitions with a conserved order parameter we consider
a Cahn–Hilliard equation

∂tφ = γ∆µ, µ = −ε2∆φ + B′(φ); (1)

see Section 4 for details. First, we consider coarsening in a rectangular cuboid using standard boundary
conditions n · ∇φ = n · ∇µ = 0 on ∂Ω. Figure 1 shows snapshots of the results within the large-time
regime, visualized in various ways. The interface area is minimized, and the structure thus coarsens in
time. To analyze this in a statistical manner requires either a larger domain or more samples. Our idea
is to combine both by using samples which are distinct from each other but fit together to form a large
and extendable structure. The boundary conditions in the current setting enforce the level lines of the
interface to be perpendicular to ∂Ω. They in addition do not fit to each other and thus do not allow
combination of different samples. To overcome these limitations, we consider a smaller domain, again
a rectangular cuboid and the boundary conditions introduced in Section 4 which specify the values of
φ and the normal flux ∇φ · n such that opposite sides match. The first approach only has two distinct
boundaries, N = 2. Figure 2 shows four samples, all obtained with different initial conditions and
considered at the same time instance. The structures fit together and any translation in x- or y-direction
by the width of the domain will also fit. The individual figures are provided in SI as Figures S1–S4;
print them and try it out. The figures are part of an art project, M = 100 individual samples have been
computed and printed on Alu-Dibond in size 20 cm × 20 cm, creating a 200 cm × 200 cm figure which
can be displayed in 100! ≈ 9.332622 · 10157 variations.

Figure 1. Typical structure within the large-time regime, visualized as φ = 1 in Ω, φ = 0.5 at z = 0.01,
0.13, 0.25, 0.37, 0.49 and φ = 0.5 at z = 0.01, 0.13, 0.25, 0.37, 0.49 projected to z = 0, from left to right.
The boundary conditions are n · ∇φ = n · ∇µ = 0 on ∂Ω. The corresponding videos of the coarsening
process are provided in SI as Videos S5–S7.

Figure 2. Four samples with identical boundaries but distinct inner structure. The samples are
translational invariant in x- and y-direction.
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Even if the inner structure is unique for each tile, the boundaries in x- and y-direction are the
same and recurrences are visible. To improve on this issue, we consider a second approach, which is
less flexible in terms of arrangement of samples but minimizes possible recurrences. As a compromise
of computational cost and visual impression we consider tilings with N = 10 different boundary
conditions. This improves the impression of a tiling with no recurrence since systematic recurrence in
a row, a column, or diagonally can be avoided by careful assembly of the tiles. Repetitions do not only
appear less frequently but also in a pattern that is much less obvious. To see this recurrence without
knowing the construction process and explicitly searching for them is almost impossible. We consider
two different internal realizations each, leading to M = 10. Within the proposed pattern determined
by the boundary conditions the inner realization are randomly chosen to construct an infinite tiling,
where recurrences are almost invisible.

A software is developed to visualize the infinite structure. We consider visualizations with five
projected level lines of the interface. The software allows zooming in and out, evolve forward and
backward in time as well as traverse the infinite tiling horizontally and vertically. Figure 3 shows
some screenshots, starting from an early time instant and a low zoom factor (a), going to a late-time
instant of this setting (b), zooming into the structure (c), evolving along a trajectory in space and time,
which keeps the interface area constant (d), and going back to the initial state (a). Videos of the journey
through space and time are provided in SI as Videos S8 and S9.

Figure 3. Screenshots of the visualization software, here in addition color-coded according to the
individual tiles used. The dark magenta lines indicate the user-interaction. Moving the mouse
horizontally evolves time, moving it vertically zooms in and out.

As the proposed approach is in principle not restricted to rectangular cuboidal domains
various possibilities for applications can be imagined. Besides wallpaper design, they range
from fashion design with individualized clothes to camouflage patterns of automotive prototypes.
Here, we highlight a more entertaining application, a Rubik’s cube which always fits, but has
24 different fields; see Figure 4.
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Figure 4. A Rubik’s cube which always fits even if all tiles are different. A video is provided in SI
as Video S10.

3. Discussion

We now explore the scaling properties and the statistically self-similar behavior of the constructed
infinite tiling. The theoretically scaling behavior l(t) ∼ t1/3 of a characteristic length scale is tested
by computing the interface area of each tile over time. The interface is thereby represented as the
level-surface φ = 0. In addition, we also compute the length of the interface of the level line at z = 0.25,
which is used for visualization. Figure 5 shows the results over time, which are averaged over all
individual realizations of tiles.

Figure 5. Development of the interface area of the 3D-structure and the interface-length of a slice
through the center of the domain over time, averaged for all tiles.

The results lead to a scaling exponent which is below the upper bound of 1/3. The slope is not
constant, but on average equal for the two measures and approximately 0.26. There are different
reasons for this lower value, either the structure has not reached the late-time behavior for which
the theoretical scaling behavior is expected, or the considered domain with the zero-flux boundary
conditions on top and bottom favor parallel structures and thus prevent coarsening. The limitation
of our approach, to combine several tiles and to compute them separately, should also be mentioned.
This approach only allows the consideration of coarsening up to a length scale of the size of a tile.
For larger times, the approach is no longer valid. However, even if the theoretical scaling law could
not be shown computationally, statistical self-similarity still might be possible. Statistical self-similarity
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can already be expected from a randomly chosen sample. We consider the middle slice at an early
time instant, its coarsening and subsequent zooming-out in Figure 6. Instead of the interface line the
two phases are rendered in black and white. When the coarse structure is zoomed out to a degree
where the interface-length matches that of the earlier timestep, both structures are visually similar (see
Figure 6a,c). To quantify this, we compute for each row and column of pixels the distance between
two interfaces. This is done for all samples and plotted for different times in Figure 7.

Figure 6. Middle slice of the domain in an early time instance (a), a later point in time (b) and the later
time-point zoomed out until the interface-length equals that of the early one (c). In the last image the
unzoomed region is framed to indicate the level of zoom applied.

Figure 7. Left: density-histograms of the distances between interfaces for three selected timesteps
(all tiles combined). Right: a square subregion of timestep 130 is considered which, after zooming to
the size of a full tile, has the same interface area as timestep 1900. The histograms match almost exactly,
which computationally indicates the statistically self-similar structure.

Even if the theoretically predicted scaling law l(t) ∼ t1/3 could not be computationally shown,
the large-scale simulations, which run for each tile on a high-performance computer, reproduce the
predicted statistical self-similarity. The huge structure, which results as an arrangement of individual
tiles, would not have been possible to simulate on the available hardware. The approach fulfills
two goals, it provides enough statistics to analyze scaling and statistical self-similarity and it allows
the generation of aesthetically appealing tilings with almost invisible recurrences, which can be
infinitely extended.

4. Materials and Methods

The Cahn–Hilliard equation [4] is a fourth order partial differential equation resulting as a H−1

gradient flow of a Ginzburg-Landau energy

E [φ] =
∫

Ω
γ

(
ε2

2
|∇φ|2 + B(φ)

)
dΩ, (2)

where Ω is a bounded domain, ε a positive parameter determining the width of the diffuse interface,
γ the surface energy, here considered as a positive constant, and B(φ) = 1

4 (1− φ2)2 a double well
potential. The resulting equation reads

∂tφ = γ∆µ, µ = −ε2∆φ + B′(φ) (3)
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and converges for ε→ 0 to the Mullins–Sekerka problem [5]; see Ref. [6].
Various numerical approaches have been proposed to solve the equation efficiently. We consider

a convexity splitting approach, e.g., [7–11]. The idea is to split the double well potential
B(φ) = Bc(φ)− Be(φ), such that both parts are convex and to consider the time discretization as

dτφn+1 = γ∆µn+1, µn+1 = −ε2∆φn+1 + B′c(φ
n+1)− B′e(φ

n), (4)

with discrete time derivative dτφn+1 = (φn+1 − φn)/τn. The resulting scheme is unconditionally
energy stable, unconditionally solvable and converges optimally in the energy norm [9]. To solve the
above systems, we consider a linearization of B′c(φn+1) ≈ B′c(φn) + B′′c (φn)(φn+1 − φn). We further
consider adaptive mesh refinement according to criteria related to the position of the diffuse interface,
here ∇φ, to ensure a resolution of approximately five grid points across the interface and a coarser
mesh elsewhere; see Figure 8.

Figure 8. Typical structure, highlighting one of the two phases and the adaptively refined mesh along
the diffuse interface.

The resulting linear system is solved in parallel using a block-preconditioner, see [12,13], and the
iterative solver FGMRES. All problems are implemented in the adaptive finite-element toolbox
AMDiS [14,15]. The considered parameters are ε = 0.01 and γ = 1.0 and as computational domain
rectangular cuboid Ω = (0, L)x(0, L)x(0, l) with l = 0.2 and L = 2.0 for the larger and L = 1.0 for the
smaller domain and boundaries Γtop, Γbottom, Γ0 and Γ1 =

⋃4
i=1 Γ1,i, see Figure 9. The number of grid

points on the larger domain reduces from approx. 2.95 million at the beginning to approx. 1.95 million
at the final configuration.

Figure 9. Geometric setting and boundaries.

As initial condition we consider white noise around the mean value φ = 0. At Γtop and Γbottom we
specify zero-flux boundary conditions for φ and µ. We first consider the larger domain with zero-flux
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boundary conditions for φ and µ also on Γ0. In this setting the finite-element formulation in each time
step reads: Find φn+1, µn+1 ∈ Vh such that ∀η, ξ ∈ Vh∫

Ω
dτφn+1η dx + γ

∫
Ω
∇µn+1 · ∇η dx = 0 (5)∫

Ω
µn+1ξ dx− ε2

∫
Ω
∇φn+1 · ∇ξ dx−

∫
Ω

B′c(φ
n+1)ξ dx = −

∫
Ω

B′e(φ
n)ξ dx, (6)

with Vh = {v ∈ C0(Ω)|v|T ∈ P1(T)∀T ∈ T } the space of piecewise linear Lagrange elements and
triangulation T . In each time step we extract φn+1

1 = φn+1 and n · ∇φn+1
1 = n · ∇φn+1 along the

inner boundary Γ1. These data are going to be used in the subsequent computations in the smaller
domain as boundary conditions on Γ1. The finite-element formulation now reads in each time step:
Find φn+1 ∈ Vh,Γ1,φ1

and µn+1 ∈ Vh such that ∀η ∈ Vh,Γ1,0 and ∀ξ ∈ Vh∫
Ω

dτφn+1η dx + γ
∫

Ω
∇µn+1 · ∇η dx = 0 (7)∫

Ω
µn+1ξ dx− ε2

∫
Ω
∇φn+1 · ∇ξ dx−

∫
Ω

B′c(φ
n+1)ξ dx = −

∫
Ω

B′e(φ
n)ξ dx− ε2

∫
Γ1

n · ∇φ1ξds, (8)

with Vh,Γ1,α = {v ∈ C0(Ω)|v|T ∈ P1(T)∀T ∈ T , v = α on Γ1}.
For different initial data this leads to different solutions with common boundary conditions.

However, to construct tilings, they also must match, which is not yet guaranteed. To fulfill this
requirement, we proceed in two different ways. The first approach considers only one computation on
the larger domain and uses the extracted values and fluxes φn+1

1 and n ·∇φn+1
1 at Γ1 only from two sides

Γ1,1 and Γ1,2 (N = 2) and specifies them also on the opposite sides for the computations on the smaller
domain. For M different initial conditions this generates M individual samples which match with
each other at the boundaries if translated by the domain size in x- or y-direction. This leads to a very
flexible arrangement of the samples but has the drawback of frequent recurrence at the boundaries.

The second approach also begins with a computation on the larger domain with boundary Γ0 but
subsequent computations are performed on intermediate domains that extend to the bounds of Γ0 in
directions where a fresh structure is desired at the boundary and are restricted to the bounds of the
smaller domain Γ1 in directions where the structure is to be continued from an already existing neighbor
tile by using its stored values and fluxes φ1 and n · ∇φ1 at Γ1. This requires small modifications of the
finite-element formulation in Equations (7) and (8) using only parts of Γ1 instead of the whole inner
boundary. When enough samples are computed to define all N boundary sides the remaining samples
are computed on Γ1 with all sides fixed by boundary conditions from earlier computations.

The most simple setup meeting our design-goal of non-obvious recurrence of boundaries requires
five different tiles A0, B0, C0, D0 and E0 which can be assembled into a row that matches the same row
displaced by a few tiles above and below. Then, five rows of five tiles each form a square which can be
continued in all directions indefinitely (see Figure 10c). This setup allows for ten unique boundary
sides s1 through s10 (see Figure 11). Inside our 5 × 5 square of tiles recurrences do not occur in a row,
a column, or diagonally, which would not be possible with a smaller number of unique tiles. With only
two or three different tiles, repetitions would have to occur at least diagonally (see Figure 10a) and
with four different tiles it is only possible to build a unique 4× 2 rectangle without diagonal repetitions
(see Figure 10b).

On the macroscopic scale our pattern still has obvious repetitions since we need to continue
the same square of 5 × 5 tiles in all directions to form the infinite tiling. To remedy this problem,
we generate variants of our five initial tiles A1, B1, C1, D1 and E1 which exactly copy the boundaries of
their respective prototype with index zero but differ on the inside. Now, in our infinite tiling each tile
of a specific prototype is replaced randomly with either the original 0-variant or the new 1-variant of
that type. With only two variants per type we already allow for more than 33 million (225) distinct
squares of 5 × 5 tiles. For our interactive visualization software, we settled with these M = 10 tiles
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due to memory-constraints. However, for printed realizations such as wallpapers, further variants
could be computed, making it even harder to spot recurrences.

The initial five tiles must be computed consecutively since their boundaries depend on each other.
Starting with A0 we have no constraints yet and thus the simulation yields four fresh boundary sides.
The simulation domain Γ0 exceeds the region of interest Γ1 in all four connecting directions because
we need to avoid the level lines always being perpendicular to the boundary of Γ1 (Figure 11a).

Figure 10. (a) Layout of 3× 3 tiles: diagonal recurrence cannot be avoided. (b) Layout of 4× 4 tiles:
the bottom two rows are duplicates of the top two; all other arrangements would yield diagonal
recurrence. (c) Layout of 5× 5 tiles: recurrences in non-obvious pattern.

Figure 11. Initial five tiles and their connecting boundary sides. a) Tile A0 is simulated on Γ0; b,d) Btmp

and Ctmp are intermediate steps in preparation of B0 and C0, respectively; c,e,f,g) tiles B0 through E0

are simulated on domains that extend Γ1 towards Γ0 only in directions where fresh boundary data is
required, the other boundaries are fixed.

As a next step we simulate a temporary tile Btmp to prepare the run for B0. Obviously, tile B0

has to match A0’s right-hand side boundary (s2 in Figure 11b) at its own left-hand side. However,
this is not the only constraint. Our 5 × 5 layout requires that B0 meets A0 also in its top-right corner
(see Figure 10c). Thus, in our temporary step besides fixing the left boundary we also fix the top
boundary with a mirrored version sm

3 of the data from A0’s bottom side. The mirroring is required
because the top-right corner of B0 must conform to the bottom-left corner of A0. The simulation
domain for Btmp exceeds the region of interest only in two directions: bottom and left, where we obtain
data for two fresh boundary sides (Figure 11b). Now we are ready to compute our second tile B0. We
fix the right, bottom and left boundaries with data from our previous two simulations and this time
leave the top-side unconstrained to obtain a fresh boundary that is only fixed at the two corners where
it will match tile A0 (Figure 11c).

For tile C0 we require another preliminary run Ctmp to fix the bottom-left corner where it meets
A0. We use the mirrored top-side sm

1 of A0 at Ctmp’s bottom to account for that and fix the left and
top sides where C0 shares sides with B0 and A0. Only at the left-hand side we obtain a fresh set of
boundary-data (Figure 11d). For C0 we release the bottom-constraint of Ctmp and obtain another fresh
boundary (Figure 11e). The last tile with a fresh boundary is D0. All sides, except the right-hand side
one, are already constrained by previous computations (Figure 11f). For E0 all four sides are fully
predetermined (Figure 11g). We need to simulate it only for its interior.

All variant-tiles A1 through E1 (and further ones if desired) can now be computed in parallel
since their boundaries are already known. They are all restricted to Γ1 and do not require extraction of
boundary-values and -fluxes, hence are computationally less expensive than the initial runs.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/11/4/444/s1,
Figure S1: tile1, Figure S2: tile2, Figure S3: tile3, Figure S4: tile4, Video S5: Coarsening of 3D structure, visualized
by showing φ = 1 in Ω, Video S6: Coarsening of 3D structure, visualized by showing φ = 0.5 at z = 0.01, 0.13,
0.25, 0.37, 0.49, Video S7: Coarsening of 3D structure, visualized by showing φ = 0.5 at z = 0.01, 0.13, 0.25, 0.37,
0.49 projected to z = 0, Video S8: Journey through space and time in the visualization software in black and white,
Video S9: Journey through space and time in the visualization software with colored tiles, Video S10: Rubik’s cube.
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