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Lipid membranes are examples of fluid deformable surfaces, which can be viewed as
two-dimensional viscous fluids with bending elasticity. With this solid–fluid duality
any shape change contributes to tangential flow and vice versa any tangential flow on
a curved surface induces shape deformations. This tight coupling between shape and
flow makes curvature a natural element of the governing equations. The modelling
and numerical tools outlined in Torres-Sánchez et al. (J. Fluid Mech., vol. 872, 2019,
pp. 218–271) open a new field of study by enabling the exploration of the role of
curvature in this context.

Key words: membranes, interfacial flows, morphological instability

1. Introduction

Fluid deformable surfaces are ubiquitous interfaces in biology, playing an
essential role in processes from the subcellular to the tissue scale. For instance,
lipid membranes are fluidic thin sheets that define the boundaries of cells and
compartmentalize them. From a mechanical point of view, lipid membranes are
soft materials exhibiting a solid–fluid duality: while they store elastic energy when
stretched or bent, like solid shells, they cannot do so under in-plane shear, a situation
under which they flow as two-dimensional, viscous fluids. These two features,
out-of-plane elasticity and interfacial viscosity, have often been examined separately.
Mechanical equilibrium can essentially be understood with the classical bending model
of Helfrich (1973) and the modelling of the hydrodynamics of fluid films goes back
to Scriven (1960). Based on Onsager’s variational formalism Torres-Sánchez, Millán
& Arroyo (2019a) derive a first approximation to the dynamics of lipid membranes by
combining bending and surface hydrodynamics. Omitting inertial effects, the derived
equations correspond to the force and torque balance equations and the constitutive
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laws postulated in Salbreux & Jülicher (2017) as well as the thin-film limit of the
corresponding bulk model equations in Nitschke, Reuther & Voigt (2019). The major
contribution of Torres-Sánchez et al. (2019a) is not only a systematic and transparent
way to derive the governing equations in the fully nonlinear regime, but also a
computational framework for these equations which goes beyond previously studied
axisymmetric settings (Arroyo & DeSimone 2009). Thus, the tight coupling between
tangent flows and shape changes in the presence of curvature can for the first time
be explored in its full beauty. Any shape change contributes to strains and so must
be accompanied by a tangent flow and vice versa, tangential flows on curved surfaces
induce shape deformations. This coupling makes curvature a natural element of the
governing equations of fluid deformable surfaces. This pioneering exploration of the
role of curvature is made possible with the modelling and numerical tools outlined
in Torres-Sánchez et al. (2019a).

2. Overview

Besides their excellent overview of the subject, Torres-Sánchez et al. (2019a) make
three main contributions: they use Onsager’s variational formalism to derive equations
in a thermodynamically consistent way, they apply an arbitrary Lagrangian–Eulerian
(ALE) formulation for their numerical solution and they consider various applications,
with models and simulations which surpass previous approaches.

It is a challenging task to derive governing equations which couple shape evolution
and surface flow in a thermodynamically consistent way. In contrast to scalar
quantities, where the transport theorem provides all the necessary tools to transport
them on an evolving surface, such tools do not exist for vector quantities, like the
tangential velocity field. A componentwise interpretation, a concept we are used to
in flat space, does not make sense on a curved surface. There are various options
to mathematically define a directional derivative on an evolving surface, each with
a different physical meaning, either more appropriate for solids or for fluids. The
derivation of the equations using variational methods requires, e.g. to vary the
underlying energy with respect to shape changes, while considering the surface
quantity, here the tangential velocity, as an independent variable. The definition of
the directional derivative is key to this approach and needs to be considered carefully
given the solid–fluid duality of lipid membranes. Although Torres-Sanchez et al. also
have to deal with this issue, they consider a more abstract setting, a nonlinear Onsager
formalism; see Doi (2011), Mielke (2012) and Arroyo et al. (2018). This provides
a unified variational framework for the dissipative dynamics of soft matter systems,
where the dynamics minimizes a Rayleighian functional and results from the interplay
between energetic driving forces, dissipative drag forces and external forces, each
of them deriving from potentials that are the sum of individual contributions for
each physical mechanism. This formalism is ideally suited for complex multiphysics
problems, because new components can simply be added term by term to the energy
and dissipation potentials together with their interaction. Also constraints can be
added in a natural way using Lagrange multipliers. As long as inertial effects can
be neglected, the nonlinear Onsager formalism is certainly the most systematic and
transparent way to derive such nonlinearly coupled systems of equations.

The derived set of equations contains surface-vector-valued partial differential
equations (PDE), e.g. the surface Stokes equation with the tangential velocity field
as an unknown. Again, tools used for scalar quantities cannot be applied to each
component, as would be appropriate in flat space, and new numerical methods are
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required. Torres-Sánchez et al. (2019a) circumvent this problem by considering
a vorticity–streamfunction approach, which transforms the problem into a set of
scalar-valued PDEs for which various numerical approaches have been developed;
see Dziuk & Elliott (2013) for an overview. As also mentioned in Torres-Sánchez
et al. (2019a), this restricts applicability to simply connected surfaces, as otherwise
the tangential velocity field contains, in addition to irrotational and solenoidal
components, non-trivial harmonic vector fields that cannot be represented by the
vorticity, see Nitschke, Reuther & Voigt (2017) for an example. For general surfaces
a direct approach using velocity and pressure as unknowns is required. One idea
to deal with tangential velocity fields is to consider non-tangential fields on the
surface and impose tangentiality through constraints; see Fries (2018), Reuther &
Voigt (2018) for a finite element realization for surface Navier–Stokes equations. The
concept is extended to general surface vector and tensor fields in Nestler, Nitschke &
Voigt (2019). Another approach to solve surface vector- and tensor-valued PDEs is
considered in Torres-Sánchez, Santos-Olivan & Arroyo (2019b), which is based on a
local Monge parameterization and does not required any additional degrees of freedom
in the normal direction. Numerical analysis results needed for both approaches, and
moreover a comparison in terms of stability, computational cost and implementational
effort, do not yet exist. However, all these approaches, including that for scalar-valued
PDEs, require a surface mesh that evolves in time. As for bulk problems on evolving
domains, it proves computationally efficient to consider a mesh velocity which is
different from the interpolated material velocity, as the additional freedom can be
used to obtain beneficial mesh properties; see, e.g. Elliott & Styles (2012) and Elliott
& Venkataraman (2014). The ALE formulation in Torres-Sánchez et al. (2019a) is
related to these approaches, and leads to similar conclusions.

With a view to applications, the model of lipid membranes as a viscous fluid with
bending elasticity is extended to the Seifert–Langer model (Seifert & Langer 1993),
which accounts for the bilayer structure of the membrane by including stretching
elasticity and lipid density on each layer. The ALE approach is well suited for this
model, as it allows resolution of the density of both layers on the same mesh. A third
model considers a viscous layer which is driven by active tension and an additional
cortical density. The numerical examples considered show the relaxation dynamics
from shape or density perturbations and in the last example, migration as a result
of self-polarization. In all cases the solid–fluid duality of the system and the role of
curvature in the coupling of shape changes and surface flow are highlighted, and the
applicability of the ALE approach to solve the derived models is demonstrated.

3. Future

Torres-Sánchez et al. (2019a) outline the modelling and numerical tools to study
fluid deformable surfaces and explore the role of curvature in the interaction between
shape changes and flow properties. The same framework could be used to consider
the interaction with chemistry, where a notable example is curving proteins, which
can diffuse and absorb/dissorb. Such interaction is involved in the morphogenesis of
organelle; see, e.g. Shibata et al. (2009) and Le Roux et al. (2019). Although these
couplings have so far only been explored in passive systems, the most promising
applications are found in active systems, where the tools outlined provide opportunities
to study the dynamics of self-organized active surfaces. Modelling the cellular cortex
or epithelia sheets with these tools paves the way towards an exploration of the
regulatory role of curvature in morphogenetic processes. While first steps in this
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direction have already been considered for axisymmetric settings (Mietke, Jülicher
& Sbalzarini 2019), primarily applicable to the fruit fly Drosophila, developmental
processes in other organisms deviate from axisymmetric shapes at early times and
require more general tools. Besides these new applications for fluid mechanics, new
challenges can also be found in the numerical analysis of the proposed and related
algorithms (Sahu et al. 2018; Nestler et al. 2019), and benchmark problems for fluid
deformable surfaces would be valuable to further develop the field.
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