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ABSTRACT
Topological and geometrical properties and the associated topological defects find a rapidly growing interest in studying the interplay between
mechanics and the collective behavior of cells on the tissue level. We here test if well studied equilibrium laws for polydisperse passive
systems such as Lewis’ and Aboav-Weaire’s law are applicable also for active cellular structures. Large scale simulations, which are based on
a multiphase field active polar gel model, indicate that these active cellular structures follow these laws. If the system is in a state of collective
motion, quantitative agreement with typical values for passive systems is also observed. If this state has not developed, quantitative differences
can be found. We further compare the model with discrete modeling approaches for cellular structures and show that essential properties,
such as T1 transitions and rosettes, are naturally fulfilled.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5085766

I. INTRODUCTION

Although driven and active systems are far from equilibrium,
they have been shown to share key features with passive systems.
Examples are effective thermal behavior and time correlation func-
tions in assemblies of cells, which behave as equilibrium glass tran-
sitions1,2 or motility induced phase separation, which shares prop-
erties such as coarsening laws and statistical self-similarity with
classical phase separation in binary systems.3,4 We will here test
if topological and geometric quantities, which are well studied for
polydisperse assemblies in passive systems, e.g., foams and froths5,6

or Ostwald ripening of minority phase domains after a rapid tem-
perature quench,7,8 are also valid for monolayers of cells. We will
consider two empirical laws, Lewis’ law, originally proposed in stud-
ies of the epidermis of Cucumis,9 which expresses the existence
of correlation between the area and number of neighbors (coor-
dination number q) of a cell, and Aboav-Weaire’s law, with the
original aim to understand the mechanism of growth of polycrys-
tals,10 which states that cells with high (low) coordination numbers
are surrounded by small (large) cells. In other words, Lewis’ law
indicates how space is most likely to be filled by cells, whereas

Aboav-Weaire’s law gives the most probable correlation between
neighboring cells. Both laws for space-filling cellular structures can
be found in biological, geographical, mathematical, and physical lit-
erature (see, e.g., Ref. 11 for a review). Such topological properties
and the associated topological defects find a rapidly growing inter-
est in studying the interplay between mechanics and the collective
behavior of cells on the tissue level.12 Particularly for fully conflu-
ent epithelial tissues where cells are densely packed, various cell-
based models have been developed to study epithelial tissue mechan-
ics.13–18 Besides these vertex models, also phase field models that
can represent a cell’s shape and dynamics in great detail have been
proposed.19–26 These models, which fulfill essential properties of cel-
lular structures naturally, will be the basis for the simulations in this
paper.

This paper is organized as follows: In Sec. II, we briefly review
the considered model, which is based on a multiphase field approach
using one phase field variable per cell and a polar active gel the-
ory within each cell. We further mention the numerical approach,
which considers one cell per processor and thus shows parallel scal-
ing properties independent of the number of cells. We will consider
simulations with approximately 100 cells. In Sec. III, the algorithm is
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used to analyze the collective behavior in various settings and topo-
logical and geometric properties are computed and compared with
the equilibrium Lewis’ and Aboav-Weaire’s laws and typical values
obtained for passive systems. We thereby demonstrate the possibil-
ity to classify cellular systems according to their collective behavior.
In Sec. IV, we draw conclusions.

II. MODEL AND METHODS
Each cell is modeled by a phase field active polar gel

model,23,27,28 and the cells interact via a short-range interaction
potential.25 We consider i = 1, . . ., n phase field variables �i and
polarization fieldsPi, for which the coupled evolution equations read

∂t�i + v0∇ ⋅ (�iPi) = γ∆µi ,

µi ∶=
δF
δ�i

= 1
Ca

(− ε∆�i +
1
ε
W′(�i)) +

1
Pa

(− c
2
∥Pi∥2 − β∇ ⋅ Pi)

+
1
In

(B′(�i)∑
j≠i

w(dj) + w′(di)d′i(�i)∑
j≠i

B(�j)),

∂tPi + (v0Pi ⋅ ∇)Pi = −
1
κ
Hi ,

Hi ∶=
δF
δPi

= 1
Pa

(− c�iPi + c∥Pi∥2Pi − ∆Pi + β∇�i),

in Ω × (0, T] for some simulation end time T > 0 and a two-
dimensional domain Ω. We assume the following periodic boundary
conditions for Ω. The model results as a H−1 gradient flow (con-
served evolution) of the energy F with respect to �i and an L2

gradient flow (nonconserved evolution) with respect to Pi with

F[{Pi},{�i}] =∑
i
( 1
Ca ∫Ω

ε
2
∥∇�i∥

2 +
1
ε
W(�i)dx

+
1
Pa ∫Ω

1
2
∥∇Pi∥2 +

c
4
∥Pi∥2(−2�i + ∥Pi∥2)

+βPi ⋅ ∇�i dx +
1
In ∫Ω

B(�i)∑
j≠i

w(dj)dx)

considering the surface energy for the cell boundaries, a polar liq-
uid crystal energy in the cells and interaction terms. The parame-
ters Ca, Pa, and In act as weightings between these contributions.
The surface energy is a classical Ginzburg-Landau function with
double-well potential W(�) = 1

4(�
2 − 1)2 and interface thickness

ε. Additional surface properties, such as bending, have shown to
be of small impact25 and are therefore neglected here. The polar
liquid crystal energy is of Frank-Oseen type, and c and β are the
parameters controlling the deformation of the polarization fields
Pi within the cell bulk and the anchoring on the cell interface,

respectively. The value of β, modeling the polymerization rate of
actin filaments, will be of particular relevance in the following con-
siderations due to its strong influence on the emergence of collective
motion (see Refs. 22 and 25 for details). The interaction term con-
siders B(�i) = 3

ε
√

2
W(�i) ≈ δΓi an approximation of the surface

delta function for the cell boundary Γi = {x ∈ Ω | �i(x) = 0} and an
approximation of an interaction potential w(dj) with signed distance
function dj with respect to the zero-line (cell boundary Γj) of �j.
Activity is introduced in the evolution equations by a self-propulsion
term, with velocity value v0, which will also be of particular impor-
tance in the following. For more details, we refer to Refs. 23, 25, 27,
and 28. In previous studies, a short range repulsive interaction was
considered, with

w(dj) = exp ( −
d2
j

ε2 ), with dj(�j) = −
ε√
2

ln
1 + �j(x)
1 − �j(x)

,

the signed distance function computed from the equilibrium tanh-
profile of the phase field function �j. However, other forms are
possible as well, such as short range adhesive interactions or even
more realistic effective interaction potentials, as, e.g., experimentally
determined in Ref. 29 and shown to be essential for local cellular
order. Here, our approach differs from other phase field studies, e.g.,
Refs. 21 and 22, where simply the overlap of two cells is penalized
by an energy term proportional to ∑j≠i ∫Ω �2

i �
2
j dx and/or adhe-

sion to the cell boundaries is promoted by a term proportional to
−∑j≠i ∫Ω ∣∇�i∣2∣∇�j∣2 dx.

In order to solve the equations numerically, we consider a finite
element implementation which scales with the number of cells n.
This is achieved by considering each cell on a different processor
and various improvements to reduce the communication overhead
to deal with the cell-cell interactions (see Refs. 30–34 for detail).

Previous studies of the model were concerned with dilute
monodisperse systems and the emergence of collective motion.25,34

We here consider densely packed disperse systems where various
model parameters are varied to analyze the effect on topological and
geometric quantities of the active cellular structures.

III. RESULTS
In the following, we consider for each cell the average polariza-

tion defined by

P̂i ∶= ∫Ω
Pi(�i + 1)dx

∫Ω(�i + 1)dx

which is visualized in Fig. 1. Shown are the zero-level lines of �i
(cell boundaries of each cell). The red arrows in the left and right

FIG. 1. Examples of P̂i (middle) as aver-
age of Pi (left and right).
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FIG. 2. Snapshots of the evolution for
t = 60, 225, 800 from the left to right. The
simulation is done with β = 0.3, v0 = 2.5
and a random initialization of the polar-
ization field. The top row visualizes the
emergence of collective motion. The bot-
tom row shows the number of neighbors
at the corresponding time instances with
the color code given below.

FIG. 3. Typical T1 transition. The color
highlights the involved cells in the topo-
logical change which are in contact with
each other at the beginning of the T1
transition.

frames visualize Pi for two exemplary cells, while the blue arrows in
the middle frame depict P̂i for all shown cells.

Figure 2 shows the snapshots of the evolution of the cellular
structure with arrows indicating P̂i for all cells. In addition, we color
code the number of neighbors (coordination number q), which is
shown for the same snapshots.

We consider an initial size distribution with a mean cell area
determined by the number of cells and a variance of σ = 3. In par-
ticular, the initial condition of the phase field variables is given by a
dense packing of rectangular cells aligned in a brick wall pattern.
Due to the phase field approach with ε > 0, a space-filling struc-
ture is not possible, and we instead consider an area fraction of
0.95 achieved by a shrinkage of each cell, which explains the visible
empty space in Figs. 2–4. We vary the parameter β, which models
the anchoring of the polarization field at the cell boundaries, and the
parameter v0, which models the self-propulsion. When studying the
influence of β, we choose v0 = 2.5, and in the study of v0, we fix
β = 0.3. All other parameters are fixed over all simulations (see
Table I for the considered values).

In contrast to vertex models (e.g., Ref. 13), where topological
transitions have to be incorporated by hand, the multiphase field
approach deals with these transitions automatically (see Fig. 3 for
a typical T1 transition in the evolution process). Also points where
four or more cells are in contact with each other, so called rosettes,
have to be explicitly enforced within vertex models18 and occur nat-
urally within the multiphase field approach (see Fig. 4 for examples).

Such rosettes have been identified as crucial in development, disease,
and physiology (see, e.g., Refs. 35–37).

We are now concerned with the emerging behavior. Depend-
ing on the parameters β and v0, the cellular structure converges to
a state where all cells move in the same direction or remains within
the considered time T in a chaotic state. We quantify this evolution
according to Refs. 22 and 38 by computing the translational order
parameter

θ(t) = 1
n
∥∑

i
v̂i(t)∥,

FIG. 4. Examples for rosettes found in the simulations. The color highlights
“vertices” with four (red) or five (green) cells.
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TABLE I. Numerical parameters used in all simulations.

Ω ε γ κ Pa Ca In c

[0, 100] × [0, 100] 0.15 1 1 1 0.025 0.05 1

with v̂i(t) being the unit velocity vector of cell i at time t. It is 1 if all
cells move in the same direction and 0 if all cell velocities are inde-
pendent. In particular, we use the threshold 0.9 < θ to classify a state
of global collective motion. Note that this alignment of all particles
in an active system is sometimes also referred to as a state of flocking
(see Refs. 39 and 40). The cell velocity is computed from the center
of mass of each cell at adjacent time instances. Its direction corre-
sponds to the direction of P̂i. Figure 5 (top) shows the evolution of
the order parameter θ for different initial conditions and different β
with fixed v0 = 2.5. For β = 0.3, a state of collective motion is reached

FIG. 5. Translational order parameter θ(t) indicating collective motion for different
values of β with fixed v0 = 2.5 (top) and different values of v0 with fixed β = 0.3
(bottom). The time is considered in nondimensional units.

immediately, whereas for β = 0.1, this state is never reached within
the considered time T and one could conclude that it will probably
never be reached. For β = 0.2, it takes a long time before collec-
tive motion can be observed. Depending on the initial conditions,
it might not even be reached within the considered time.41 Figure 5
(bottom), on the other hand, shows the evolution of θ with different
values of v0 but fixed β = 0.3. In comparison to v0 = 2.5, we observe
that for the slightly increased value v0 = 3.5, the system still reaches
a collective state after a relatively short time although oscillations
in the translational ordering are strengthened. Upon increasing the
activity further to v0 = 5.0, no simulation showed collective motion
in the considered time T and oscillations in θ are increased even
more. These findings are in qualitative agreement with the results
obtained for more dilute systems.34

FIG. 6. Coordination number probability for β = 0.1, 0.2, 0.3 with fixed v0 = 2.5
(top) and v0 = 2.5, 3.5, 5.0 with β = 0.3 (bottom), from the left to right. Shown is the
average of the whole time evolution and all considered samples (closed symbols
and fit) and average over the time, where collective motion is already reached
(0.9 < θ) (open symbols).
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In order to characterize the topological domain structures dur-
ing the evolution, we consider the coordination number probability
of the cells, P(q) = N(q)/N, where N(q) is the number of cells with
q nearest neighbor cells and N =∑qN(q). Figure 6 shows P(q) aver-
aged over the whole time interval and the three different simulations
for each β (top) and each v0 (bottom). P(q) is symmetric and cen-
tered at q = 6. This is true for all considered β and v0. Studying
the dependence on β, we observe that P(q) is time-independent for
β = 0.1 and β = 0.3. For β = 0.2, it evolves toward the functional form
for β = 0.3 if the state of collective motion is reached (see additional
open symbols in Fig. 6, which are averaged only over the time, where
collective motion is reached). For varying values of v0, we observe a
time-independent behavior for all simulations. P(q) ≠ 6 corresponds
to cellular structures with topological defects. Depending on β and
with fixed v0 = 2.5, we obtain µ2 =∑q(q − 6)2P(q) ≈ {1.05, 0.94, 0.76}
forβ= 0.1, 0.2, 0.3, respectively, for the variance of P(q). Considering
for β = 0.2 only the time, where collective motion is reached, which
is identified by 0.9 < θ, we obtain µ2 = 0.75. Depending on v0 and
with fixed β = 0.3, we obtain µ2 ≈ {0.76, 0.77, 0.86} for v0 = 2.5, 3.5,
5.0, respectively. P(q) and µ2 have been computed for various pas-
sive systems, experimental and theoretical. They are all symmetric
and centered at q = 6. In addition, the variance values, if collec-
tive motion is reached, are close to these measured data for passive
systems, see, e.g., Ref. 42, where µ2 = 0.64 has been reported. The
coordination number probability of an active cellular structure thus

seems to behave as in passive systems if it is in the state of collective
motion and quantitatively differs if not.

Lewis’ law9 states that cells with a coordination number q = 6
tend to have a size equal to the average cell size and that cells that are
larger (smaller) than the average cell size tend to have a coordination
number larger (smaller) than six and reads

A(q)
A

= α(q − 6) + γ, (1)

with A(q) being the average area of q-coordinated cells, A being the
average cell area, and α and γ being the scalar fitting parameters.
The results are shown in insets (top) of Fig. 7. Depending on β and
with fixed v0 = 2.5, we obtain (α, γ) = (0.14, 1.05), (0.14, 1.05), (0.28,
0.97) for β = 0.1, 0.2, 0.3, respectively. If for β = 0.2 only the times,
where collective motion is already reached (0.9 < θ), are considered,
one obtains (α, γ) = (0.19, 0.99). Depending on v0 and with fixed
β = 0.3, on the other hand, we obtain (α, γ) = (0.28, 0.97), (0.21,
1.02), (0.16, 1.02) for v0 = 2.5, 3.5, 5.0, respectively. We observe that
the values for situations with collective motion are again in excellent
agreement with data in Ref. 42, where 0.20 ≤ α ≤ 0.25 and 0.95 ≤ γ ≤
1.05 have been reported.

Aboav-Weaire’s law10 describes the topological correlation
between the coordination number of a cell, q, with the aver-
age coordination number of its nearest neighbor cells pnn(q) and
reads

FIG. 7. Normalized average area of nearest neighbor cells, Ānn/A vs A/Ā for β = 0.1, 0.2, 0.3 with fixed v0 = 2.5 (top row) and v0 = 2.5, 3.5, 5.0 with fixed β = 0.3 (bottom row)
from the left to right, together with a fit according to Eq. (3). Insets (top) show Ā(q)/A vs coordination number q, corresponding to Lewis’ law. The line shows a linear fit through
the data. Insets (bottom) show the average coordination number of nearest neighbor cells of q-coordinated cells vs coordination number q, corresponding to Aboav-Weaire’s
law. The line shows a linear fit through the data.
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qpnn(q) = (6 − ζ)(q − 6) + η (2)

with scalar fitting parameters ζ and η. The results in insets (bot-
tom) of Fig. 7 show the suggested linear behavior. Depending on
β and with fixed v0 = 2.5, we obtain (ζ, η) = (0.36, 35.35), (0.32,
34.97), (1.18, 36.22) for β = 0.1, 0.2, 0.3, respectively, and for the
times of collective motion (0.9 < θ) for β = 0.2, (ζ, η) = (1.20, 35.93).
Depending on v0 and with fixed β = 0.3, we obtain (ζ, η) = (1.18,
36.2), (0.79, 35.76), (0.96, 35.62) for v0 = 2.5, 3.5, 5.0, respectively.
Again the values for collectively moving cellular structures are in
quantitative agreement with those measured in passive systems, see
Ref. 42, where (ζ, η) = (1.10, 36.64) have been reported. The linear-
ity of Aboav-Weaire’s law has also been found theoretically43 and
experimentally.44

Both laws, Lewis’ law and Aboav-Weaire’s law, also lead to
a correlation between the area of a cell, A, and the average area
of its nearest neighbors, Ann (see Fig. 7). Cells which are larger
(smaller) than the average cell size are mostly surrounded by the
nearest neighbor cells that are smaller (larger) in size. All three cases
qualitatively show this anticorrelation and also fulfill the proposed
functional form for this relation

f (x) = 1
x
(1 +

α2µ2 − ζα(x − 1)
6α + (x − 1) ), (3)

with x = A/Ā and f (x) = Ānn/A and the fitting data α from Lewis’
law, ζ from Aboav-Weaire’s law, and µ2 from the variance of
P(q). The functions are plotted in Fig. 7. The law results from
maximum entropy theory for random two-dimensional cellular
structures.45,46

In summary, we obtain qualitative agreement with equilibrium
topological and geometrical relations widely found in passive sys-
tems, independent of the used parameters and the macroscopic state
of the active cellular structure and even quantitative agreement with
typical values for Lewis’ law, Aboav-Weaire’s law, and the combined
functional form in Eq. (3) for passive systems, within the state of
collective motion. To further confirm these results, we classify the
whole dataset (all β, all v0, all initial conditions) according to the
value of the translational order parameter θ, with θ < 0.3 (chaotic
regime), 0.3 ≤ θ ≤ 0.9 (intermediate regime), and 0.9 < θ (collective
motion), and we obtain the values in Table II.

Our investigations indicate that also in active cellular struc-
tures, if they are collectively moving, the cells are arranged in
space to maximize the configurational entropy. In this study, we
only varied the parameters β, which controls the anchoring of the

TABLE II. Variance of coordination number probability P(q) and linear fitting param-
eters for topological and geometric laws over all simulations, classified according to
translational order parameter θ.

Lewis’ law Aboav-Weaire’s law

µ2 α γ ζ η

θ < 0.3 0.98 0.14 1.04 0.64 35.25
0.3 ≤ θ ≤ 0.9 0.88 0.17 1.03 0.69 35.40
0.9 < θ 0.78 0.26 0.97 1.11 36.28
Sire and Seul42 0.64 [0.20, 0.25] [0.95,1.05] 1.10 36.64

polarization fields Pi on the cell interface, see Refs. 23 and 25, and v0,
which induces activity of the system. All other parameters are kept
constant and further studies, e.g., on the influence of the stiffness
of the cell boundaries or the interaction potential, are postponed
to future work. However, the classification according to the trans-
lational order parameter θ suggests to obtain similar results also in
these situations.

IV. CONCLUSIONS
The used multiphase field active polar gel model can be con-

sidered as a minimal model of active cellular structures. It is based
on active driving, cell deformation, and force transmission through
interactions at the cell-cell interfaces. The collective dynamics in the
cellular structures are not simply the result of many individually
moving cells, but results from coordinated movement of interact-
ing cells. It could not be expected that laws, which are derived for
passive systems, are applicable for such active structures. However,
our results clearly indicate that topological and geometric relations
also hold in active systems and established laws, such as Lewis’ law
and Aboav-Weaire’s law are fulfilled if the active system is in a col-
lectively moving state. Using the translational order parameter with
0.9 < θ as an indicator for collective movement, all simulation results
fulfill these laws and agree quantitatively with typical results for pas-
sive systems. Below this threshold, the results deviate from these
values.

The proposed multiphase field model shows various advantages
if compared with active vertex models17 and the considered numer-
ical approach allows us to simulate a reasonable number of cells to
analyze characteristic tissue topologies. However, for its applicabil-
ity in tissue mechanics, various model extensions, e.g., toward cell
growth and cell division, are required. On the other side, even sim-
plified approaches of the multiphase field model have recently been
used to demonstrate the emergence of macroscopic nematic liquid
crystal features of tissues.47 The corresponding topological nematic
defects have shown to be essential for cell death and extrusion.48

To analyze the relation between the dynamics in cellular structures
and such macroscopic features and the resulting tissue mechanics,
still has to be explored. The multiphase field approach is a valuable
framework that can incorporate a broad range of submodels, in our
case an active polar gel model. Other possibilities are couplings with
biochemistry49,50 or hydrodynamics.25
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