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Magnetically induced/enhanced coarsening in thin films
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External magnetic fields influence the microstructure of polycrystalline materials. We explore the influence
of strong external magnetic fields on the long time scaling of grain size during coarsening in thin films with an
extended phase-field-crystal model. Additionally, the change of various geometrical and topological properties
is studied. In a situation which leads to stagnation, an applied external magnetic field can induce further grain
growth. The induced driving force due to the magnetic anisotropy defines the magnetic influence of the external
magnetic field. Different scaling regimes are identified dependent on the magnetization. At the beginning, the
scaling exponent increases with the strength of the magnetization. Later, when the texture becomes dominated
by grains preferably aligned with the external magnetic field, the scaling exponent becomes independent of the
strength of the magnetization or stagnation occurs. We discuss how the magnetic influence change the effect of
retarding or pinning forces, which are known to influence the scaling exponent. We further study the influence of
the magnetic field on the grain size distribution (GSD), next-neighbor distribution (NND) as well as grain shape
and orientation. If possible, we compare our predictions with experimental findings.
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I. INTRODUCTION

Grain boundaries in polycrystalline materials are of
paramount importance to various fields of science and engi-
neering. They have been intensively studied theoretically and
experimentally over decades. Quantitative comparison of ge-
ometrical and topological properties between theory or simu-
lation and experimental data are still unsatisfactory in general.
Progress have been made for nanocrystalline thin metallic
films. Geometric and topological characteristics of the grain
structure can be shown to be universal and independent of
many experimental conditions [1]. A phase field crystal (PFC)
model [2,3], which considers the essential atomic details but
operates on diffusive time scales, was able to reproduce the
universal grain size distribution and showed similar scaling
properties and stagnation as in the experiments [4]. This is
in contrast with more classical Mullins-like models, which
only consider the evolution of the continuous grain boundary
network [5]. Theoretical predictions and simulations for this
type of models lead to self-similar structures and coarsening
laws for the average grain size of the form tα , with a scaling
exponent α = 1 in the original setting [6]. These models have
been extended by including retarding and pinning forces for
grain boundary movement [7–9] and grain rotation [10–12].
The modifications can explain the smaller scaling exponents
in experiments and stagnation. However, also these modifica-
tions are unable to reproduce the universal grain size distri-
bution (GSD). A detailed comparison between these models
with PFC simulations [4] and experiments in Ref. [1] can be
found in Ref. [13]. With the achieved agreement for various
geometrical and topological properties it is now time to use
the PFC model as a predictive tool to control grain growth in
thin films under the influence of external fields.

External magnetic fields during processing influence grain
growth and as such have been proposed as an additional

degree of freedom to control the grain structure, see [14,15]
for reviews. The PFC model has been extended to in-
clude magnetic interactions in Refs. [16,17] and was used
in Ref. [18] to explain the complex interactions between
magnetic fields and solid-state matter transport. An applied
magnetic field influences the texture during coarsening due
to the anisotropic magnetic properties of the single grains.
Grains with their easy axis aligned to the external field are
energetically preferred. They grow preferably at the expense
of the other grains. The mobility of grain boundaries in this
model is found to be anisotropic with respect to the applied
magnetic field. Magnetostriction is naturally included in the
extended PFC model. All these effects already change texture
on small time scales. In this paper, we analyze the long
time scaling behavior and various geometrical and topological
properties in grain growth under the influence of a strong
external magnetic field.

The paper is organized as follows: We first review the
underlying PFC model, the physical setting and the considered
numerical approach. Then we consider the coarsening regime
and analyze various geometrical and topological measures.
Finally, we discuss the results, explain our findings and draw
conclusions.

II. MODEL AND NUMERICAL APPROACH

The model in Refs. [16–18] combines the rescaled number
density ϕ of the original PFC model [2,3] with a mean-field
approximation for the averaged magnetization m. The total
energy,

F[ϕ, m] =
∫

fPFC(ϕ) + ωB fm(m) + ωB fc(ϕ, m)dr,

consists of contributions related to local ordering in the
crystal, fPFC(ϕ), and the local magnetization, fm(m). The
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magnetic anisotropy is included by coupling density field and
magnetization in the last term, fc(ϕ, m). ωB is a parameter to
control the influence of the magnetic energy.

An extended PFC model (XPFC) is chosen in order to
define the crystal structure [19],

fPFC(ϕ) = 1

2
ϕ(r)2− t

6
ϕ(r)3+ v

12
ϕ(r)4

−1

2
ϕ(r)

∫
C2(r − r′)ϕ(r′)dr′.

The magnetization is governed by

fm(m) = W 2
0

2
(∇·m)2+rm

m2

2
+γm

m4

4
−m · B+ B2

2
,

where rm and γm control the magnitude of magnetization
and W 2

0 the energy due to inhomogenities of magnetization
[16,18]. The magnetic anisotropy is modeled by coupling the
density wave with magnetization [16]

fc(ϕ, m) = −ωmϕ2 m2

2
−

2∑
j=1

α2 j

2 j
(m · ∇ϕ)2 j .

In order to maximize the anisotropy, as in [18], a square or-
dering of the crystal is preferred, which is realized within the
XPFC formulation for fPFC(ϕ), see [19,20]. The correlation
function C2 is approximated in k space as the envelope of a set
of Gaussians and with peaks chosen by the primary k vectors
defining the crystal structure. For a square symmetry a mini-
mum of two peaks is needed, Ĉ2(k) = max (Ĉ2,0(k), Ĉ2,1(k))
and Ĉ2,i(k) = Ai exp [(ki − k)2/(2ξ 2

i )]. The effect of temper-
ature on the elastic properties is seen in the width of the peaks
and modeled by ξi. Ai is a Debye-Waller factor controlling the
height of the peaks.

Magnetization in an isotropic and homogenous material is
modeled by fm(m). The last two terms describe the interaction
of the magnetization with an external and a self-induced
magnetic field, Bext and Bind, respectively. The magnetic field
is defined as B = Bext + Bind, where Bind is defined with help
of the vector potential: Bind = ∇ × A and ∇2A = −∇ × m.

The magnetic anisotropy of the material is due to the
crystalline structure of the material. Thus the magnetization
has to depend on the local structure represented by ϕ and vice
versa. The first term in fc(ϕ, m), changes the ferromagnetic
transition in the magnetic free energy. On average ϕ2 is larger
in the crystal than in the homogeneous phase. Thus ωm and rm

can be chosen to realize a paramagnetic homogeneous phase
and a ferromagnetic crystal. The second term depends on
average on the relative orientation of the crystalline structure
with respect to the magnetization.

The number density ϕ evolves according to conserved
dynamics and magnetization according to nonconserved
dynamics,

∂ϕ

∂t
= Mn∇2 δF[ϕ, m]

δϕ
,

∂mi

∂t
= −Mm

δF[ϕ, m]

δmi
, (1)

i = 1 and 2, respectively. However, in the limit of strong ex-
ternal magnetic fields Bext, the magnetization m can assumed
to be homogeneous in the crystal. As shown in Ref. [18] the
magnetization becomes perfectly aligned with the external
magnetic field and independent of the relative orientation of

TABLE I. Modeling parameters. The parameters are inspired by
Ref. [20] and chosen to maximize the energetic difference between
square and triangular phase.

t v Mn ϕ̄ k0/1 ξ1/2 A0,1 ωB α2,4

1 1 1 0.05 (2π,
√

22π ) (1, 1) (1, 1) 1 (−0.001, 0)

the crystal. For paramagnetic or ferromagnetic materials near
the Curie temperature, the magnitude of the magnetization
m = |m| dependents on the magnitude of the external mag-
netic field Bext. In this limit, fm(m) is constant and does not
influence the dynamics. Furthermore, we are only concerned
with the crystal phase and assume ωm = 0. The remaining
parameters are chosen as in Table I and lead to a minimiza-
tion of energy if the magnetization is aligned with the 〈11〉
directions of the crystal, the easy axis. The hard axis are the
〈10〉 directions. Thus, a preferably or perfectly aligned single
crystal has a 〈11〉 direction aligned with the external magnetic
field. Due to the direct relation between Bext and m, only the
evolution equation for ϕ remains and reads

∂ϕ

∂t
= Mn∇2

⎡
⎣ϕ − t

2
ϕ2 + v

3
ϕ3 −

∫
C2(r − r′)ϕ(r′)dr′

+ωB∇
2∑

j=1

α2 j (m∇ϕ)2 j−1m

⎤
⎦, (2)

where m is considered as a parameter. Increasing m leads to
increasing anisotropy and magnetostriction [18]. The external
magnetic field Bext and thus m is assumed to be parallel to
the thin film. Thus, in this limit of strong external magnetic
fields, we can use m to vary the strength and direction of
the influence of the external magnetic field on the thin film.
The magnitude of m is varied between [0; 0.8] and varies the
magnetic anisotropy.

In order to increase numerical stability, short wavelength in
the solutions of the density are gradually damped in k space by
adding −10−6(2k1 − k)2 to Ck(k). The evolution equation is
solved semi-implicitly in time with a pseudospectral method.
For numerical details, we refer to Refs. [21,22]. The reduced
model Eq. (2) is numerically more stable and less costly com-
pared to the full model (1). The time step may be increased by
an order of magnitude. Thus coarsening simulations for large
times become feasible.

Here, the thin film is modeled by a two dimensional slab
perpendicular to the film height. The crystalline order is
defined by the density wave ϕ . The external magnetic field
is assumed parallel to the film and induces a homogeneous
magnetization. The magnetic driving force in the model is
controlled by the magnitude of the magnetic moments.

We choose a parameter set, which shows stagnation in
coarsening to include the effect of retarding forces and reflect
the experimental findings. The simulation domain has size
L2 = 819.22. The mean distance of density peaks is one and
is resolved by ten grid points, (dx = 0.1). Thus the whole
systems consists of 6.7 × 105 density peaks, representing
particles. A time step of dt = 0.1 was used.
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FIG. 1. Long time evolution of mean grain area for different
magnetization. Four different regimes are identified: (a) towards scal-
ing, an initial phase; (b) dependent scaling, a magnetically enhanced
scaling regime with the scaling exponent depending on m; (c) to-
wards stagnation, a regime which is only present without or with low
magnetic fields; and (d) independent scaling, a regime reached at late
times, with a scaling exponent independent of magnetic anisotropy.
m is varied between [0; 0.8] and models the strength of magnetic
influence and anisotropy.

III. COARSENING

Equation (2), is used to model magnetic assisted annealing
of thin films. The texture of the polycrystalline structure is
monitored during annealing in order to extract geometrical
and topological properties over time and compare them for
different magnitudes m. To generate an appropriate initial
condition, we set m = 0, start with a randomly perturbed
density field ϕ, and solve Eq. (2) until we reach a poly-
crystalline structure with small crystallites with square sym-
metry. The perturbation is a random distortion at every grid
point. The small wavelength perturbations are smoothed
rapidly by the evolution equation, but long wavelength per-
turbation act as nucleation centers. Thus, at random positions,
grains with random orientation begin to grow until they touch
and from a network of grain boundaries. After impingement
we got about 1600 randomly oriented grains. This configura-
tion is used as initial condition for all simulations.

A. Scaling

Figure 1 shows the evolution of the mean grain area 〈A〉.
Coarsening leads to an increase of the mean grain area over
time. The coarsening is enhanced by increasing the magneti-
zation and, thus, the magnetic anisotropy. We identify scaling
regimes by a power law, 〈A〉 ∝ tα , with a scaling exponent α.
In all cases, a first scaling regime Fig. 1(b) is reached after
an initial phase Fig. 1(a). Without magnetization a scaling
exponent of α = 1/3 is observed. Increasing the magnetic
influence increases the scaling exponent. The maximum scal-
ing exponent α = 1 is achieved for m = 0.8. However, this
scaling regime ends. For small magnetic influence below
some threshold, it turns into stagnation, Fig. 1(c). Above this

threshold, here m � 0.5, the scaling becomes independent of
magnetic interaction and we observe α = 1/3, Fig. 1(d).

It has been shown before that without magnetic driving
force the scaling exponent depend on initial conditions and
modeling parameters [4]. This also remains if magnetic driv-
ing forces are included. The identified regimes (a), (b), (c),
and (d) thus also depend on initial conditions and modeling
parameters.

Without magnetic driving force the texture becomes self
similar during coarsening [1,4]. This is not the case for
magnetically enhanced coarsening due to grain selection. In
the following, we analyze texture evolution during coarsening
in detail in order to understand the change of the scaling
behavior.

B. Orientation selection

The magnetic driving force leads to preferable growth
of grains, which are preferably aligned with respect to the
external magnetic field. Figure 2 shows typical orientation
distributions and how they evolve over time dependent on
the magnetic influence. The color represents the local crys-
tal orientation, θ . A preferably aligned crystal corresponds
to θ = 0 and, due to symmetry, the θ varies in the range
[−0.25π, 0.25π ].

The initial orientation distribution is constructed without
magnetization. Thus it is homogeneous, Figs. 2(a) and 2(b).
There is no preferred orientation for the grains. Without a
magnetic driving force, m = 0, the orientation distribution
stays homogeneous, Figs. 2(c)–2(e). With a magnetic driving
force this changes and well aligned grains grow preferentially,
Figs. 2(f)–2(k). Grains with θ ≈ 0 (green) grow at the expense
of the other grains (blue, red). As already quantified in Fig. 1,
the enhanced grain growth with increasing m can be seen also
by larger grain sizes for increasing m, Figs. 2(d), 2(g) and 2(j).
However, we are here interested in the orientation distribution,
which becomes sharply peaked at θ = 0, Figs. 2(e), 2(h) and
2(k). The effect increases with increasing magnetic driving
force, as already analyzed for the full model (1) in Ref. [18].

The narrowing in orientation distribution has an effect on
the total impact of the external magnetic field. As it reduces
the mean orientation difference of adjacent grains it also re-
duces the mean magnetic driving force. To measure this effect,
we define the mean magnetic driving force as the average
energy difference due to magnetic anisotropy with respect
to a perfectly aligned crystal. Figure 3 shows this quantity
over time. Initially the mean magnetic driving force strongly
depends on the strength of the magnetic field. Large m lead
to large magnetic anisotropy and, thus, large magnetic driving
forces. However, over time the mean magnetic driving force
decreases as the mean orientation deviation from a perfectly
aligned crystal decreases due to grain selection. The strength
of this effect correlates with the strength of the magnetic
field. At large times, the mean magnetic driving force falls
below a threshold. This large time behavior correlates with the
independent scaling regime in Fig. 1(d), which occurs, when
the mean magnetic driving force falls below ≈0.7 × 10−4.
The time this threshold is reached depends on m and is
indicated by the dashed (red) line in Fig. 1. Thus orientation
selection induced by the external magnetic field over time
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FIG. 2. Grain structure during annealing. The color represents the local orientation of the easy axis with respect to the external magnetic
field. The area fraction is shown as function of orientation for the initial and final configurations for different magnetic fields m. The times for
the snapshots for m = 0, 0.5, and 0.7 are (9 × 103, 2.7 × 104), (1 × 103, 1.1 × 104), and (4.1 × 103, 1.6 × 104), respectively.

decreases the influence of the magnetic field, which explains
the transition to the independent linear scaling (d) in Fig. 1.
In the case of stagnation, m < 0.5, the mean magnetic driving
force never exceeds the defined threshold.

C. Grain size distribution

The external magnetic field does not only change the
orientation distribution but also the grain size distribu-
tion (GSD). Without external magnetic fields it was shown
in Ref. [4] that the coarsening becomes self similar and
the GSD is well described by a log-normal distribution:
(
√

2πσx)−1 exp (− (ln x−μ)2

2σ 2 ), where x is the scaled radius R
〈R〉 .

FIG. 3. Mean magnetic force during coarsening for different
applied magnetic fields m.

We calculate the GSD for all coarsening simulations and
fit log-normal distributions to our results. In Figs. 4(a) and
4(b), the two values defining the log-normal distribution,
exp(μ) and σ are shown over time. During the dependent
(magnetically enhanced) scaling, Fig. 1(b), exp(μ) and σ

change: exp(μ) decreases, while σ increases. Thus the GSD
is not constant over time and, thus, the coarsening is not
self similar. Only within the independent scaling regime and
towards stagnation, Figs. 1(c) and 1(d), the GSD becomes
stationary on average. Thus self similar growth is achieved.

As the number of grains is drastically decreased within
this regime the GSD statistics become more and more noisy.
Fluctuations in the GSD approximation increase for larger
times and higher magnetic influence. In order to compare the
GSD for different external magnetic fields in the limit of large
times, we average exp(μ) and σ for large times and use the
averaged value to reconstruct the log-normal distribution, see
Fig. 4(c). Large external magnetic fields, m > 0.5 shift the
maximum of the GSD towards smaller sizes. However, the tail
becomes wider. Thus the number of large grains with respect
to the average grain size is increased. For smaller external
magnetic fields, m < 0.5 the tendency is the same but the
difference is minor.

D. Grain coordination and shape

Various other geometrical and topological measures have
been considered to define the grain structure. The next neigh-
bor distribution (NND) or coordination number of grains
counts the number of neighboring grains. The shape of grains
can be quantified by approximating every grain by an ellipse.
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FIG. 4. Log-normal distribution parameters exp(μ) (a) and σ (b) over time and GSD (c) for final averaged values for m between [0; 0.8].
The data for m = 0 correspond with Ref. [4] and the experimentally found universal GSD in Ref. [1].

The ratio of the axis of the ellipse then measure the elongation
of grains. This leads to the axis ratio distribution (ARD).
Elongated grains my have preferred direction of elongation.
This is measured here by the angle of the small axis with the
external magnetic field and lead to a small axis orientation
distribution (SAOD).

We concentrate on large times for which the coarsening
is self similar. Figure 5(a) shows the NND, which is also
fitted by a log-normal distribution. With increasing external
magnetic field the distribution broadens and the maximum is
shifted to smaller values. This can already be related to the
faster growth, which leads to larger grains and thus also an
increased difference in grain size. Classical empirical laws
for topological properties in grain structures, such as the
Lewis’ law and the Aboav-Weair’s law, see Ref. [23] for
a review, show a linear relation between the coordination
number and the area of the grains and postulate that grains
with high (low) coordination number are surrounded by small
(large) grains, respectively. These effects are further enhanced
by the elongation of grains, which lead to more neighbors.
Additionally, small grains between elongated grains have less
neighbors.

The ARD can also be approximated by a log-normal distri-
bution, Fig. 5(b). With increasing magnetic anisotropy the ra-
tio increases and more and more elongated grains are present.
The orientation of the elongation is correlated with the exter-
nal magnetic field. In Fig. 5(c) the orientation distribution of
the small axes with the direction of the external magnetic field

(SAOD) is shown. Here the distribution is approximated by a
cosine. The elongated grains become more and more oriented
perpendicular to the external magnetic field.

IV. DISCUSSION

Classical Mullins-like models for grain growth predict self
similar growth and a scaling law 〈A〉 ∝ tα with a scaling
exponent α = 1 [6]. This also does not change if external
magnetic fields are introduced as an additional driving force.
In contrast to our simulation, see Fig. 1, no influence of
the scaling behavior is observed. Even though the texture
depends on strength and direction of the external magnetic
field [24–29]. In these simulations, the increase of growth of
well aligned grains is leveled by the decrease of growth of not
well aligned grains. Thus the scaling exponent is predicted
to be independent of the additional driving force. In these
models, smaller exponents and stagnation of grain growth,
as observed in experiments [1], can only be achieved by
introducing additional retarding or pinning forces.

Within the considered PFC model triple point and orien-
tational pinning are naturally present, which is one reason
for the observed lower scaling exponent and the stagnation
[4]. External magnetic fields introduce an additional driving
force to the system. If large enough they can overcome the
retarding forces and enhance growth. This explains the depen-
dent growth regime with scaling exponents depending on the
applied magnetic field. If the magnetic driving force is large

FIG. 5. Log-normal description for next neighbor distribution (NND) (a), the smoothed distribution should of course be interpreted in a
discrete setting, axis ratio distribution (ARD) (b) and cosine description for small axis orientation distribution (SAOD) (c), obtained from
late time coarsening regime. m is varied between [0; 0.8]. Note: the NND has only discrete values and is represented by a smooth density
distribution to show the influence on m.

023404-5



R. BACKOFEN AND A. VOIGT PHYSICAL REVIEW MATERIALS 4, 023404 (2020)

enough all retarding forces are overcome and an exponent of
α = 1 is reached.

Grain growth under an applied magnetic field leads to
preferable growth of well aligned grains. It is this grain
selection which decreased the mean magnetic driving force
over time. If the texture is dominated by well aligned grains,
the magnetic driving force is no longer a function of the
applied field but is limited by the texture, see Fig. 3. Only
parts of the retarding forces can be overcome and the scaling
exponent becomes independent of the magnetic interaction.
Turning off the magnetic field in this regime of well aligned
grains leads to stagnation. It can only be speculated about
the origin of this retarding forces and the mechanism they
are overcome by the magnetic field. However, crystalline
defects and elastic properties are known to be modified by
the local magnetization [18] and lead to magnetization de-
pendent mobilities. The same mechanism may also open new
reaction paths for defect movement which might remove the
retarding forces.

In the case of small magnetic field, the coarsening stag-
nates. In this regime, the magnetic driving force is not
large enough to overcome the retarding force responsible for
stagnation.

Within the independent scaling regime self similar growth
is observed which allows to compute various geometrical and
topological properties of the grain structure. Their depen-
dence on the magnitude of the applied magnetic field has
been analyzed. The considered grain size distribution (GSD),
next-neighbor distribution (NND), and axis ratio distribution
(ARD) broaden with increasing magnetic anisotropy, leading
to larger grains, more grains with very few and many neigh-
bors, and more elongated grains, see Figs. 4 and 5. The shift
in the NND to smaller coordination number has also been
reported for simulations based on Mullins type models [26].

Even though, texture control by magnetic fields is of in-
creasing interest [14] there are not much data on the influence
of magnetic fields on GSD in thin films available. In Ref. [30],
the texture and grain size evolution of thin Zr sheets annealed
with and without magnetic fields at different temperatures
are studied. Increasing temperature and applying external
magnetic fields lead to increasing mean size of the grains.
The orientation of the final grains are influenced by the mag-
netic field and the orientation distribution becomes peaked
at favorable orientations. The same tendency as predicted by
our simulations, Fig. 2. In Fig. 6, the GSD are compared
for these samples after annealing with and without magnetic
field. The magnetic field shifts the peak of the GSD towards
smaller values leading to an increase of relatively small grains
and relatively large grains. The GSD also widens and the
tail is increased by the magnetic field. Also these details
in the evolution follow qualitatively our simulation results,
Fig. 4. But we are not aware of an experimental study showing
the increased elongation of the grains perpendicular to the
external magnetic field.

V. CONCLUSION

We studied magnetically enhanced coarsening with an
extended PFC model. The external magnetic field is assumed

FIG. 6. GSD of Zr sheet after annealing with and without mag-
netic fields of 19 T. Data is extracted from Fig. 14 in Ref. [30].
The mean grain size 〈R〉 is 10 μm for the sample annealed
without magnetic field and 18 μm for the sample annealed with
magnetic field.

to be strong enough to prescribe the magnetization of the
thin film. That is, the magnetization is constant and perfectly
aligned with the external magnetic field. The anisotropy of
the magnetic properties of the crystal lead to a magnetic
driving force. Well aligned crystals grow at the expense of
not well aligned crystals. Additionally, magnetostriction leads
to deformation of crystal and defect structures.

The magnetic driving force leads to grain selection and
a texture dominated by well aligned grains. As the amount
of similar oriented grains increase, the mean orientation dif-
ference between grains decreases. Thus the mean magnetic
driving force also decreases with time due to texture change.
The scaling exponent becomes independent for large times
and for large enough magnetization. Stagnation and variation
of scaling exponents is due to retarding and pinning forces
for grain boundary movement. There are two mechanisms
in magnetically enhanced coarsening, which change the ef-
fect of retarding forces. Firstly, the magnetic driving force
helps to overcome the retarding forces during coarsening.
This explains the scaling regime dependent on the magnetic
anisotropy. Secondly, the change of structure of the crystal
due to magnetostriction can decrease the energy barriers
representing the retarding force. Then the driving force due
to minimization of grain boundary energy may become large
enough to overcome the retarding forces. This could explain
the independent scaling regime.

However, not only the scaling changes, characteristic
geometric and topological properties are also influenced
by the applied magnetic field. At least for GSD and NND
experiments show the same tendency as predicted by our
simulations.
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