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Fluid deformable surfaces show a solid–fluid duality which establishes a tight interplay
between tangential flow and surface deformation. We derive the governing equations as a
thin film limit and provide a general numerical approach for their solution. The simulation
results demonstrate the rich dynamics resulting from this interplay, where, in the presence
of curvature, any shape change is accompanied by a tangential flow and, vice versa, the
surface deforms due to tangential flow. However, they also show that the only possible
stable stationary state in the considered setting is a sphere with zero velocity.
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1. Introduction

Fluid deformable surfaces are ubiquitous interfaces in biology, playing an essential
role in processes from the subcellular to the tissue scale. Examples are lipid bilayers, the
cellular cortex or epithelia monolayers. They all can be considered as fluidic thin sheets.
From a mechanical point of view, they are soft materials exhibiting a solid–fluid duality:
while they store elastic energy when stretched or bent, as solid shells, under in-plane
shear, they flow as viscous two-dimensional fluids. This duality has several consequences:
it establishes a tight interplay between tangential flow and surface deformation. In the
presence of curvature, any shape change is accompanied by a tangential flow and, vice
versa, the surface deforms due to tangential flow. The dynamics of this interplay strongly
depends on the relation between fluid- and solid-like properties of the thin sheets. The
growing interest in these phenomena in biology is in contrast with the available tools to
numerically solve the governing equations. Even for surface fluids on stationary surfaces,
where the governing equations have been known since the pioneering work of Scriven
(1960), numerical tools have only been developed recently (see Nitschke, Voigt & Wensch
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(2012), Gross & Atzberger (2018) for simply-connected surfaces and Nitschke, Praetorius
& Voigt (2017), Reuther & Voigt (2018b), Fries (2018), Lederer, Lehrenfeld & Schöberl
(2019) for general surfaces). The governing equations for fluid deformable surfaces have
been more recently derived in a different context (see Arroyo & DeSimone (2009),
Salbreux & Jülicher (2017), Miura (2018)), but have never been solved in a general setting.
Recent approaches (Mietke, Jülicher & Sbalzarini 2019; Torres-Sanchez, Millan & Arroyo
2019; Sahu et al. 2020) are restricted to the Stokes limit, simply-connected surfaces or
axisymmetric settings. We overcome these limitations and provide a general numerical
approach for fluid deformable surfaces.

The motivation to consider fluid deformable surfaces without the surrounding bulk
phases results from the theoretical interest to explore them without any additional influence
and the limit of a large Saffman–Delbrück number. This number describes the relation
between the viscosities of the surface and the typically less viscous bulk fluid and allows
the decoupling of surface and bulk flows (Saffman & Delbrück 1975).

The paper is structured as follows. In § 2, we sketch the derivation of the governing
equations as a thin film limit and compare them with existing models for special cases.
Section 3 describes the numerical approach, which is based on evolution of geometric
quantities and a generic finite element formulation for tensor-valued surface partial
differential equations. Numerical examples demonstrating the tight interplay between
tangential flow and surface deformation as well as convergence tests for the numerical
approach are provided in § 4. Conclusions are drawn in § 5.

2. Mathematical modelling

We start from a slightly more general Navier–Stokes equation in the thin film Ωξ(t) =
S(t) × [−ξ/2, ξ/2] ⊂ R

3 with a regular evolving surface S(t), film thickness ξ and
surface normal ν. In the Eulerian description, it reads

∂tV + ∇V V = divΣP + 1
Re

ΔV , (2.1)

divV = 0, (2.2)

with V velocity, ∇V directional derivative, Re Reynolds number, ΣP = −Pπ − φν ⊗ ν,
where P is the pressure, π = I − ν ⊗ ν and φ is an additional variable. The choice of
φ = P results in the usual pressure gradient term divΣP = −∇P, which allows actions
resulting from pressure differences in normal direction, whereas for φ = 0 actions in
normal direction resulting from pressure differences are omitted, leading to divΣP =
−π∇P − PHν with mean curvature H = trB and B = −∇Sν, the Weingarten mapping
with covariant derivative ∇S . We consider a surface observer parametrization X and
a thin film observer parametrization X ξ for which the surface observer velocity reads
∂tX = ∂tX ξ |S = Vν, with V the normal velocity of the surface. This means that the
surface observer velocity and the surface velocity V |S differ by the surface tangential
velocity v. This corresponds to an Eulerian description in the tangential space and a
Lagrangian description in the normal direction. With slight modifications of the analysis
in Nitschke, Reuther & Voigt (2019a), we obtain as the thin film limit ξ → 0 the surface
Navier–Stokes equations for tangential and normal components of the surface velocity
u = v + Vν and surface pressure p.

πS∂tv +∇vv −V(Bv + ∇SV)= − ∇Sp + 1
Re

(ΔBv +Kv +H∇SV −V∇SH− 2B∇SV),

(2.3)
900 R8-2
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divSv = VH, (2.4)

∂tV + 2∇vV + 〈Bv, v〉g = −∂νφ|S − H(p − φ|S) + 2
Re

(〈B, ∇Sv〉g − V‖B‖2), (2.5)

with πS the surface projection, ∇v the directional derivative, ΔB the Bochner Laplacian,
K = detB the Gaussian curvature and ∂νφ|S the normal derivative of φ in the thin film
evaluated on the surface S . The time derivative ∂tv needs to be interpreted through an
extension of v off the surface. Note that the left-hand sides of (2.3) and (2.5) are the
tangential and normal components of the material derivatives. Equations (2.3) and (2.4)
are independent of φ. For given V , these equations have also been previously derived
by various approaches (see Arroyo & DeSimone (2009) (with corrected acceleration
term Yavari, Ozakin & Sadik 2016) and Koba, Liu & Giga (2017), Jankuhn, Olshanskii
& Reusken (2018), Miura (2018), Nitschke et al. (2019a)). For φ = 0, also (2.5) is the
same as the equation derived in Koba et al. (2017), Jankuhn et al. (2018). The surface
Navier–Stokes equations (2.3)–(2.5) nicely show the tight coupling between v and V in the
presence of curvature. Most prominently, (2.4) forces any shape change to be accompanied
by a tangent flow and the rate-of-deformation tensor d = (∇Sv + (∇Sv)T)/2 − VB, with

2divSd = ΔBv + Kv + ∇S(VH) − 2divS(VB)

= ΔBv + Kv + H∇SV − V∇SH − 2B∇SV, (2.6)

in (2.3) and (2.5) forces the surface to deform due to tangential flows. However, additional
coupling terms are also present in the inertial terms.

Equations (2.3)–(2.5) assume fluid-like behaviour in tangential and normal directions
and can also be written in a more compact formulation for u. For φ = 0, it reads

∂tu + ∇uu = −∇Sp + 2
Re

divSd + pHν, (2.7)

divSu = 0 (2.8)

(see Jankuhn et al. (2018)). However, this formulation hides the tight interplay between
tangential and normal velocity components and is thus less suited to explore the resulting
phenomena. Numerical approaches for (2.3)–(2.5) or (2.7) and (2.8) only exist for special
cases. Most work, including also numerical analysis, is concerned with the Stokes limit
on stationary surfaces V = 0 (see e.g. Olshanskii et al. (2018), Reusken (2020)). For the
surface Navier–Stokes equations in this situation see, for example, Nitschke et al. (2012),
Reuther & Voigt (2018b), Fries (2018) and for their extension to evolving surfaces with
prescribed V see Reuther & Voigt (2015), Reuther & Voigt (2018a), Nitschke et al. (2019a).
The Stokes limit of (2.3)–(2.5) or (2.7) and (2.8) corresponds to the classical model of
Scriven (1960) and resamples, if coupled with bulk flow, with the Boussinesq–Scriven
boundary condition in multiphase flow problems (see e.g. Barrett, Garcke & Nürnberg
(2015a,b)).

We are only concerned with surface phenomena but are interested in an extended
model, which in addition accounts for solid-like properties in normal direction. Such
solid–fluid duality of fluid deformable surfaces is considered by supplementing the
evolution equations with the contribution from a Helfrich energy (1/Be)

∫
S(H − H0)

2 dS
to account for bending forces (Helfrich 1973), with Be the bending capillary number and
H0 the spontaneous curvature. We will here only consider the case H0 = 0. Within the
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Stokes limit, the resulting equations have been derived in Arroyo & DeSimone (2009),
Salbreux & Jülicher (2017), Torres-Sanchez et al. (2019) and are numerically solved
for simply-connected and axisymmetric surfaces in Torres-Sanchez et al. (2019) and
Arroyo & DeSimone (2009), Mietke et al. (2019), respectively. Barrett et al. (2015a,b)
consider these equations coupled with bulk flow. We will consider the full surface
Navier–Stokes equations and provide a numerical approach for general surfaces (not
necessarily simply-connected). Equations (2.3) and (2.4) are not affected by the considered
extensions but (2.5) changes for φ = 0 to

∂tV + 2∇vV + 〈Bv, v〉g = −pH + 2
Re

(〈B, ∇Sv〉g − V‖B‖2)

+ 1
Be

(
−ΔSH − 1

2
H3 + 2HK

)
, (2.9)

with ΔS Laplace-Beltrami operator.

3. Numerical approach

To numerically solve (2.3), (2.4) and (2.9), we consider a semi-implicit Euler time
stepping scheme, a Chorin-like projection approach for (2.3) and (2.4), similar to Reuther
& Voigt (2018b), Nitschke et al. (2019a), evolution of geometric quantities and the generic
finite element approach proposed in Nestler, Nitschke & Voigt (2019). The latter is based
on a reformulation of all operators and quantities in Cartesian coordinates and penalization
of normal components. Other applications of this approach can be found in, for example,
Nestler et al. (2018), Jankuhn et al. (2018), Olshanskii et al. (2018), Nitschke et al. (2018),
Groß et al. (2018), Hansbo, Larson & Larsson (2020) for stationary and Nitschke, Reuther
& Voigt (2019b) for evolving surfaces.

3.1. Time discretization
Let 0 = t0 < t1 < t2 < · · · be a partition of the time with time step width τm := tm −
tm−1. Each variable/quantity with a superscript index m corresponds to the respective
variable/quantity at time tm. The overall algorithm for (2.3), (2.4) and (2.9) reads as
follows: for m = 1, 2, . . . do

(i) Move the geometry according to ∂tX = Vν, which reads in the time-discrete setting

X m = X m−1 + τmVm−1νm−1, (3.1)

with the parametrization of the initial geometry X 0 and corresponding initial normal
vector ν0.

(ii) Update the normal vector according to ∂tν = −∇SV (see Huisken (1984), Kovacs,
Li & Lubich (2019)). This reads in the time-discrete setting

νm = νm−1 − τm∇SVm−1. (3.2)

(iii) Update all other geometric quantities, e.g. the mean curvature Hm, the Gaussian
curvature Km, the projection πm

S and the shape operator Bm, by computing
derivatives of the normal vector νm. For convergence tests of this approach, we refer
to Nitschke et al. (2019b).
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(iv) Solve for normal velocity Vm, intermediate tangential velocity v� and pressure pm

dm
V + 2∇vmVm = − 2

Re
Vm‖Bm‖2 + gm, (3.3)

d∗
v + ∇v∗v� − VmBmv� = 1

Re
(ΔBv� + Kmv�) + f m, (3.4)

− τmΔSpm = −divSv� + VmHm, (3.5)

with discrete time-derivatives dm
V = (1/τm)(Vm − Vm−1) and d∗

v = (1/τm)πm
S (v� −

vm−1) and coupling terms gm = −pmHm + (2/Re) 〈Bm, ∇Svm〉g + (1/Be)(−ΔS
Hm − (Hm)3/2 + 2HmKm) − 〈Bmvm, vm〉g, and f m = (1/Re)(Hm∇SVm − Vm∇S
Hm − 2Bm∇SVm) + Vm∇SVm. We linearize all nonlinear terms in pm, Vm

and v� around the solutions at tm−1, e.g. 〈Bmvm, vm〉g = 〈
Bmvm, vm−1〉

g +〈
Bmvm−1, vm〉

g − 〈
Bmvm−1, vm−1〉

g, and the tangential velocity vm follows from
(3.6).

(v) Update tangential velocity vm

vm = v� − τm∇Spm. (3.6)

3.2. Space discretization
The remaining step is to discretize (3.3)–(3.5) from the above algorithm in space by
using either the generic surface finite element method for tensor-valued surface partial
differential equations (PDEs) proposed in Nestler et al. (2019) or the surface finite element
method for scalar-valued surface PDEs from Dziuk & Elliott (2013). Let Sh = Sh(t)|t=tm

be an interpolation of the surface S = S(t)|t=tm at time tm such that Sh := ⋃
T∈T T ,

where T denotes a conforming triangulation. Furthermore, the finite element space is
introduced as V(Sh) := {v ∈ C0(Sh) : v|T ∈ P1(T), ∀v ∈ T } with Ck(Sh) the space of
k-times continuously differentiable functions on Sh and P l(T) polynomials of degree l on
the triangle T ∈ T . We use the finite element space V(Sh) twice as trial and as test space
and additionally introduce the L2 inner product on Sh, as (a, b) := ∫

Sh
〈a, b〉dS. Thus,

the finite element approximations of (3.3)–(3.5) read: find Vm ∈ V(Sh), vm ∈ V(Sh)
3 and

pm ∈ V(Sh) such that ∀α ∈ V(Sh), α ∈ V(Sh)
3 and β ∈ V(Sh)

(dm
V , α) + 2(∇vmVm, α) = − 2

Re

(
‖Bm‖2Vm + gm + ωa

A2
0
(Am − A0)Hm, α

)

+ (D(∇SVm−1 − ∇SVm), ∇Sα), (3.7)

(d∗
v, α) + (∇v∗v�, α) − (VmBmv�, α) = − 1

Re
(∇Sv�, ∇Sα) + 1

Re
(Kmv�, α),

+ ( f m + ωt(v
� · νm)νm, α), (3.8)

τm(∇Spm, ∇Sβ) = (v�, ∇Sβ) + (VmHm, β). (3.9)

Equation (3.7) is stabilized by artificial diffusion with coefficient D, following ideas of
Smereka (2003) for surface diffusion. As in Nitschke et al. (2019b), an additional term
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for global surface area conservation is included with a penalty parameter ωa > 0, initial
surface area A0 and actual surface area Am. In (3.8), we have used the same symbols for
the extended tangential velocity field v = (vxex, vyey, vzez) and the extended operators
(see Reuther & Voigt (2018b)). We further use divSv = ∇ · v − ν · (∇v · ν) and introduce
the additional term (ωt(v

� · νm)νm, α), with ωt > 0, to penalize normal components of
the extended tangential velocity. For convergence studies in ωt, we refer to Nestler et al.
(2018). The resulting equations for the components v�

x, v
�
y and v�

z are solved by surface
finite elements. From these fields, vm can be computed. For more details, especially for
evaluating the local inner products in the L2 inner products for the extended tangential
velocity, we refer to Nestler et al. (2019). All equations are solved using the adaptive
finite element toolbox AMDiS (Vey & Voigt 2007; Witkowski et al. 2015). The software
is open-source and the source-code used to produce the following simulation results is
provided in Reuther (2020).

4. Simulation results

All examples are chosen to demonstrate the tight coupling between v and V in the
presence of curvature. The first considers a perturbed sphere with zero velocity as the
initial condition. The Helfrich term induces a normal velocity, which generates tangential
flow. The final configuration is a sphere with zero velocity. The second example considers a
rotating Killing vector field on a sphere as the initial condition. The tangential flow induces
a normal velocity and with it dissipation. The final configuration is again a sphere with zero
velocity. We compare the dynamics of both examples with respect to Reynolds number
Re and bending capillary number Be. We further consider convergence studies in mesh
size h and time step width τ . Besides several coarse-grained measures, such as energy
components and eccentricity, (2.4) is used for convergence studies. It provides a severe
measure for the accuracy of the algorithm, as it is never used in the approach and contains
the tangential and normal parts of the velocity, v and V , and the geometric quantity H. In
the following simulations, we use D = 62.5, ωt = 1 × 105 and ωa = 1 × 103. We further
use an analytic form for ν0 and have chosen the examples such that mesh distortions do
not alter the simulations’ results. More extreme examples will require a redistribution of
mesh points (see e.g. Mikula et al. (2014)).

4.1. Relaxation of perturbed sphere
Let X S(φ, θ) be the standard parametrization of the unit sphere with standard
parametrization angles φ, θ . We use the parametrization X (φ, θ) = r(φ, θ)X S(φ, θ) with
a space-dependent radius r(φ, θ) = 1 + r0 cos(φ) sin(3θ). Figure 1 shows the evolution
for r0 = 0.4 and zero initial velocity. The dynamics of the induced tangential flow field
and shape changes are clearly visible. The correspondence between v and V is further
highlighted in kinetic energy plots, with a strong increase in normal kinetic energy
and an induced but delayed response of the tangent kinetic energy at the beginning.
The later relaxation towards a sphere corresponds to a more intermediate coupling.
The results correspond to Re = 1 and Be = 2, and the simulations are performed with
h = 4.68 × 10−2 and τ = 4.9 × 10−3. The dependency on Re (Be = 2) and Be (Re = 1)
is considered in figure 2. The strongest oscillations are observed for large Re and small
Be. However, also for small Re, the dynamics significantly differs from pure Helfrich flow,
which is shown for comparison.
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FIGURE 1. (a) Relaxation of a perturbed sphere for t = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.75, 2, 2.5,
7.5 (left to right, top to bottom); the tangential flow field is visualized by line integral convolution
(LIC). Tangent, normal and overall kinetic energy ET := (

∫
S〈v, v〉 dS)/2, EN := (

∫
S V2 dS)/2

and ET + EN , respectively, against time t (b) and tangent kinetic energy ET against normal kinetic
energy EN (c).

4.2. Killing vector field
The initial tangential velocity on the unit sphere is given by the Killing vector field
v|t=0 = (−z, 0, x)T with X = (x, y, z)T ∈ S . The tangential velocity induces deformations
towards ellipsoidal-like shapes. Due to the induced normal velocity, energy dissipates.
Theoretically, a force balance with the bending forces of the Helfrich energy can be
established. Using the axisymmetric setting, an ordinary differential equation for these
meta-stable states can be derived. However, these states can never be reached during
evolution. The shape instead overshoots, oscillates and further dissipates energy, which
decreases the driving force and leads to a relaxation back to a sphere with zero tangential
velocity (see figure 3). The results correspond to Re = 1 and Be = 2, and the simulations
are performed with h = 4.68 × 10−2 and τ = 4.9 × 10−3. Convergence studies with
respect to h and τ are considered, indicating almost second-order convergence in h and
first-order in τ . However, also number, time and strength of shape oscillations change
with refinement (see figure 3e). The dependency of the dynamics on Re (Be = 2) and
Be (Re = 1) is shown in figure 4, again with h = 4.68 × 10−2 and τ = 4.9 × 10−3. The
results are similar to figure 2.
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FIGURE 2. Deviation from a sphere σS against time t for different Reynolds numbers Re (a,b)
and Bending capillary numbers Be (c,d) for the perturbed sphere simulation (a,c) and power
spectrum of the normalized deviation from a sphere σS/〈σS〉 (b,d) with 〈σS〉 the time average of
σS. Pure Helfrich flow is shown for comparison as a dashed line and is indicated as ‘no flow’.

5. Conclusion

With the considered thin film limit, we have provided a new approach to derive the
governing equations of fluid deformable surfaces. They consider fluid-like behaviour
in the tangential and normal directions beyond the Stokes limit and are supplemented
by a Helfrich energy to model solid-like (bending) behaviour in the normal direction.
The splitting of the surface velocity into tangential and normal components shows
their tight interplay with geometric quantities of the surface. This is known for the
rate-of-deformation tensor. However, additional coupling terms are also present in the
inertial terms. The considered numerical approach to solve these equations, which
combines evolution of geometric quantities with surface finite elements and a general
finite element method for tangential tensor-valued surface partial differential equations,
is applicable to general surfaces (not restricted to simply-connected surfaces) and shows
reasonable convergence properties with respect to mesh size h (second-order) and time step
width τ (first-order). The computational examples are chosen to demonstrate the coupling
between tangential and normal velocities, where in the presence of curvature any shape
change is accompanied by a tangential flow and, vice versa, the surface deforms due to
tangential flow. The dynamics of the relaxation strongly depends on the fluid and solid
properties. However, the simulations also show that Killing vector fields are only possible
as meta-stable states, in situations where the viscous force is balanced by the bending
force. The only possible stable stationary state in the considered setting is a sphere with
zero velocity.

The computational examples can provide benchmark problems for other numerical
approaches, which can be extended to the considered model, e.g. Nitschke et al. (2017),
Olshanskii et al. (2018), Torres-Sanchez, Santos-Olivan & Arroyo (2020), Lederer et al.
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FIGURE 3. (a) Relaxation of Killing vector field for t = 0, 1.5, 3.5, 15, 20 (left to right);
the tangential flow field is visualized by LIC. (b,c) Contour plot of the sliced geometry in
the time interval [0, 10] with ascending grey scale indicating increasing time (b) and plot of
the x-/y-coordinate of the geometry against time t (c). (d,e) Experimental order of convergence
(EOC) for different mesh sizes h and time step widths τ with a constant ratio h2/τ and the
measure of the error e := ‖divSv − VH‖2 (d). Deviation from a sphere σS against time t with
σS := ∫

S(H − HS)
2 dS and HS the mean curvature of a sphere with equal surface area for

different mesh sizes h (e).

(2019). They also form the basis for more complex models, which include coupling with
concentration fields for proteins and dependency of H0 on concentration in lipid bilayers,
or coupling with liquid crystal theory as in Nitschke et al. (2019a) for Erickson-Leslie
type models or with Landau-de Gennes theory on surfaces (Nitschke et al. 2019b)
for Beris-Edwards type models, which also can be extended by active contributions to
model, e.g. phenomena as considered in Keber et al. (2014). However, any quantitative
comparison in these applications will require to also consider the surrounding bulk phases,
as, for example, considered in Barrett et al. (2015a), Barrett et al. (2015b), or at least
a constraint for the enclosed volume. Even if the approach is applicable for general
surfaces, it cannot handle topological changes. This would require a reformulation of the
equations using an implicit description, e.g. the diffuse interface approach (Rätz & Voigt
2006).
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FIGURE 4. Deviation from a sphere σS against time t for different Reynolds numbers Re
(a,b) and Bending capillary numbers Be (c,d) for the Killing vector field relaxation (a,c) and
power spectrum of the normalized deviation from a sphere σS/〈σS〉 (b,d) with 〈σS〉 the time
average of σS.
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