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We introduce a continuous modeling approach which combines elastic response of the

trabecular bone structure with the concentration of signaling molecules within the bone

and a mechanism for concentration dependent local bone formation and resorption.

In an abstract setting bone can be considered as a shape changing structure. For

similar problems in materials science phase field approximations have been established

as an efficient computational tool. We adapt such an approach for trabecular bone

remodeling. It allows for a smooth representation of the trabecular bone structure and

drastically reduces computational costs if compared with traditional micro finite element

approaches. We demonstrate the advantage of the approach within a minimal model. We

quantitatively compare the results with established micro finite element approaches on

simple geometries and consider the bone morphology within a bone segment obtained

from µCT data of a sheep vertebra with realistic parameters.
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1. INTRODUCTION

Bone undergoes a continuous renewal process, which helps tomaintain its mechanical performance
and allows for adaptation to changes in mechanical requirements. Different cells are involved in
this remodeling process: osteoclasts, which resorb bone, and osteoblasts, which deposit bone. The
process is controlled bymechanosensing osteocytes [1–4] and provides an example of a homeostatic
system where external mechanical loads control the bone mass and structure. Various experimental
and theoretical studies analyze the remodeling process on different levels of detail [5–9]. We
here introduce a continuous modeling approach with the potential to combine different scales
in an efficient way. In an abstract setting we consider bone as a shape changing structure, with
concentrations of mechanosensing cells within the bone and resorbing and depositing cells on
the bone surface. Depending on the surface concentrations the structure is adapted. In contrast
to previous modeling approaches, using micro finite element analysis [10–14], we describe the
structure implicitly using a time-dependent phase field function. This not only leads to a more
accurate model, as the artificial voxel-roughness of the bone surface can be avoided, but also to
a drastic reduction of system size and required computing time. Phase field models have been
developed to describe shape changing structures, e.g., in solidification [15] or multiphase fluids
[16]. In the last decade these models were extended to be used as a general numerical tool to
solve problems in complex time-evolving geometries [17] and have since been established for
two-phase flow [18–21], biomembranes [22, 23], single cell mechanics [24], and fluid-structure
interaction [25].
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In the context of bone, phase field models have been
used to compute the mechanical properties of trabecular
bone structures [26] and have been validated against micro
finite element analysis. The required implicit description of
the bone structure can be obtained from imaging tools,
such as µCT and µMR by standard algorithms. From
the voxel representation of the segmented image a smooth
surface triangulation can be constructed, from which a signed
distance function and the initial phase field function can be
computed. The computation of the remodeling process can
then be done on a simple cubic domain, which can easily
be decomposed for efficient parallel computations. Figure 1

shows an example of an implicitly described trabecular structure,
the phase field representation and details of the phase
field function.

The paper is organized as follows: In section 2, we review
the current understanding of the bone remodeling process and
motivate approximations for our computational approach. Our
goal is to introduce aminimalmodel to demonstrate the potential
of the phase field modeling and to point out possible model
extensions. We also compare our assumptions with existing
micro finite element analysis. In section 3, we propose our
mathematical model, the numerical approach and required
preprocessing steps and provide details on the µCT data. In
section 4, we describe results which relate the bone morphology
to an applied force. In section 5, we discuss the results and
give conclusions.

2. MATERIALS AND METHODS

We briefly review the role of the different cells which are
involved in the remodeling process and describe the mechanical
properties of bone on the level required for our continuous
modeling approach.

2.1. Osteocytes
Osteocytes form a network throughout the bone matrix by
connecting with each other and the lining cells on the

FIGURE 1 | (A) Trabecular structure from sheep tomography data represented by level surface of the phase field function. (B) phase field function in a box domain.

(C) phase field function along the light blue line in (B) with φ = 1 representing the bone structure.

bone surface. They sense mechanical loads and transduce the
mechanical signal into a chemical response, which is realized
by signaling molecules. On the bone surface these molecules
orchestrate the recruitment and activity of osteoblasts and
osteoclasts, resulting in the adaptation of bone mass and
structure. How the osteocytes sense the mechanical loads and
coordinate adaptive alterations in bone mass and architecture
is not yet completely understood. For a current review see
Klein-Nulend et al. [27]. For the mechanical sensing several
mechanisms have been proposed [28]. Within our modeling
approach we consider the volumetric compression and the strain
energy density as two options to stimulate the osteocytes. The
signaling molecules in the bone are then modeled through
a diffusion process, with a decay rate and the mechanical
stimulus as a source term. This differs from typical micro finite
element analysis approaches, where an exponential decay of the
signal molecules is assumed and only contributions within a
certain distance are accounted for, e.g., Huiskes et al., [4] and
Ruimerman et al., [7].

2.2. Osteoblasts and Osteoclasts
A large number of hypotheses have been postulated regarding
bone-cell communication and the role played by various
receptor-ligand pathways. Various modeling approaches are
concerned with the biochemical signaling between active
osteoclasts and osteoblasts [29–31]. However, they all work on
spatial averages and are not yet incorporated in a computational

bone remodeling process. We therefore here only use an effective
modeling approach by directly considering the concentration of

the signaling molecules at the bone surface as an indicator for
resorption and deposition. Similar approximations are made in
typical micro finite element analysis approaches with various
functional forms. The influences of different remodeling rules
like linear, step functions or the originally proposed profile by
Frost [32] with a lazy zone have been compared in Dunlop et al.
[5]. While the exact form of the remodeling rule is of importance
for quantitative predictions, all forms lead to the emergence of
trabecular-like patterns.
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2.3. Trabecular Bone Structure and
Mechanical Behavior
Also from a mechanical perspective, trabecular bone is a highly
complex material, being anisotropic with different strengths in
tension, compression, and shear and with mechanical properties
that vary widely across anatomic sites, and with aging and disease
[33]. Various of these material properties remain uncertain.
However, different experiments have shown a linear behavior
[34] and also have related the anisotropy of the mechanical
properties to the bone structure [35]. We therefore also for this
part of the model consider the simplest possible approach, an
isotropic material with prescribed elastic modulus and Poisson
ratio but resolve the trabecular bone structure. The same
approximations are made in most micro finite element analysis
approaches [36–38].

3. THEORY

3.1. Mathematical Model
Let �bone be the bone structure and � a cuboid computational
domain of size L = (Lx, Ly, Lz) such that �bone ⊂ �. The
mechanical material properties of the trabeculae are supposed
to be isotropic with Young’s modulus E and Poisson’s ratio ν.
The bone deformation is described by the displacement vector
u obeying the partial differential equation [39]

∇ · σ = 0 in �bone, (1)

with the linear elastic stress tensor [39]

σ = µ(∇u+ ∇uT)+ λI∇ · u, (2)

where I is the identity matrix and µ, λ are the Lame coefficients

µ =
E

2(1+ ν)
, λ =

Eν

(1+ ν)(1− 2ν)
.

Compression is achieved by applying Dirichlet boundary
conditions to the normal component of u on ∂�, such that
ux,y,z = 0 if x, y, z = 0 and ux,y,z = ūx,y,z if x = Lx, y = Ly, z =
Lz , while the tangential displacement components are free and
ūx,y,z are adapted such that the normal forces (Fx, Fy, Fz) are kept
constant. At the remaining boundaries ∂�bone we assume no
outer forces and set σ · n = 0, where n is the normal to �bone.

We assume that osteocytes are continuously distributed
through �bone and that a growth stimulating signal is produced
in the osteocytes stimulated by either the volumetric compression
or the strain energy density

Svc = |∇ · u| (volumetric compression), (3)

Ssed =
1

4
σ :(∇u+ ∇uT) (strain energy density). (4)

The signal is propagated by a diffusive process with a constant
decay rate. Denoting the concentration of the signaling molecule
by c, this leads to the equation

kc− d1c = S in �bone, (5)

with boundary condition n · ∇c = 0 on ∂�bone, where k is
the decay rate and d the diffusion coefficient, both assumed
to be constant and S = Svc,sed. Due to the different time
scale, if compared with the remodeling process, we consider the
stationary solution.

Finally growth is triggered directly according to the
concentration c at the trabecular surface. We assume that the
growth velocity in normal direction V = Vlin,lazy depends
linearly on the signal strength, without or with a lazy zone [14]

Vlin = αc− β on ∂�bone, (6)

Vlazy = α(c−min(T,max(−T, c− 1)))− β on ∂�bone, (7)

with positive constants α and β and an intermediate range for c
where no growth occurs, controlled by the threshold value T.

Mathematically the resulting system of Equations (1)–(7) is a
free boundary problem. According to the proposed normal forces
(Fx, Fy, Fz) on δ� the displacement u and the concentration c
have to be computed in �bone. The obtained signal c at δ�bone

is then used to update the time dependent bone structure �bone.
This non-linear problem has to be iterated until the solution for
u, c, and �bone converge.

3.2. Numerical Solution
In micro finite element analysis the time dependent bone
structure is accounted for by adding and removing voxels to
�bone. This is not only costly as it requires a high spatial
resolution, it also leads to an artificial roughness of the bone
surface. Various numerical methods have been proposed to avoid
such manipulation of the computational domain. One of the
most successful approaches is the phase field or diffuse domain
approach [17]. Here �bone is described implicitly through a
smooth phase field function φ = 0.5(1 − tanh(r/(

√
8ǫ))) in �,

with a small parameter ǫ determining the width of the diffuse
interface and the signed distance function r, with r = 0 at δ�bone,
r > 0 in �bone and r < 0 in � \ �bone. For ǫ → 0, φ converges
to the characteristic function for �bone. Using φ we can now
reformulate the problem in the time-independent domain�. The
diffuse domain approximation of Equations (1) and (2) reads

µ∇ ·
[

φ(∇u+ ∇uT)
]

+ λ∇ [φ ∇ · u] = 0 in �. (8)

The boundary condition σ · n = 0 is implicitly included (see
Aland et al., [26]). Applying the same approach from Li et al. [17]
to Equation (5) we obtain

kφc− d∇ · (φ∇c) = φS in �, (9)

which also already includes the boundary condition n · ∇c =
0. Adapting the bone domain with normal velocity V can be
realized by solving

∂tφ + V|∇φ| = γ (−φ3 + 1.5φ2 − 0.5φ) (10)

+γ ǫ2
∇φT · ∇∇φ · ∇φ

|∇φ|2
in �,

with a mobility factor γ (see Folch et al., [40]). The terms on the
right hand side essentially guarantee the tanh-profile of φ and the
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FIGURE 2 | Cuboidal segment of a sheep bone. From top left to bottom right: Segmented voxel representation (bone in light gray), triangulated smooth surface

representation and phase field description with smooth level surface and adapted volume triangulation.

left hand side models the transport of φ by V . Using matched
asymptotic analysis one can show (see Li et al. [17]), that the
system of Equations (8)–(10) converge for ǫ → 0 to the original
problem (1)–(5) with the boundary moved with velocity V and
boundary conditions σ · n = 0 and ∇c · n = 0. We can now use
standard discretization techniques to solve for u, c, and φ in �,
again iteratively until the system converges.

For a computationally efficient treatment adaptive mesh
refinement is used. A high resolution within the diffuse interface
is required, which needs to be of order ǫ and is comparable to
the initial voxel scale. However, away from the diffuse interface
a coarser mesh can be used, which drastically reduces the
computational cost. The efficiency can further be improved by
using differently refined meshes for the components [41, 42].
We here use a parallel adaptive finite element approach on
unstructured meshes which is implemented in the open source
toolbox AMDiS [43, 44].

3.3. Preprocessing
To use the phase field approach for real bone structures requires
various preprocessing steps. From the segmented data on the
voxel scale, first a surface triangulation is constructed, from
which in a second step the signed distance and phase field
function can be computed. Figure 2 shows the three steps.
Various approaches are available for achieving these steps. We
here use ParaView (http://www.paraview.org) for the generation
and smoothing of the surface mesh. Mesh generation has become
a standard tool. However, the quality of these meshes in terms
of regularity is often very poor. Automatic construction of high
quality surface meshes is still not possible for arbitrary surfaces

and is an ongoing research topic. The available algorithms in
ParaView provide a reasonable compromise between usability
and mesh quality. To compute the signed distance function
we embed the structure in a cube and adaptively refine the
mesh until we obtain the proposed accuracy to resolve the
surface. For each node we compute the shortest distance to
the surface using raytracing. The approach is implemented
in MeshConv (https://gitlab.math.tu-dresden.de/wir/meshconv)
and produces the initial mesh and signed distance function for
the computation in AMDiS (https://gitlab.math.tu-dresden.de/
wir/amdis). All these software tools are available under an open
source license.

3.4. Validation
Before we simulate bone remodeling on real bone structures,
we consider two simple examples, a cylinder and a cross, for
which we compare the results with a micro finite element
analysis approach [4, 7], and in the cylinder case also with
a semi-analytical solution. We consider both types of stimuli,
the volumetric compression and the strain energy density and
consider the linear growth law Equation (6).

For a cylinder with radius R and a compression force Fz , we

obtain for the stimuli Svc = (1− 2ν) FzE
1

πR2
and Ssed = 1

2
F2z
E

1
π2R4

.
Both are constant in �bone, which allows to solve Equation (5).
We obtain c = S

k
and thus from Equation (6) the growth law

Vlin = α
k
S − β from which the evolution of the cylinder can

be obtained.
The micro finite element analysis is based on Huiskes et al.

[4] and Ruimerman et al. [7]. The domain � is divided into a
regular voxel mesh with mesh size h. Each voxel has a continuous
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FIGURE 3 | Cylinder growth (left) and shrinkage (right). The images correspond to the use of the volumetric compression as stimulus. The color coding corresponds

to the scaled concentration αc.

FIGURE 4 | Cylinder volume over time for growth (left) and shrinkage (right) for volumetric compression and strain energy density as stimulus. Shown are the phase

field and micro finite element results together with the semi-analytic solution (ODE model).

value g ∈ [0, 1], where bone is associated with g = 1 and bone
marrow corresponds to g = 0. Transient states correspond to
voxels which are partly bone. The elastic modulus for a voxel and
the stimuli are defined as gE and gS, respectively. The Poisson
ratio remains independent of g. Instead of directly solving for the
normal velocity V we first compute the change rate of a voxel’s
g value at ∂�bone and the neighboring marrow voxels by solving
∂tg = αc − β and restricting g ∈ [0, 1]. The normal velocity
then follows by multiplying the change rate with the voxel size
V = h ∂tg and applying corrections for the lattice anisotropy. For
the numerical solution of Equations (1) and (5), each voxel with
g = 1 is converted to a hex-8 brick element and the resulting
systems are solved by standard finite element analysis.

For the comparison we only consider non-dimensional values.
The computational domain is the unit cube with Lx = Ly =
Lz = 1. The voxel size, as well as the minimum grid spacing
in the phase field approach is set to h = 1/128. Time steps
were chosen adaptively. Other parameters are d = 1, k = 1/2,
Fz = 1 for the cylinder and Fx = Fy = Fz = 1 for the cross,
as well as β = 1. The parameter α is chosen depending on
the considered stimulus such that the same stationary states are
obtained: αsed = 0.36 and αvc = 0.9 for the growth experiment
and αsed = 0.04 and αvc = 0.3 for the shrinkage simulations.

These parameters lead to a stationary state with R =
√
0.6/π

and R =
√
0.2/π for growth and shrinkage, respectively. As

initial condition we thus use the opposed value, i.e., R =
√
0.2/π

(growth), R =
√
0.6/π (shrinkage). For the simulation of a single

growing cross, αvc = 0.0919 is used and the initial radius on each
side is set to R =

√
0.02/π . The remaining parameters for the

phase field approach are ǫ = 0.005 and γ = 10.
In all these cases the solution of the free boundary problem

converge to a stationary solution providing the adapted bone
morphology to the applied force (see Figures 3–5). The results
are in excellent agreement with the micro finite element results
and the analytic solution, where available.

4. RESULTS

We now apply our model to a segment of a trabecular bone,
which is obtained from tomography data of a sheep vertebra. This
data has been previously generated in the German Transregional
Collaborative Research Centre SFB/TRR 79 and is reused for
our computational study. The elastic properties are chosen as
E = 6.829GPa and ν = 0.33 (see Ruimerman et al., [7], Mueller
et al., [45] and Müller et al., [46]). The cubic region � is defined
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FIGURE 5 | Cross growth evolution (left) and cross volume over time (right). The volumetric compression is used as stimulus. The color coding corresponds to the

scaled concentration αc, where αc = 1 indicates the approached stationary state.

FIGURE 6 | Evolution of bone morphology with standard parameters. The color coding corresponds to the scaled concentration αc.

by Lx = Ly = Lz = 2.84mm. To account for the dominant
loading in z-direction in the animal, the applied force is set twice
as high as in the other directions Fx = Fy = 8N and Fz =
16N. The range of these forces is chosen to yield strains close
to experimental observations [47]. Instead of the linear growth
law used for validation we consider Equation (7) with a lazy zone
determined by T = 0.2. Volumetric compression was chosen
as stimulus and parameters were set to ǫ = 0.003, γ = 10.
Realistic values for the remaining parameters are not clear, we
hence choose values in a range that illustrates the potential of
the method to simulate remodeling of the bone material: k = 1,
d = 0.01, α = 690, β = 1. The computations are done in parallel
on 24 cores with approximately 7.5 Mio degrees of freedom in
each time step. The computational time for each setting was
approximately 1 h.

Figure 6 shows the evolution obtained with these parameters.
The evolution is shown up to a state for which the main
morphological changes have been completed and the
concentration c has been mainly equilibrated. A change
in morphology is hardly visible, however the computed

average microstrain in �bone,
√

< |ǫzz| > = 2004, with
ǫ = 0.5(∇u + (∇u)T) agrees well with physiological strains
measured in bone [47].

To highlight the morphological adaption to anisotropic forces
we consider compression forces which are increased by a factor
4 in one direction. Figure 7 shows the results. The stronger force
leads to larger values for c and the adaption of the morphology
strongly depending on the direction of the increased force. The
change in morphology is clearly visible with regions which are
formed and regions which are resorbed. The dependency of the
morphology on the direction of the increased force is highlighted
in Figure 8, which shows slices of the bone morphology along
the xy-, xz-, and yz-plane, through the center of the domain. This
visualization clearly shows that structures grow in the direction
of the enhanced (four-fold) force and thus provide a proof of
consistency of the modeling approach. Further validation would
require in vivo µCT data of the trabecular bone segment and
a calibration of the applied forces. Approaches in this direction
can be found in Schulte et al. [13, 14], which could reproduce
changes in bone volume fraction and other global parameters of
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FIGURE 7 | Evolution of the bone morphology with four-fold force in one direction. The color coding corresponds to the scaled concentration αc.

bone structure but failed to reproduce local bone formation and
resorption. One reason for this discrepancy, which is reported
in Schulte et al. [13, 14] are local areas of strong thickening
and bone resorption in the experimental images in contrast to

more homogeneous layers in their simulations. Figure 8 clearly
shows non-homogeneous morphology changes, see e.g., the level
curves for an increased force in x-direction (red curves) in the
first and third figure. However, due to lack of in vivo data for the
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FIGURE 8 | Comparison of the bone morphology along the xy-, xz-, and yz-plane (from left to right) at t = 0.20. Applied force is multiplied by a factor of 4 in direction

x (red), y (green), or z (blue).

considered bone segment, further validation has to be postponed
and we here can only conclude the qualitative consistence of
our approach.

5. DISCUSSION

We have introduced a continuous modeling approach for bone
remodeling which has the potential to combine different scales
in an efficient way. In the current form it combines elastic
responds of the trabecular bone structure to an applied force,
the concentration of signaling molecules within the bone and a
mechanism how this concentration at the bone surface is used
for local bone formation and resorption. In contrast to previous
modeling approaches, using micro finite element analysis, the
bone morphology is implicitly described by a time-dependent
phase field function. This not only leads to a more accurate
model, as the artificial voxel-roughness of the bone surface can
be avoided, but also to a drastic reduction of system size and
required computing time. The goal of this paper is to provide
a minimal model for bone remodeling which demonstrates the
advantages of the phase field description. We therefore not only
introduce the model, but also quantitatively compare the results
with established micro finite element approaches on simple
geometries and consider the bone morphology within a segment
of 2.84mm3 obtained from µCT data of a sheep vertebra with
realistic parameters. Systematic studies with an enhanced force in
one direction clearly demonstrate that the structures grow in the
direction of the enhanced force and lead to strong local variations
in thickness. These results clearly demonstrate the applicability
of the phase field approach. However, quantitative validation
would require in vivo µCT data of the trabecular bone segment
and a calibration of the applied forces, which are currently not
available. But already without such a validation the approach can
be used to provide a deeper understanding of the mechanisms
underlying bone remodeling. A possible extension considers the
incorporation of osteoblast and osteoclast concentrations on the
bone surface and their biochemical signaling, which will allow to

compute the influence of various signalingmolecules on the bone
morphology. The ability to predict changes in bone morphology
might eventually lead to a better prediction of individual fracture
risk in osteoporotic patients or to improved implant materials.
The introduced phase field description is ideally suited for this
task, as it drastically reduces the computational cost, allows for
extensions of additional effects and does only require standard
numerical methods, which can be parallelized to deal with
significantly larger systems.
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