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1 INTRODUCTION

The numerical solution of fourth-order singularly perturbed problems has only recently received atten-
tion within the research community, even though second order problems have been studied extensively
(see, e.g., the books [1–3] and the references therein). As is well known, a main difficulty in these
problems is the presence of boundary layers in the solution (for second-order problems) or in the first
derivative of the solution (for fourth-order problems) [4]. The accurate approximation of the layers,
independently of the singular perturbation parameter, is of great importance for the overall quality of
the approximate solution to be considered reliable. In the context of the Finite Element Method (FEM),
the robust approximation of boundary layers requires either the use of the h version on nonuniform,
layer-adapted meshes (such as the Shishkin [5] or Bakhvalov [6] mesh), or the use of the high order
p and hp versions on the so-called Spectral Boundary Layer Mesh [7, 8]. Regarding fourth-order sin-
gularly perturbed problems, the number of available references is scarse; some notable exceptions are
[4, 9–14]. One reason for the lack of results is the fact that for fourth-order problems a C1 approximation
must be constructed, something that, until recently, was not preferred (see [15] for a C1 construction
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of hierarchic hp bases). This may be avoided if one uses, for example, the Discontinuous Galerkin
FEM or a mixed FEM formulation. The latter has been used in [10] in conjunction with the h ver-
sion of the FEM on a Shishkin mesh for the approximation of a fourth-order problem. The purpose
of this article is to extend the results of [10] to the hp version of the FEM on the so-called Spectral
Boundary Layer mesh (see Definition 3 ahead), applied to two-dimensional fourth-order singularly
perturbed problems posed on smooth domains. We assume that the solution has a certain structure (see
Proposition 2 ahead), something that has been studied in [16]. In particular, the solution is decomposed
into a smooth part, a boundary layer part which has support only near the boundary of the domain
and an exponentially small remainder. Using an approximation operator from [17, 18], we are able to
prove uniform exponential convergence for our scheme. We also comment on the case of domains
with corners.

The rest of the paper is organized as follows: in Section 2 we present the model problem, the
regularity of its solution and its mixed formulation. The discretization is presented in Section 3, and
in Section 4 we present our main result of robust exponential convergence in the energy norm (see
Equations 5 and 8 ahead). Finally, Section [5] shows the results of numerical computations that illustrate
our theoretical findings.

With Ω ⊂ R2 a bounded open set with boundary ∂Ω and measure |Ω|, we will denote by Ck(Ω)

the space of continuous functions on Ω with continuous derivatives up to order k. We will use the
usual Sobolev spaces Hk (Ω) = Wk,2(Ω) of functions on Ω with 0, 1, 2, . . . , k generalized derivatives
in L2 (Ω), equipped with the norm and seminorm � · �k,Ω and | · |k,Ω, respectively. We will also use the
spaces

H1
0 (Ω) = {

u ∈ H1 (Ω) : u|∂Ω = 0
}

, H2
0 (Ω) =

{
u ∈ H2 (Ω) : u|∂Ω = 0,

∂u
∂n

∣∣∣∣
∂Ω

= 0
}

,

where ∂u/∂n denotes the normal derivative. The norm of the space L∞(Ω) of essentially bounded
functions is denoted by � · �∞,Ω. Finally, the notation “a � b” means “a ≤ Cb” with C being a generic
positive constant, independent of any discretization or singular perturbation parameters.

2 THE MODEL PROBLEM AND ITS MIXED FORMULATION

We consider the following model problem: Find u such that

ε2Δ2u − bΔu + cu = f in Ω ⊂ R2, (1)

u = ∂u
∂n

= 0 on ∂Ω, (2)

where 0 < ε ≤ 1 is a given parameter, Δ denotes the Laplacian (and Δ2 the biharmonic) operator,
b, c > 0 are given constants, Ω is an open bounded domain with ∂Ω an analytic curve and f (x, y) is a
given function, which satisfies

�∇nf �∞,Ω � n!γn
f ∀ n = 0, 1, 2, . . . , (3)

for some positive constant γf independent of ε. Here we have used the shorthand notation

|∇nf |2 :=
∑
|α|=n

|α|!
α! |Dαf |2 =

2∑
β1,...,βn=1

|Dβ1···βn f |2,

Published on: 12 June 2018

114 Numer Methods Partial Differential Eq. 2019;35:114–127. wileyonlinelibrary.com/journal/hbm  © 2018 Wiley Periodicals, Inc.

https://orcid.org/0000-0003-0862-3977
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnum.22289&domain=pdf&date_stamp=2018-06-12


Received: 31 July 2017 Revised: 24 April 2018 Accepted: 9 May 2018

DOI: 10.1002/num.22289

R E S E A R C H A R T I C L E

A mixed hp FEM for the approximation of
fourth-order singularly perturbed problems on
smooth domains

P. Constantinou1 S. Franz2 L. Ludwig2 C. Xenophontos1

1Department of Mathematics and
Statistics, University of Cyprus, P.O. Box
20537, Nicosia 1678, Cyprus
2Technische Universität Dresden, Institut
für Wissenschaftliches Rechnen,
Dresden 01062, Germany

Correspondence
Christos Xenophontos, Department of
Mathematics and Statistics, University of
Cyprus, P.O. Box 20537, Nicosia 1678,
Cyprus.
Email: xenophontos@ucy.ac.cy

We consider fourth-order singularly perturbed problems
posed on smooth domains and the approximation of their
solution by a mixed hp Finite Element Method on the so-
called Spectral Boundary Layer Mesh. We show that the
method converges uniformly, with respect to the singu-
lar perturbation parameter, at an exponential rate when the
error is measured in the energy norm. Numerical examples
illustrate our theoretical findings.

K E Y W O R D S

boundary layers, fourth-order singularly perturbed problem, mixed hp
finite element method, spectral boundary layer mesh, uniform exponential
convergence

1 INTRODUCTION

The numerical solution of fourth-order singularly perturbed problems has only recently received atten-
tion within the research community, even though second order problems have been studied extensively
(see, e.g., the books [1–3] and the references therein). As is well known, a main difficulty in these
problems is the presence of boundary layers in the solution (for second-order problems) or in the first
derivative of the solution (for fourth-order problems) [4]. The accurate approximation of the layers,
independently of the singular perturbation parameter, is of great importance for the overall quality of
the approximate solution to be considered reliable. In the context of the Finite Element Method (FEM),
the robust approximation of boundary layers requires either the use of the h version on nonuniform,
layer-adapted meshes (such as the Shishkin [5] or Bakhvalov [6] mesh), or the use of the high order
p and hp versions on the so-called Spectral Boundary Layer Mesh [7, 8]. Regarding fourth-order sin-
gularly perturbed problems, the number of available references is scarse; some notable exceptions are
[4, 9–14]. One reason for the lack of results is the fact that for fourth-order problems a C1 approximation
must be constructed, something that, until recently, was not preferred (see [15] for a C1 construction

Numer Methods Partial Differential Eq. 2018;00:1–14. wileyonlinelibrary.com/journal/num © 2018 Wiley Periodicals, Inc. 1

2 CONSTANTINOU ET AL.

of hierarchic hp bases). This may be avoided if one uses, for example, the Discontinuous Galerkin
FEM or a mixed FEM formulation. The latter has been used in [10] in conjunction with the h ver-
sion of the FEM on a Shishkin mesh for the approximation of a fourth-order problem. The purpose
of this article is to extend the results of [10] to the hp version of the FEM on the so-called Spectral
Boundary Layer mesh (see Definition 3 ahead), applied to two-dimensional fourth-order singularly
perturbed problems posed on smooth domains. We assume that the solution has a certain structure (see
Proposition 2 ahead), something that has been studied in [16]. In particular, the solution is decomposed
into a smooth part, a boundary layer part which has support only near the boundary of the domain
and an exponentially small remainder. Using an approximation operator from [17, 18], we are able to
prove uniform exponential convergence for our scheme. We also comment on the case of domains
with corners.

The rest of the paper is organized as follows: in Section 2 we present the model problem, the
regularity of its solution and its mixed formulation. The discretization is presented in Section 3, and
in Section 4 we present our main result of robust exponential convergence in the energy norm (see
Equations 5 and 8 ahead). Finally, Section [5] shows the results of numerical computations that illustrate
our theoretical findings.

With Ω ⊂ R2 a bounded open set with boundary ∂Ω and measure |Ω|, we will denote by Ck(Ω)

the space of continuous functions on Ω with continuous derivatives up to order k. We will use the
usual Sobolev spaces Hk (Ω) = Wk,2(Ω) of functions on Ω with 0, 1, 2, . . . , k generalized derivatives
in L2 (Ω), equipped with the norm and seminorm � · �k,Ω and | · |k,Ω, respectively. We will also use the
spaces

H1
0 (Ω) = {

u ∈ H1 (Ω) : u|∂Ω = 0
}

, H2
0 (Ω) =

{
u ∈ H2 (Ω) : u|∂Ω = 0,

∂u
∂n

∣∣∣∣
∂Ω

= 0
}

,

where ∂u/∂n denotes the normal derivative. The norm of the space L∞(Ω) of essentially bounded
functions is denoted by � · �∞,Ω. Finally, the notation “a � b” means “a ≤ Cb” with C being a generic
positive constant, independent of any discretization or singular perturbation parameters.

2 THE MODEL PROBLEM AND ITS MIXED FORMULATION

We consider the following model problem: Find u such that

ε2Δ2u − bΔu + cu = f in Ω ⊂ R2, (1)

u = ∂u
∂n

= 0 on ∂Ω, (2)

where 0 < ε ≤ 1 is a given parameter, Δ denotes the Laplacian (and Δ2 the biharmonic) operator,
b, c > 0 are given constants, Ω is an open bounded domain with ∂Ω an analytic curve and f (x, y) is a
given function, which satisfies

�∇nf �∞,Ω � n!γn
f ∀ n = 0, 1, 2, . . . , (3)

for some positive constant γf independent of ε. Here we have used the shorthand notation

|∇nf |2 :=
∑
|α|=n

|α|!
α! |Dαf |2 =

2∑
β1,...,βn=1

|Dβ1···βn f |2,

CONSTANTINOU et al. 115



CONSTANTINOU ET AL. 3

with Dm denoting differentiation of order |m|. The variational formulation of (1)–(2) reads: Find
u ∈ H2

0 (Ω) such that

ε2�Δu, Δv� + b�∇u, ∇v� + c�u, v� = �f , v� ∀ v ∈ H2
0 (Ω) , (4)

where �·, ·� is the usual L2(Ω) inner product. Associated with the above problem is the energy norm

�u�2
E := ε2�Δu, Δu� + b�∇u, ∇u� + c�u, u�. (5)

In [10], the following mixed formulation was presented: find (u, w) ∈ H1
0 (Ω) × H1(Ω) such that

{
ε�∇u, ∇φ� + �w, φ� = 0 ∀ φ ∈ H1(Ω),
b�∇u, ∇ψ� + c�u, ψ� − ε�∇w, ∇ψ� = �f , ψ� ∀ ψ ∈ H1

0 (Ω),
(6)

where (cf. [19, 20])

w = εΔu ∈ H2(Ω).

The fact that w ∈ H2(Ω) is a consequence of the smoothness of f and ∂Ω. Define

B ((u, w), (ψ, φ)) := ε�∇u, ∇φ� + �w, φ� + b�∇u, ∇ψ� + c�u, ψ� − ε�∇w, ∇ψ� (7)

and

�|(u, w)�|2 := �w�2
0,Ω + b�∇u�2

0,Ω + c�u�2
0,Ω. (8)

Then there holds [10],

�|(u, w)�|2 = �|(u, εΔu)�|2 = ε2�Δu�2
0,Ω + b�∇u�2

0,Ω + c�u�2
0,Ω = �u�2

E ,

that is, the norm given by (8) is equivalent to the energy norm (5). Moreover, in [10] it was shown that
B ((·, ·), (·, ·)) given by (7), is coercive in the norm (8), that is,

B ((u, w), (u, w)) ≥ �|(u, w)�|2. (9)

It is well known (see, e.g., [21]) that the solution to second order singularly perturbed problems may
be decomposed into a smooth part and a boundary layer part, with the latter having support only in a
neighborhood of the boundary ∂Ω. Recently in [16], the fourth-order problem (1)–(2) was studied and a
similar decomposition was derived. To describe this decomposition, following [22] we define boundary
fitted co-ordinates (ρ, θ) in a neighborhood of the boundary as follows: Let (X(θ), Y(θ)) , θ ∈ [0, L]
be a parametrization of ∂Ω by arclength and let Ω0 be a tubular neighborhood of ∂Ω in Ω. For each
point z = (x, y) ∈ Ω0 there is a unique nearest point z0 ∈ ∂Ω, so with θ the arclength parameter (with
counterclockwise orientation), we set ρ = |z − z0| which measures the distance from the point z to ∂Ω.
Explicitly,

Ω0 = {z − ρ�nz : z ∈ ∂Ω, 0 < ρ < ρ0 < min. radius of curvature of ∂Ω} , (10)

4 CONSTANTINOU ET AL.

where �nz is the outward unit normal at z ∈ ∂Ω, and

x = X(θ) − ρY �(θ), y = Y(θ) + ρX �(θ),

with ρ ∈ (0, ρ0), θ ∈ (0, L). The determinant of the Jacobian matrix of the transformation is given by
J = 1 − κ(θ)ρ, where κ(θ) is the curvature of ∂Ω (see [22] for more details).

Remark 1 Since we assume that ∂Ω is a smooth (analytic) curve, we have
X (k)(θ), Y (k)(θ) � 1 ∀ k = 0, 1, 2, . . . , as well as J , J−1 � 1. Thus for a func-
tion v(x, y) defined in Ω0, the above change of variables produces v(x, y) =
v (X(θ) − ρY �(θ), Y(θ) + ρX �(θ)) as well as

∂v
∂x

= 1
1 − κ(θ)ρ

{
∂v
∂θ

X �(θ) − ∂v
∂ρ

(
Y �(θ) + ρX ��

(θ)
)}

,

∂v
∂y

= 1
1 − κ(θ)ρ

{
∂v
∂ρ

(
X �(θ) − ρY ��

(θ)
)

+ ∂v
∂θ

Y �(θ)
}

.

This shows that the first derivatives with respect to the (physical) x, y variables are bounded
by the first derivatives with respect to the ρ, θ variables.

We describe the decomposition from [16] in the following

Proposition 2 The BVP (1)–(2) has a solution u which can be decomposed as a smooth
part uS, a boundary layer part uBL and a remainder r, viz.

u = uS + χuBL + r, (11)

where χ is a smooth cut-off function, satisfying

χ =
{

1 for 0 < ρ < ρ0/3
0 for ρ > 2ρ0/3

.

Moreover, there exist constants K1, K2, ω, δ > 0, independent of ε but depending on the
data, such that

�DnuS�0,Ω � |n|!K |n|
1 ∀ n ∈ N2

0, (12)
∣∣∣∣
∂m+nuBL(ρ, θ)

∂ρm∂θn

∣∣∣∣ � n!Km+n
2 ε1−me−ωρ/ε ∀ m, n ∈ N, (ρ, θ) ∈ Ω0, (13)

�r�E � e−δ/ε. (14)

Finally, there exist constants C, K > 0, depending only on the data, such that

�Dnu�0,Ω ≤ CK |n| max
{|n||n|, ε1−|n|} ∀ n ∈ N2

0. (15)

Equation 15 gives classical differentiability regularity, while (12)–(14) corresponds to regularity
obtained through asymptotic expansions (see [16] for more details).
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3 DISCRETIZATION BY A MIXED HP -FEM

The discrete version of (6) reads: find (uN , wN) ∈ V N
1 × V N

2 ⊂ H1
0 (Ω) × H1 (Ω) such that ∀ (ψ, φ) ∈

V N
1 × V N

2 there holds

{
ε�∇uN , ∇φ� + �wN , φ� = 0
b�∇uN , ∇ψ� + c�uN , ψ� − ε�∇wN , ∇ψ� = �f , ψ� (16)

with the finite dimensional subspaces V N
1 , V N

2 defined below. Subtracting (16) from (6), we get
∀ (ψ, φ) ∈ V N

1 × V N
2

ε�∇u − ∇uN , ∇φ� + �w − wN , φ� + b�∇u − ∇uN , ∇ψ�
+ c�u − uN , ψ� − ε�∇w − ∇wN , ∇ψ� = 0,

or

B ((u − uN , w − wN), (ψ, φ)) = 0 ∀ (ψ, φ) ∈ V N
1 × V N

2 . (17)

In order to define the spaces V N
1 , V N

2 , we let Δ = {Ωi}N
i=1 be a mesh consisting of curvilinear quadri-

laterals, subject to the usual conditions (see, e.g., [17]) and associate with each Ωi a bijective mapping
Mi : SST → Ωi, where SST = [0, 1]2 denotes the usual reference square. With Qp(SST ) the space of
polynomials of degree p (in each variable) on SST , we define

Sp(Δ) =
{

u ∈ H1 (Ω) : u|◦Ωi
Mi ∈ Qp(SST ), i = 1, . . . , N

}
,

Sp
0 (Δ) = Sp(Δ) ∩ H1

0 (Ω).

We then take V N
1 = Sp

0 (Δ), V N
2 = Sp(Δ), with the mesh Δ chosen following the construction in

[17, 18]. We denote by ΔA a fixed (asymptotic) mesh consisting of curvilinear quadrilateral elements
Ωi, i = 1, . . . , N1. These elements Ωi are the images of the reference square SST under the element
mappings MA,i, i = 1, . . . , N1 ∈ N (the subscript A emphasizes that they correspond to the asymptotic
mesh). They are assumed to satisfy conditions (M1)–(M3) of [17] in order for the space Sp(Δ) to
have the necessary approximation properties. Moreover, the element mappings MA,i are assumed to be
analytic (with analytic inverse), or equivalently [17]

�(M �
A,i)

−1�∞,SST � 1, �DαMA,i�∞,SST � α!γ|α| ∀α ∈ N2
0, i = 1, . . . , N1,

for some constant γ > 0. We also assume that the elements do not have a single vertex on the boundary
∂Ω but only complete, single edges. For convenience, we number the elements along the boundary
first, that is, Ωi, i = 1, . . . , N2 < N1 for some N2 ∈ N. We now give the definition of the Spectral
Boundary Layer Mesh ΔBL = ΔBL(κ, p)

Definition 3 (Spectral Boundary Layer mesh ΔBL(κ, p)). [18] Given parameters κ > 0,
p ∈ N, ε ∈ (0, 1] and the (asymptotic) mesh ΔA, the Spectral Boundary Layer mesh
ΔBL(κ, p) is defined as follows:

1. If κpε ≥ 1/2 then we are in the asymptotic range of p and we use the mesh ΔA.

6 CONSTANTINOU ET AL.

FIGURE 1 Example of an admissible mesh. Left: asymptotic mesh ΔA. Right: boundary layer mesh ΔBL

2. If κpε < 1/2, we need to define so-called needle elements. We do so by splitting the
elements Ωi, i = 1, . . . , N2 into two elements Ωneed

i and Ω
reg
i . To this end, split the

reference square SST into two elements

Sneed = [0, κpε] × [0, 1], Sreg = [κpε, 1] × [0, 1],

and define the elements Ωneed
i , Ω

reg
i as the images of these two elements under the

element map MA,i and the corresponding element maps as the concatination of the
affine maps

Aneed : SST → Sneed, (ξ, η) → (κpεξ, η),

Areg : SST → Sreg, (ξ, η) → (κpε + (1 − κpε)ξ, η)

with the element map MA,i, that is, Mneed
i = M◦

A,iAneed and M reg
i = M◦

A,iAreg. Explicitly:

Ωneed
i = MA,i

(
Sneed) , Ωreg

i = MA,i (Sreg) ,

Mneed
i (ξ, η) = MA,i (κpεξ, η) , M reg

i (ξ, η) = MA,i (κpε + (1 − κpε)ξ, η) .

In Figure 1 we show an example of such a mesh construction on the unit circle.
In total, the mesh ΔBL(κ, p) consists of N = N1 + N2 elements if κpε < 1/2. By

construction, the resulting mesh

ΔBL = ΔBL(κ, p) =
{
Ωneed

1 , . . . , Ωneed
N1

, Ωreg
1 , . . . , Ωreg

N1
, ΩN1+1, . . . , ΩN

}

is a regular admissible mesh in the sense of [17].
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3 DISCRETIZATION BY A MIXED HP -FEM

The discrete version of (6) reads: find (uN , wN) ∈ V N
1 × V N

2 ⊂ H1
0 (Ω) × H1 (Ω) such that ∀ (ψ, φ) ∈

V N
1 × V N

2 there holds

{
ε�∇uN , ∇φ� + �wN , φ� = 0
b�∇uN , ∇ψ� + c�uN , ψ� − ε�∇wN , ∇ψ� = �f , ψ� (16)

with the finite dimensional subspaces V N
1 , V N

2 defined below. Subtracting (16) from (6), we get
∀ (ψ, φ) ∈ V N

1 × V N
2

ε�∇u − ∇uN , ∇φ� + �w − wN , φ� + b�∇u − ∇uN , ∇ψ�
+ c�u − uN , ψ� − ε�∇w − ∇wN , ∇ψ� = 0,

or

B ((u − uN , w − wN), (ψ, φ)) = 0 ∀ (ψ, φ) ∈ V N
1 × V N

2 . (17)

In order to define the spaces V N
1 , V N

2 , we let Δ = {Ωi}N
i=1 be a mesh consisting of curvilinear quadri-
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Sp(Δ) =
{

u ∈ H1 (Ω) : u|◦Ωi
Mi ∈ Qp(SST ), i = 1, . . . , N

}
,

Sp
0 (Δ) = Sp(Δ) ∩ H1

0 (Ω).

We then take V N
1 = Sp

0 (Δ), V N
2 = Sp(Δ), with the mesh Δ chosen following the construction in
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have the necessary approximation properties. Moreover, the element mappings MA,i are assumed to be
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�(M �
A,i)

−1�∞,SST � 1, �DαMA,i�∞,SST � α!γ|α| ∀α ∈ N2
0, i = 1, . . . , N1,
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ΔBL(κ, p) is defined as follows:

1. If κpε ≥ 1/2 then we are in the asymptotic range of p and we use the mesh ΔA.
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In Figure 1 we show an example of such a mesh construction on the unit circle.
In total, the mesh ΔBL(κ, p) consists of N = N1 + N2 elements if κpε < 1/2. By

construction, the resulting mesh
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is a regular admissible mesh in the sense of [17].
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4 ERROR ESTIMATES

Our approximation will be based on the (element-wise) Gauß-Lobatto interpolant from [[17], Prop.
3.11] (see also [21]) and its improvement in [18]. We have the following

Lemma 4 Let (u, w) be the solution to (6) and assume that (3) holds. Then there
exist constants κ0, κ1, C, β > 0 independent of ε ∈ (0, 1] and p ∈ N, such that
the following is true: For every p and every κ ∈ (0, κ0] with κp ≥ κ1, there exist
πpu ∈ Sp

0 (ΔBL(κ, p)), πpw ∈ Sp(ΔBL(κ, p)) such that

max
{�u − πpu�∞,Ω, �∇(u − πpu)�∞,Ω, �w − πpw�∞,Ω, ε1/2�∇(w − πpw)�0,Ω

}
� e−βpκ

Proof The proof is separated into two cases.

Case 1: κpε ≥ 1/2 (asymptotic case).

In this case we use the asymptotic mesh ΔA and u satisfies (15). Inspecting the proof
of Corollary 3.5 of [18], we see that we can find πpu ∈ Sp

0 (ΔA) such that

�u − πpu�∞,Ω + �∇(u − πpu)�∞,Ω � p2(ln p + 1)2e−βpκ (18)

(due to the fact that for u the boundary layers are in the derivative, hence we have an extra
power of ε in estimate (15)). For w = εΔu, we have

�Dαw�0,Ω � εK |α|+2 max
{
(|α| + 2)|α|+2, ε1−(|α|+2)

} ∀ |α| ∈ N2
0.

and by Corollary 3.5 of [18], there exists πpw ∈ Sp(ΔA) such that

�w − πpw�∞,Ω + ε1/2�∇(w − πpw)�0,Ω � p2(ln p + 1)2e−βpκ. (19)

This gives the result in the asymptotic case, once we absorb the powers of p in the
exponential term and adjusting the constants.

Case 2: κpε < 1/2 (preasymptotic case).

In this case we use the Spectral Boundary Layer mesh ΔBL and u is decomposed as

u = uS + χuBL + r.

The approximation of uS and r is constructed as in Case 1 above (basically taken to be
that of [17]) and estimates like (18) may be obtained. For uBL we use the approximation
of Lemma 3.4 in [18], taking advantage of the extra power of ε in the regularity estimates.
Ultimately, we get πpu ∈ Sp

0 (ΔA) such that (18) holds and for w = εΔu, a similar
argument gives (19).

The previous lemma allows us to measure the error between the solution (u, w) and its interpolant
(πpu, πpw). The following one allows us to measure the error between the interpolant and the finite
element solution (uN , wN).
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Lemma 5 Assume that Proposition 2 holds and let (uN , wN) ∈ Sp
0 (ΔBL(κ, p)) ×

Sp(ΔBL(κ, p)) be the solution to (16). Then there exist polynomials πpu ∈ Sp
0 (ΔBL(κ, p)),

πpw ∈ Sp(ΔBL(κ, p)) such that

�| (πpu − uN , πpw − wN
) �|2 � e−β̃p,

with β̃ > 0 a constant independent of ε and p

Proof Recall that the bilinear form B ((·, ·), (·, ·)), given by (7) is coercive (see (9)),
hence we have, with ψ = πpu−uN ∈ Sp

0(ΔBL(κ, p)) and φ = πpw −wN ∈ Sp(ΔBL(κ, p))

�|(ψ, φ)�|2 ≤ B
(
(πpu − u, πpw − w), (ψ, φ)

) = ε�∇ (
πpu − u

)
, ∇φ� + �πpw − w, φ�

+ b�∇ (
πpu − u

)
, ∇ψ� + c�πpu − u, ψ� − ε�∇ (

πpw − w
)

, ∇ψ�
=: I1 + I2 + I3 + I4 + I5

Each term is treated using Cauchy-Schwarz and Lemma 4, except for I1 which also
requires the use of an inverse inequality:

|I1| = |ε�∇ (
πpu − u

)
, ∇φ�| ≤ ε�∇ (

πpu − u
) �0,Ω�∇φ�0,Ω

� �∇ (
πpu − u

) �0,Ωε(κpε)−1p2�φ�0,Ω � pe−βp�φ�0,Ω,

|I2| = |�πpw − w, φ�| ≤ �πpw − w�0,Ω�φ�0,Ω � e−βp�φ�0,Ω,

|I3| = |b�∇ (
πpu − u

)
, ∇ψ�| � �∇ (

πpu − u
) �0,Ω�∇ψ�0,Ω � e−βp�∇ψ�0,Ω,

|I4| = |c�πpu − u, ψ�| � �πpu − u�0,Ω�ψ�0,Ω � e−βp�ψ�0,Ω,

|I5| = |ε�∇ (
πpw − w

)
, ∇ψ�| ≤ ε�∇ (

πpw − w
) �0,Ω�∇ψ�0,Ω � e−βp�∇ψ�0,Ω.

Hence, after absorbing the factor p into the exponential term in the estimate for I1, we get

�|(ψ, φ)�|2 � e−β̃p (�∇ψ�0,Ω + �φ�0,Ω + �ψ�0,Ω
)

� e−β̃p�|(ψ, φ)�|

and the proof is complete.

Combining Lemmas 4 and 5 we establish our main result:

Theorem 6 Let (u, w) ∈ H1
0 (Ω) × H1(Ω), (uN , wN) ∈ V N

1 × V N
2 be the solutions to

(6) and (16), respectively, and assume Proposition 2 holds. Then there exists a positive
constant β, independent of ε but depending on κ, such that

�| (u − uN , w − wN) �| � e−βp.

Proof The triangle inequality gives

�| (u − uN , w − wN) �| ≤ �| (u − πpu, w − πpw
) �| + �| (πpu − uN , πpw − wN

) �|

and we then use Lemmas 4 and 5.
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Remark 7 The dependence of the constant β above on κ, has been studied for one-
dimensional second-order singularly perturbed problems in [8]. In the present work, we
have investigated this issue computationally and we have found that the choice κ = 1
yields better results than all other choices we have tried.

Remark 8 We note that the result of the previous theorem gives robust exponential
convergence of the hp version of the FEM on the Spectral Boundary Layer mesh when
the error is measured in the (energy) norm (8). As it was pointed out in [10], this norm is
not balanced in the sense that, if uBL, uS are layer and smooth components of the solution,
respectively, then

�|(uBL, εΔuBL)�| = O(ε1/2) , �|(uS, εΔuS)�| = O(1).

This means that as ε → 0, the energy norm “does not see the layer.” The convergence of
our method in a stronger, balanced norm is currently under investigation.

5 NUMERICAL RESULTS

In this section, we present the results of numerical computations for three examples. Computations
were made using the finite element library SOFE (https://github.com/SOFE-Developers/SOFE).

Example 1 We consider a smooth domain Ω with a boundary Γ given by a curve γ(ϕ)

using polar coordinates. We consider the so called Cranioid-curve with

γ(ϕ) =
(

1
4

sin(ϕ) + 1
2

√
1 − 0.9 cos (ϕ)2 + 1

2

√
1 − 0.7 cos (ϕ)2

)
·
(

cos(ϕ)

sin(ϕ)

)

and ϕ ∈ [0, 2π). On this domain Ω we choose b = c = 1 and as right-hand side
f (x, y) = 10x. Figure 2 shows the (approximated) solutions to this problem for a rather
large value of ε = 10−2. The solutions show the expected behavior with a visible layer
structure only for w. Note that the mesh consists of eight coarse and six needle, curved
quadrilaterals in the boundary layer region. Here the width of the numerical layer region
(and therefore of the quadrilaterals) is set to κpε with κ = 1.

As the exact solution is unknown we use a numerically computed reference solution in its place. It
is computed on a mesh generated by once refining the shown mesh in Figure 2 and with a polynomial
degree p = 18 that is larger by two that the maximal one used for the simulations.

The results obtained in the energy-norm can be seen in the left picture of Figure 3. We observe
a robust exponential convergence, visible as a straight decay in the semilog plot. The error curves
for different values of ε lie on top of each other (different to our second example below). Regarding
Remark 8 we also investigated the error component �w−wh�0,Ω separately. The right picture of Figure
3 shows the error curves for this part, normalized again by �|(u, w)�|. Obviously, this part of the error
decays proportionally to ε1/2 and exponentially in p. Thus, a balancing as indicated in Remark 8 will
also give robust error measures.

Example 2 Now we choose Ω = (0, 1)2, b = c = 1 and f (x, y) chosen so that the exact
solution is given by

u(x, y) = X(x)Y(y),
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FIGURE 2 Approximated solutions u (left) and w (right), and mesh for ε = 10−2 [Color figure can be viewed at
wileyonlinelibrary.com]

where

X(x) = 1
2

(
sin(πx) + πε

1 − ε−1/ε

(
ε−x/ε + ε(x−1)/ε − 1 − ε−1/ε

))
,

Y(y) =
(

2y(1 − y2) + ε

(
�d(1 − 2y) − 3

q
�

+
(

3
�

− d
)

ε−y/ε +
(

3
�

+ d
)

ε(y−1)/ε

))
,

with � = 1 − ε−1/ε, q = 2 − � and d = 1/(q − 2ε�) (cf. [10, 11]). This function
has boundary layers along each side of Ω (and no corner singularities) and the Spectral
Boundary Layer mesh consists of nine elements, as shown in Figure 4; we used κ = 1 as
other values gave similar results (i.e., exponential convergence with a smaller value of β

in Theorem 6). We use polynomials of degree p = 1, . . . , 20 (in each variable) and take
ε = 10−j, j = 3, . . . , 9.

FIGURE 3 Convergence of the solutions on Cranioid-domain [Color figure can be viewed at wileyonlineli-
brary.com]
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with � = 1 − ε−1/ε, q = 2 − � and d = 1/(q − 2ε�) (cf. [10, 11]). This function
has boundary layers along each side of Ω (and no corner singularities) and the Spectral
Boundary Layer mesh consists of nine elements, as shown in Figure 4; we used κ = 1 as
other values gave similar results (i.e., exponential convergence with a smaller value of β

in Theorem 6). We use polynomials of degree p = 1, . . . , 20 (in each variable) and take
ε = 10−j, j = 3, . . . , 9.

FIGURE 3 Convergence of the solutions on Cranioid-domain [Color figure can be viewed at wileyonlineli-
brary.com]
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FIGURE 4 The Spectral Boundary Layer Mesh, when κpε < 1/2, used in Example 2

Figure 5 shows the percentage relative error in the energy norm versus the polynomial degree,
in a semilog scale. The fact that we observe straight lines (as p is increased) verifies the exponential
convergence of the method. As ε → 0, the errors get smaller, which is a manifestation of the lack of
balance in the norm (cf. Remark 8), even though we have robustness.

Example 3 Finally, we choose b = c = f (x, y) = 1 and Ω = (−1, 1)2 \ (−1, 0)2,
that is, an L-shaped domain. This example is meant to examine what happens when the
domain is a polygon and the data does not satisfy any compatibility conditions (thus the
solution contains corner singularities). In second-order singularly perturbed problems, the
corner singularities have support only in the layer region [23]. For fourth-order singularly
perturbed problems, this is still an open question but we note the following: the limiting
problem is (essentially) a Poisson-like problem and it will feature its own (classical)
corner singularities. As a result, the Spectral Boundary Layer mesh will need to include
geometric refinement toward the re-entrant corner, in addition to the needle elements
along the boundary.

Figure 6 shows two meshes: a mesh that includes only boundary layer refinement (left) and a mesh
with both boundary layer and geometric refinement (right). The latter uses three refinements inside the
layer region and two outside, with ratio 0.15.

Figure 7 shows the comparison of the two schemes. In particular, we show the percentage relative
error in the energy norm versus the polynomial degree p, in a semilog scale. Since there is no exact
solution available, we used a reference solution obtained with p = 21. Both seem to yield robust
exponential convergence once ε is small enough, but the method that uses geometric refinement seems
to give better results (at the expense, of course, of using much more degrees of freedom). Based on
this experiment, we feel that this issue deserves further study (theoretical and computational) and we
intend to do so in the near future.

12 CONSTANTINOU ET AL.

FIGURE 5 Energy norm convergence [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Energy norm convergence for Example 3 [Color figure can be viewed at wileyonlinelibrary.com]
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